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Appendix A. Proof of Lemma 11

Lemma 1. Let F (w) = E[fi(w)] be non-convex. Set σ2 = E[∥∇fi(wM)∥2] with w∗ :=2

argminF (w). Suppose η ≤ 1

supi Li
. Let ∆t = wt −w. After T iterations, SGD satisfies:3

E
[
∥∆T ∥2

]
≤ (1− 2ηĈ)T ∥∆0∥2 + ηRσ

where Ĉ = λ(1− η supi Li) and Rσ =
σ2

Ĉ
.4

Proof. ∥∇fi(w)∥ = 0 in the noiseless setting, and so σ := 0. For xk being the input at i random5

index for iteration k, there exists a parameter λwt for λmax (Eq. 7), and w = wλ, we have for step6

size γ7

E
[
∥∆T ∥2

]
= ∥xk − x⋆ − γ∇fi(xk)∥2

= ∥(xk − x⋆)− γ(∇fi(xk)−∇fi(x⋆))− γ∇fi(x⋆)∥2

= ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ ∇fi(xk) + γ2∥∇fi(xk)−∇fi(x⋆) +∇fi(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ ∇fi(xk) + 2γ2∥∇fi(xk)−∇fi(x⋆)∥2 + 2γ2∥∇fi(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ ∇fi(xk)

+ 2γ2Lixk − x⋆ +∇fi(xk)−∇fi(x⋆) + 2γ2∥∇fi(x⋆)∥2

where we employ Jensen’s inequality in the first inequality for σ2 = E[∥∇fi(wM)∥2]. Then8

∇fi(x) = F (x), and we obtain9

E
[
∥∆T ∥2

]
≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ F (xk) + 2γ2 [Lixk − x⋆,∇fi(xk)−∇fi(x⋆) ]

+ 2γ2∥∇fi(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ F (xk) + 2γ2 sup
i

Lixk − x⋆,∇fi(xk)−∇fi(x⋆)

+ 2γ2∥∇fi(x⋆)∥2

= ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ F (xk) + 2γ2 supLxk − x⋆, F (xk)− F (x⋆) + 2γ2σ2
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Table 1: Datasets and Models Used in Experiments (* Down-stream training using the pre-trained
model).

Model Dataset #Samples #Epoch #GPUs
minibatch

(per GPU)
Task

Resnet50 He u. a. (2016)
ImageNet-1K Deng u. a. (2009) 1.2M 100 32

64
Image Classification

EfficientNet-b3 Tan und Le (2019) 32

WideResNet-28-10

Zagoruyko und Komodakis (2016)

CIFAR-100

Krizhevsky und Hinton (2009)
50K 200 32 32 Image Classification

DeepCAM Kurth u. a. (2018) DeepCAM Kurth u. a. (2018) ∼ 122K 35 1024 1 Image Segmentation

DeiT-Tiny-224 Touvron u. a. (2021)

Fractal-3K Kataoka u. a. (2022) 3M 80 32 16

Image Classification(*) CIFAR-10

Krizhevsky und Hinton (2009)
50K 1000 8 96

(*) CIFAR-100

Krizhevsky und Hinton (2009)
50K 1000 8 96

when γ ≤ 1
supL . Recursively applying this bound over the first k iterations yields the desired result10

E
[
∥∆T ∥2

]
≤

(
1− 2γµ(1− γ)

))k

∥x0 − x⋆∥2 + 2

k−1∑
j=0

(
1− 2γµ(1− γ)

))j

γ2σ2

≤
(
1− 2γµ(1− γ)

))k

∥x0 − x⋆∥2 +
γσ2

µ
(
1− γ

) .
11

Appendix B. Experiments Details12

B.1. System detail13

We run our experiments on a supercomputer with 1000s of compute nodes, each equipped with 214

Intel Xeon Gold 6148 CPUs, 384 GiB of RAM, 4 NVidia V100 GPUs, and Infiniband EDR NICs15

(100Gbps×2). We run 4 MPI ranks per compute node so that each rank has a dedicated access to a16

GPU.17

B.2. Model training method details and dataset information:18

Table 1 summarizes the models and datasets used in this work. In details, we evaluate KAKURENBO19

using several models on various datasets as the following:20

• ImageNet-1K Deng u. a. (2009): We use the subset of the ImageNet dataset containing21

1000 classes each containing around 1300 images (1,282,048 images in total). We also22

test the trained model on the validation set of 50, 000 samples. We train ResNET-50 and23

EfficientNet-b3 provided by ‘torchvision v0.12.0’ on ImageNet-1K dataset.24

• CIFAR-10/CIFAR-100 Krizhevsky und Hinton (2009): The CIFAR-10/CIFAR-100 dataset25

dataset consists of 60,000 colour images. It has 100 categories each containing 600 images.26

The dataset provides 50,000 training images and 10,000 test images with a size of 32×3227

pixels. CIFAR-100 dataset is available at https://www.cs.toronto.edu/ kriz/cifar.html.28

• DeepCAM Kurth u. a. (2018): DeepCAM dataset for image segmentation, which consists of29

approximately 122K samples and requires 8.8TBs of storage. We use the settings in Kurth30

u. a. (2018) to train DeepCAM with the top learning rate of 0.0055.31

• Fractal-3K Kataoka u. a. (2022) A rendered dataset from the Visual Atom method Kataoka32

u. a. (2022). Fractal-3K dataset comprise of 3 million images of visual atoms, where the33

number of classes is C = 3000 and the number of images per class is N = 1000. We train the34

DeiT-Tiny-224 model on Fractal-3K dataset and fine tune it with CIFAR-10 and CIFAR-10035

datasets.36
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Table 2: Hyper-parameters used for different training in the paper and the baseline top-1 testing
accuracy. We also considers different hyper-parameters for ResNet-50 model on ImageNet-1K
dataset.

ImageNet-1K CIFAR-100 Fractal-3K CIFAR-10 CIFAR-100

ResNet-50 ResNet-50 (A) ResNet-50 (B) EfficientNet-b3 WideResNet-28-10 DeiT-Tiny-224
Train Res 224 224 224 224 32 224 224 224
Test Res 232 224 232 224 32 - 32 32
Epochs 600 100 600 100 200 80 1000 1000
Number of workers 32 32 32 32 32 32 8 8
Batch size 2048 1024 1024 1024 1024 512 768 768
Optimizer SGD SGD SGD SRMSProp SGD adamw SGD SGD
Momentum 0.9 0.9 0.9 0.9 0.9 - 0.9 0.9
LR 0.11 0.0125 0.125 0.01 0.025 0.001 0.01 0.01
Weight decay 1e-5 5e-5 2e-5 5e-5 5e-4 0.05 1e-4 1e-4
LR decay cosineLR step cosineAnnealing step step Cosine_iter Cosine_iter Cosine_iter
Decay rate - 0.1 - 0.9 0.2 - - -
Decay epochs - [30, 60, 80] - 2 [60, 120, 160] - - -
Warmup epochs 5 5 5 5 1 5 5 5
Warmup method linear linear linear linear linear linear linear linear
Label Smoothing 0.1 - - - - - 0.1 0.1
H.flip YES YES YES YES YES YES YES YES
Erasing prob. 0.1 - 0.1 - - 0.5 0.5 0.5
Auto augument ta_wide - ta_wide - - rand-m9-mstd0.5-inc1
Interpilation bilinear - bilinear - - bicubic bicubic bicubic
Train crop 176 - 176 - - 224 224 224
Test crop 224 - 224 - - - - -
EMA YES - - - - - - -
EMA steps 32 - - - - - - -
EMA decay 0.99998 - - - - - -

Loss
Cross

Entropy
Cross

Entropy
Cross

Entropy
Cross

Entropy
Cross

Entropy
Cross

Entropy
Soft Target

Cross Entropy
Baseline acc. 74.89 73.68 76.58 76.63 77.49 - 95.03 79.69

Max fraction 0.3 0.3 0.3 0.3 0.3 0.3 - -
Max fraction decay [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] - -
Fraction decay epoch [200, 400, 600] [30, 60, 80] [200, 400, 600] [30, 60, 80] [60, 120, 160] [30, 60, 80] - -
KAKURENBO acc. 75.15 73.52 76.62 76.23 77.21 - 95.28 79.35

B.3. Hyper-parameters37

It is worth noting that we follow the hyper-parameters reported in Vryniotis for training ResNet-38

50, Zagoruyko und Komodakis (2016) for training WideResNet-28-10, Tan und Le (2019) for training39

EfficientNet-b3, and Kurth u. a. (2018) for DeepCAM. We also use the setting in Kataoka u. a. (2022)40

for both pretrain and finetune tasks in Fractal-3K. Table 2 shows the detail of our hyper-parameters.41

Specifically, We follow the guideline of ‘TorchVision‘ to train the ResNet-50 that uses the CosineLR42

learning rate scheduler 1, auto augments, and random erasing, etc Vryniotis. We also set the weight43

decay to 1e− 05 and crop the input image to 176× 176 pixels and train for a long number of epochs,44

i.e., 600 (The ResNet-50 setting). We train the WideResNet-28-4 on the CIFAR-100 dataset in45

200 epochs following the setting in Zagoruyko und Komodakis (2016). Specifically, we use the46

base learning rate of 0.025× k, momentum 0.9, and weight decay 0.0005. For EfficientNet-b3, we47

use RMSProp optimizer with momentum 0.9; batch norm momentum 0.99 weight decay 1e − 548

(following Tan und Le (2019)). We use an initial learning rate of 0.016 that decays by 0.9 every49

2 epochs. We set the minibatch size per worker (GPU) to b, e.g., the global batch size of b × p in50

the case of p GPUs. The minibatch size per GPU and the number of GPUs in each experiments are51

shown in Table 1.52

To show the robustness of KAKURENBO, we also train ResNet-50 with different settings, e.g.,53

marked as (A) and (B) in the Table 2 and discuss the result in Appendix C.3. For example, in54

ResNet-50 (A) setting, we follow the hyper-parameters reported in Goyal u. a. (2017). Specifically,55

we use using the Stochastic Gradient Descent (SGD) optimizer with a Nesterov momentum of 0.956

and weight decay of 0.00005. We trained all the models for 100 epochs and apply the linear scaling57

rule with the base learning rate of 0.0125 × k where k is the number of workers. We reduce the58

learning rate by 0.1 at the 30th, 60th, and 80th epoch. We gradual warmup which starts with 0 and is59

1implemented by timm https://github.com/huggingface/pytorch-image-models/
tree/main/timm
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linearly increased to the base learning rate over 5 epochs. We also use scale and aspect ratio data60

augmentation.The input image is a 224× 224 pixel random crop from an augmented image or its61

horizontal flip.62

B.4. Implementation63

It is worth noting that KAKURENBO merely hides samples before the input pipeline. As a result,64

KAKURENBO can be easily implemented with simple extensions to PyTorch and TensorFlow65

implementations2. Using KAKURENBO with new models and datasets can be added to any training66

code by indicating so in the model launch parameters.67

Appendix C. Ablation Studies68

C.1. Analysis of the Factors Affecting KAKURENBO’s Performance69

In this section, we present an analysis of the factors affecting KAKURENBO’s performance, e.g., the70

lagging loss and the prediction confidence.71

Figure 1 shows the histogram of the loss as the number of epochs increases when training ResNet-5072

(A) on the ImageNet-1K dataset. At the first few epochs, the histogram of the loss follows a Gaussian73

distribution. As the number of epochs increases, the number of samples with small loss increases74

significantly. For example, starting from epoch 30, more than 50% of the samples have a loss which75

is lower than 5% of the highest loss. As a result, there is an increase in the number of samples that76

provide about the same absolute contribution to the update, e.g., in the latter epochs. Hiding a fraction77

of (fixed) F samples during training in this case may lead to a relatively higher negative impact on78

the accuracy than that at some early epochs. Thus, we reduce the maximum hidden fraction at the79

epoch number increases (as mentioned in Section 3.4 in the main manuscript).80

Figure 1: Histogram of the lagging-loss as the number of epoch increases during training (ResNet-50
w/ ImageNet-1K).

In addition, as the number of samples with the same absolute loss increases, there is a high probability81

that samples classified as important are in fact unimportant. To this end, we propose moving back82

samples from the hidden set based on their prediction confidence score (as per Section 3.2). Unlike83

the ahead-of-time method proposed by the authors in Toneva u. a. (2019), instead of computing the84

loss of all the samples before training and selecting samples to be removed from the training process,85

we compute the loss of the samples on the fly. With this method, at each epoch, a dynamic hiding86

fraction F ∗ is applied. Figure 2 shows the number of hidden samples of each class in KAKURENBO87

(ResNet-50, ImageNet-1K). The figure shows the result of the first 50 classes. The number on top of88

each column shows the rank over 1000 classes (a lower rank indicates a higher number of hidden89

samples). The result shows that our method could dynamically hide the samples at each epoch. For90

example, fewer samples in the class 25 are hidden while more and more samples in class 13 are91

selected to hide as epochs increase.92

2 Our PyTorch implementation is available at https://anonymous.4open.science/r/
kakurenbo-8F10/
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Figure 2: Number of hidden samples of each class in KAKURENBO (ResNet-50, ImageNet-1K).
The figure shows the result of the first 50 classes. The number on top of each column shows the rank
over 1000 classes (a lower rank indicates a higher number of hidden samples).

C.2. Evolution of the Hiding Fraction93

Figure 3: Reduction of hiding fraction, per epoch, and the resulting speedup.

Figure 3 shows how KAKURENBO adapts the size of the hidden set during the training of94

EfficientNet-b3. At the beginning of the training, the maximum hiding fraction is set to 30 %.95

This fraction is progressively reduced after a few epochs followed by our fraction adjustment rule.96

The figure also reports the effective proportion of samples that are hidden at each epoch (Hiding97

rate in the Figure). As described in Section 3 in the main manuscript, KAKURENBO first cuts a98

part of the dataset before moving back samples that are mispredicted or correctly predicted but with99

low confidence. Figure 3 shows that the moving back strategy mostly impacts the beginning of the100

training when the model is still inaccurate.101

Figure 3 also reports the measured speedup per epoch as compared to the baseline epoch duration.102

The speedup follows the same trend as the hiding rate. This is because reducing the number of103

samples in the training set impacts the speed of the training. The measured speedup does not reach104

the maximum hiding rate because of additional hidden sample selection and due to the need for105

computing the forward pass on samples in the hidden list.106

C.3. Robustness of Our Method107
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Table 3: Test accuracy (Top-1) in percentage and total training time in seconds of KAKURENBO in
the comparison with those of the baseline.

Setting ResNet-50(A) + ImageNet-1K ResNet-50(B) + ImageNet-1K

Accuracy Time (sec) Accuracy Time (sec)

Baseline 73.68 16118 76.58 64060

KAKURENBO-0.2 - - 76.11 61723
KAKURENBO-0.3 73.52 12984 76.17 59063
KAKURENBO-0.4 - - 75.62 57582

(a) ResNet-50 (A) (b) ResNet-50 (B)

Figure 4: Convergence and speedup of KAKURENBO with different setting of ResNet-50.

In this section, we demonstrate the robustness of KAKURENBO with different settings during108

training, e.g. (1) when using different techniques to improve accuracy and (2) the batch size is109

changed.110

We first measure the robustness of KAKURENBO when using SoTA techniques in training, the111

ResNet-50 (A) and (B) described in Table 2. The result in Figure 4 and Table 3 show that our proposed112

method is also stable with different learning techniques. For example, KAKURENBO could reduce113

the total training time to 19.5% (7.8%) with only 0.2% (0.41) percent of accuracy reduction when114

the maximum hidden fraction is set to 30% for RESNET-50 (A) and (B), respectively.115

Table 4: Test accuracy (Top-1) in percentage of KAKURENBO in comparison with those of the
baseline when the batch size changes.

Setting ResNet-50 (A) + ImageNet-1K

#GPUs 32 64 128 256
Batch size 1024 2048 4096 8192

Baseline 73.68 73.98 73.59 73.81

KAKURENBO-0.4 73.60 73.21 73.03 72.84

We now fix the mini-batch size per worker to 32 and then increase the number of workers (GPUs),116

i.e., we increase the global batch size in the case of ResNet-50 (A). Table 4 shows the top-1 testing117

accuracy of ResNet-50 (A) on the ImageNet-1K dataset when the batch size changes from 1024 to118

8192. The result shows that KAKURENBO can maintain the accuracy (or with a trivial reduction of119

accuracy) even with large batch sizes. KAKURENBO could help with large-scale training which has120

become common when training DL models on a large supercomputer or cluster.121
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Table 5: The impact of different components of KAKURENBO on testing accuracy (Resnet-50 (A),
ImageNet-1K, F = 0.4) including HE: Hiding F% lowest-loss examples, MB: Moving Back, RF:
Reducing the Fraction by epoch, LR: Adjusting Learning Rate. Numbers inside the (.) indicate the
gap in percentage compared to the full version of KAKURENBO.

Component AccuracyHE MB RF LR

Baseline × × × × 73.68

v1000 ✓ × × × 72.25 (-1.8%)
v1001 ✓ × × ✓ 73.08 (-0.7%)
v1010 ✓ × ✓ × 72.81 (-1.1%)
v1011 ✓ × ✓ ✓ 73.27 (-0.4%)
v1100 ✓ ✓ × × 72.37 (-1.7%)
v1101 ✓ ✓ × ✓ 73.09 (-0.7%)
v1110 ✓ ✓ ✓ × 72.96 (-0.9%)
KAKUR. (v1111) ✓ ✓ ✓ ✓ 73.6

C.4. Impact of different components of KAKURENBO122

We evaluate how KAKURENBO’s individual internal strategies, and their combination, affect the123

testing accuracy of a neural network. Table 5 reports the results we obtained when training ResNet-124

50 on ImageNet-1K with a maximum hiding fraction of 40% . The results show that when only125

HE (Hiding Examples) of the 40% lowest loss samples is performed, accuracy slightly degrades.126

Combining HE with other strategies, namely MB (Move-Back), RF (Reducing Fraction), and LR127

(Learning Rate adjustment) gradually improves testing accuracy. In particular, all combinations128

with RF achieve higher accuracy than the ones without it. For example, the accuracy of v1110 is129

higher than that of v1100 by about 0.59%. We also observe that using LR helps to improve the130

training accuracy by a significant amount, i.e., from 0.46% to 0.83%. The MB strategy also improves131

accuracy. For example, the accuracy of v1010 is 72.81%, compared to v1110 which is 72.96%. This132

small impact of MB on the accuracy is due to moving back samples at the beginning of the training,133

as seen in Appendix C.3. By using all the strategies, KAKURENBO achieves the best accuracy of134

73.6%, which is very close to the baseline of 73.68%.135

Appendix D. Discussion on DeepCAM136

We have shown how KAKURENBO’s internal strategies, and their combination, affect the testing137

accuracy of a neural network in the case of ResNet-50 and the ImageNet-1K dataset. Figure 5138

presents the same result on the DeepCAM dataset. In this experiment, we evaluate two combinations:139

v1000 and v1001. For v1000 we hide F% lowest-loss samples only (Hiding Example or HE for140

short). For v1001 we combine HE and learning rate adjustment techniques. It is worth noting that our141

proposed method, KAKURENBO, is the combination of HE, LR, MB (Moving Back sample), and142

FR (Reducing the Fraction by epoch). The result with different maximum hidden fractions, e.g. F143

from 0.2 to 0.4, shows that using LR helps to improve the training accuracy by a significant amount,144

and KAKURENBO achieves the best accuracy which is very close to the baseline. This result is145

similar to what we observed with ResNet-50 and the ImageNet-1K dataset.146

For DeepCAM, we also observed that the loss of the samples with the highest loss does not decrease147

significantly during the last few epochs of training and remain substantially above the rest of other148

samples. Those samples may be hard to learn or represent noise in the data. Figure 6 demonstrates149

this phenomena showing the loss distributions of the full, bottom 98% and top 2% of the dataset150

according to the loss values, respectively. As seen, the top 2%’s loss distribution remains high until151

the very last epoch.152

This observation motivated us to consider a version in which we cut 2% of the highest-loss samples153

at each epoch (DropTop). Interestingly, it helps to improve the testing accuracy of DeepCAM, e.g.,154

from 77.16% in KAKURENBO to 77.37% with a maximum fraction of 0.3. For version v1001,155

Droptop increases the accuracy by 0.82%.156
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Figure 5: The impact of different components of KAKURENBO on testing accuracy (DeepCAM).
v1000: Hiding F% lowest-loss samples only (HE). v1001: HE + LR (Adjusting Learning Rate).
KAKURENBO: our proposed method with HE + LR + MB (Moving Back) + FR (Reducing the
Fraction by epoch). We also consider the version in which we cut 2% of the highest-loss samples at
each epoch (DropTop).
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Figure 6: Loss distributions of DeepCAM training samples (full dataset, bottom 98% and top 2%) in
the last 10 epoch of training.

Appendix E. Related work157

As the size of training datasets and the complexity of deep-learning models increase, the cost of158

training neural networks becomes prohibitive. Several approaches have been proposed to reduce this159

training cost without degrading accuracy significantly.160

Biased with-Replacement Sampling has been proposed as a method to improve the convergence rate161

in SGD training Katharopoulos und Fleuret (2018); Mindermann u. a. (2022). Importance sampling162

is based on the observation that not all samples are of equal importance when it comes to training,163

and accordingly replaces the regular uniform sampling used to draw samples from datasets with164

a biased sampling function that assigns a likelihood to a sample being drawn proportional to its165

importance; the more important the sample is, the higher the likelihood it would be selected. The166

with-replacement strategy of importance sampling maintains the total number of samples the network167

trains on.168
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Several improvements over importance sampling have been proposed. Reducible Holdout Loss169

Selection (RHO-LOSS) Mindermann u. a. (2022) is a selection function that quantifies by how170

much each sample would reduce the loss on unseen data had it been trained on. Mercury uses an171

importance-aware data sharding technique in order to speed up distributed training Zeng u. a. (2021).172

It distributes important samples across workers between iterations. This allows important samples to173

be uniformly distributed between workers, and it reduces the number of samples to communicate for174

each epoch since non-important samples are kept local.175

The importance of a sample can be estimated with several methods. In Wu u. a. (2017), authors176

use distance weighted sampling to determine the importance of samples. Zhao und Zhang (2015)177

uses stochastic optimization to reduce the stochastic variance. Allen-Zhu u. a. (2016) selects each178

coordinate with a probability proportional to the square root of its smoothness parameter (applied179

to accelerated coordinate descent). RAIS Johnson und Guestrin (2018) proposes approximating the180

ideal sampling distribution, which introduces little computational overhead.181

Overall, biased with-replacement sampling aims at increasing the convergence speed of SGD by182

focusing on samples that induce a measurable change in the model parameters, which would al-183

low a reduction in the number of epochs. While these techniques promise to converge in fewer184

epochs on the whole dataset, each epoch requires computing the importance of samples which is185

time-consuming; and the actual speedup in terms of time-to-solution remains unclear. Moreover,186

existing studies Katharopoulos und Fleuret (2018); Mindermann u. a. (2022); Zeng u. a. (2021) only187

evaluate small datasets. Our experiments show that the biased with-replacement, importance sam-188

pling Katharopoulos und Fleuret (2018), the algorithm does not speedup the training when applied to189

large-scale datasets (demonstrated in the evaluation section in the paper).190

Data Pruning techniques are used to reduce the size of the dataset by removing less important191

samples. Pruning the dataset requires training on the full dataset and adds significant overheads for192

quantifying individual differences between data points Sorscher u. a. (2022). However, the assumption193

is that the advantage would be a reduced dataset that replaces the original datasets when used by194

others to train. Several studies investigate the selection of the samples to discard from a dataset.195

In Toneva u. a. (2019), authors detect unforgettable samples that are correctly classified during the196

course of training. EL2N Paul u. a. (2021) uses the loss gradient norm of samples to identify the197

important ones and prune the unimportant samples from the dataset after a few epochs. While this198

work does not require fully training the model before pruning, it remains unclear if EL2N reduces the199

total training time. Another work uses memorization to identify outliers or mislabeled samples in a200

given dataset Feldman und Zhang (2020). Removing these atypical samples accelerates the training201

without altering the trained model accuracy. Ensemble Active Learning Chitta u. a. (2021) trains an202

ensemble of networks and uses ensemble uncertainty to identify which samples are hard to learn.203

They manage to reduce the ImageNet dataset by 20% without degrading the accuracy of the trained204

model, but again, their method is prohibitive for models and datasets that require excessive resources205

for training.206

Pruning the dataset does reduce the training time without significantly degrading the accuracy Toneva207

u. a. (2019); Feldman und Zhang (2020). However, these techniques require fully training the model208

on the whole dataset to identify the samples to be removed, which is compute intensive. While209

most of the proposed solutions perform well on small datasets such as CIFAR, many fail to maintain210

accuracy on larger datasets like ImageNet Sorscher u. a. (2022).211

Selective-Backprop Jiang u. a. (2019) combines importance sampling and online data pruning. It212

reduces the number of samples to train on by using the output of each sample’s forward pass to213

estimate the sample’s importance and cuts a fixed fraction of the dataset at each epoch. While this214

method shows notable speedups, it has been evaluated only on tiny datasets without providing any215

measurements on how accuracy is impacted. In addition, the authors allow up to 10% reduction in216

test error in their experiments. EIF Wu u. a. (2020) is similar to Selective-Backprop: it reduces the217

computation cost of training by filtering out the samples with the lowest loss. E2-Train Wang u. a.218

(2019) shows that the combination of randomly dropping samples during training with selective layer219

update in CNNs can significantly reduce the training time, while slightly degrading the accuracy.220

However, E2-Train targets edge environments and is evaluated only on very small datasets.221

GRAD-MATCH Killamsetty u. a. (2021) is an online method that selects a subset of the samples222

that would minimize the gradient matching error, where the error of the gradients of a matched subset223

samples (and their weights) becomes minimum. To avoid the impractical storing and computation224
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of the optimization of the gradients of all instances, the authors approximate the gradients by only225

using the gradients of the last layer, use a per-class approximation, and run data selection every R226

epochs, in which case, the same subsets and weights will be used between epochs. The infrequent227

selection, however, means the model is limited in its capacity to learn in intermediate epochs - where228

selection occurs - since it trains on the same limited subset of samples. This often leads to a longer229

numbers of epochs needed to converge to the same validation accuracy that can be achieved by the230

baseline or the baseline reaching much higher accuracy Pooladzandi u. a. (2022). Another important231

point worth mentioning is that GRAD-MATCH is impractical in distributed training, which is a de232

facto requirement in large dataset and models (e.g., the DeepCAM model/dataset). That is since the233

approximation of the classes would require very expensive high-volume collective communication234

operations to gather the gradients scattered across different samples belonging to the same class. The235

communication cost would be O(N .R.G) where N is the number of samples, R is the frequency of236

selection, and G is the gradients (of the last layer, if gradient approximation is to be used). Distributed237

GRAD-MATCH would require a scatter communication to collect the class approximations and a238

collective all-reduce of the gradients to then do the matching optimization. This is practically a very239

high cost for communication per epoch that could even exceed the average time per epoch. Finally,240

the mini-batch variant of GRAD-MATCH can only be effective for small mini-batches. However,241

since in distributed training the mini-batch grows with the scale (i.e., the mini-batch aggregates the242

local mini-batch of all workers), the cost of communication amplifies by B (where B is mini-batch243

size).244
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