
Tracr: Compiled Transformers as a
Laboratory for Interpretability

David Lindner†
Google DeepMind

János Kramár
Google DeepMind

Sebastian Farquhar
Google DeepMind

Matthew Rahtz
Google DeepMind

Thomas McGrath
Google DeepMind

Vladimir Mikulik†

Google DeepMind

Abstract

We show how to “compile” human-readable programs into standard decoder-
only transformer models. Our compiler, Tracr, generates models with known
structure. This structure can be used to design experiments. For example,
we use it to study “superposition” in transformers that execute multi-step al-
gorithms. Additionally, the known structure of Tracr-compiled models can
serve as ground-truth for evaluating interpretability methods. Commonly, be-
cause the “programs” learned by transformers are unknown it is unclear whether
an interpretation succeeded. We demonstrate our approach by implementing
and examining programs including computing token frequencies, sorting, and
parenthesis checking. We provide an open-source implementation of Tracr at
https://github.com/google-deepmind/tracr.

1 Introduction

ExplanationNeural
Network

Interpretability

Known
Mechanism

Is the explanation
correct?

Tracr

Figure 1: Interpretability tools produce
explanations for a given neural network.
Tracr creates models that implement a
known mechanism. We can then com-
pare this mechanism to explanations an
interpretability tool produces.

Large language models (LLMs) are powerful but their
inner workings are poorly understood (Danilevsky et al.,
2020). The development of techniques for interpreting
them is held back by a lack of ground-truth explana-
tions (Yang et al., 2019). Our “compiler”, Tracr, converts
human-readable programs written in RASP, a domain-
specific language for transformer computations (Weiss
et al., 2021), into standard decoder-only transformers.

Tracr constructs models with known computational struc-
ture, which makes it easier to conduct interpretability ex-
periments. As an example, we study neural networks’
ability to compress a large number of sparse features
into fewer dimensions using superposition (Elhage et al.,
2022a). Compressing Tracr models using gradient de-
scent allows us to study superposition in transformers implementing multi-step algorithms.

A second use of transformers that implement known computations is evaluating interpretability
methods aiming to reveal facts about a model’s computation. Tracr could allow future work to
directly test methods including, for example, classifier probes (Belinkov, 2022), gradient-based
attribution (Nielsen et al., 2022), and causal tracing (Meng et al., 2022).

†Correspondence to dlindner@google.com, vmikulik@google.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/google-deepmind/tracr
mailto:dlindner@google.com
mailto:vmikulik@google.com

is_x = (tokens == "x")
prevs = select(indices , indices , <=)
frac_prevs = aggregate(prevs , is_x)

bos x a c x
frac_prevs

indices: 0
indices: 1
indices: 2
indices: 3
indices: 4

is_x
one

tokens: a
tokens: b
tokens: bos
tokens: c
tokens: pad
tokens: x

Input

bos x a c x

Attn 1

bos x a c x

MLP 1

bos x a c x

Attn 2

bos x a c x

MLP 2

Figure 2: An example RASP program (left) that computes the fraction of previous “x” tokens at each
position of the input. Tracr compiles this program to a transformer model. (right) A visualisation of
a forward pass through the compiled model, showing the contents the residual stream, one panel per
layer. The y-axis shows the residual stream dimensions, while the x-axis of each panel corresponds
to the input sequence, “<bos>xacx” (x-axis). Changes to the residual are marked in red. Attn 1 is a
no-op, MLP 1 computes the indicator variable is_x, Attn 2 implements the select-aggregate operation
to compute frac_prevs, and MLP 2 is a no-op again. Section 4 discusses this and other examples
in more detail. A detailed, step-by-step interpretation of the figure is provided in Appendix C.

Our main contributions are to: (1) Introduce Tracr, which “compiles” RASP programs into trans-
former models (Section 3); (2) Showcase models produced by Tracr (Section 4); (3) Provide a
case-study where we examine superposition Tracr models compressed using gradient descent (Sec-
tion 5). We confirm key observations by Elhage et al. (2022b) in a new setting: compressed models
drop unnecessary features, and represent less important features in superposition.

In addition to aiding interpretability research, we think compiled models are a powerful didactic tool
for developing a more concrete imagination for transformer mechanisms.

We discuss the applications and limitations of Tracr in Section 7 and Appendix A, and we provide an
open-source implementation of the compiler at https://github.com/google-deepmind/tracr.

2 Background

This section provides an overview of key concepts our work builds on. In particular, we review the
transformer model architecture and the RASP programming language.

2.1 Transformer Architecture

A transformer model consists of alternating multi-headed attention (MHA) and multi-layer perceptron
(MLP) layers with residual connections. Multi-headed attention (Vaswani et al., 2017) computes
attention maps on sequences of length N . A single attention head i first computes an attention pattern

Ai = softmax
(
(xW i

Q)(xW
i
K)T /

√
dk

)
∈ RN×N

for some input x ∈ RN×d, where W i
Q,W

i
K ∈ Rd×dk are learnable parameters. Usually, we call

the entries of (xW i
K) keys, and the entries of (xW i

Q) queries. Multi-headed attention combines H
attention heads heads by computing

MHA(x) = Concat
[
A1(xW 1

V), . . . , A
H(xWH

V)
]
WO

where W i
V ∈ Rd×dv and WO ∈ RHdv×d are another set of learnable parameters. We commonly call

the entries of (xW i
V) values.

The MLP layers in transformer models compute MLP(x) = σ(xW1)W2 where W1 ∈ Rd×h,
W2 ∈ Rh×d are learnable weights, and σ is a non-linear function; for simplicity, we use the
Rectified Linear Unit (ReLU). In this paper, we focus on decoder-only transformers, which consists
of alternating blocks of MHA and MLP.

When designing Tracr, we adopt the transformer circuits perspective, introduced by Elhage et al.
(2021). This view (1) focuses on the transformer being a residual stream architecture and (2)

2

https://github.com/google-deepmind/tracr

introduces an alternative parameterisation for attention operations. Taking this viewpoint, simplifies
reasoning about the transformer architecture and will help us when assembling transformers manually.

The residual stream view. Transformers have residual connections at each attention and MLP layer.
Elhage et al. (2021) consider the residual connections a core feature of the architecture and describe
the model in terms of a residual stream that each layer reads from and writes to in sequence. The
residual stream acts as a type of memory that earlier layers can use to pass information to later layers.

Parameterising attention as WQK and WOV . Following Elhage et al. (2021), we parameterise
an attention head by two (low-rank) matrices WQK

i = W i
Q(W

i
K)T /

√
dk ∈ Rd×d and WOV

i =

W i
V W

i
O ∈ Rd×d where we split WO into different heads, such that WO = [W 1

O, . . .W
H
O], where

each W i
O ∈ Rdv×d. We can then write MHA as

Ai = softmax
(
xWQK

ixT
)

MHA(x) =

H∑
i=1

AixWOV
i

Importantly, we can think of MHA as summing over the outputs of H independent attention heads,
each parameterised by low-rank matrices WQK and WOV . WQK acts as a bilinear operator reading
from the residual stream, and WOV is a linear operator both reading from and writing to the residual
stream. The softmax is the only nonlinearity in an attention head.

2.2 RASP

The “Restricted Access Sequence Processing Language” (RASP) is a human-readable computational
model for transformer models introduced by Weiss et al. (2021). RASP is a sequence processing
language with two types of variables, sequence operations (s-ops) and selectors, and two types of
instructions, elementwise and select-aggregate transformations.

Sequence operations. A sequence operation (s-op) represents sequences of values during evaluation.
tokens and indices are built-in primitive s-ops that return a sequence of input tokens or their
indices, respectively. For example: tokens("hello") = [h, e, l, l, o], and indices("hello")
= [0, 1, 2, 3, 4]. S-ops roughly correspond to the state of the residual stream in transformers.

Elementwise operations. RASP allows arbitrary elementwise operations on s-ops. For exam-
ple, we can compute (3*indices)("hello") = [0, 3, 6, 9, 12]. Elementwise operations roughly
correspond to MLP layers in transformers.

Select-aggregate operations. To move information between token positions, RASP provides select-
aggregate operations which roughly correspond to attention in transformers. A selector has a graph
dependency on two s-ops and evaluates on inputs of length N to a binary matrix of size N ×N . To
create a selector, the select operation takes two s-ops and a boolean predicate p(x, y). For example:

select(indices , [1, 0, 2], <)("abc") =

1 0 0

0 0 0

1 1 0

 .

Here, p(x, y) = x < y, where x comes from indices, and y comes from the constant s-op [1, 0, 2].

The aggregate operation takes as input a selector and an s-op, and produces an s-op that averages
the value of the s-op weighted by the selection matrix. For example:

aggregate

1 0 0

0 0 0

1 1 0

 , [10, 20, 30]

 = [10, 0, 15].

A selector roughly corresponds to an attention pattern in a transformer. Together a select-aggregate
operation roughly corresponds to an attention head in transformers.

3

2.3 Mechanistic Interpretability and Superposition

Mechanistic interpretability (Cammarata et al., 2020; Olah, 2022) aims to produce mechanistic
explanations of the inner workings of ML programs. This includes attempts to reverse engineer how
neural networks implement specific behaviours (Cammarata et al., 2020).3

In Section 5, we study superposition: the ability of a neural network to approximately represent many
more features than the number of dimensions of the embedding space (Elhage et al., 2022a). Despite
preliminary evidence that superposition occurs in neural networks, it remains poorly understood, in
part because it has only been studied in small (2-layers or less) networks that implement very simple
algorithms (Elhage et al., 2022b; Scherlis et al., 2022). Understanding superposition in larger models
could represent a major step forward for mechanistic interpretability (Olah, 2022).

3 Tracr: A Transformer Compiler for RASP

In this section, we provide an overview of how Tracr translate RASP programs to transformer
weights. For more details on the implementation, we refer to Appendix D and our open-source
implementation at https://github.com/google-deepmind/tracr including the accompanying
documentation.

Machine
code

Programming
language

Assembly

RASP

craft

Figure 3: Tracr translates RASP to
Craft and then to model weights, anal-
ogous to how programming languages
are first translated to assembly then to
machine code.

Tracr comes with an implementation of RASP embed-
ded in Python. A RASP program is an expression graph
which is incrementally constructed from atomic RASP
operations. We make a few technical modifications to
allow translating RASP to model weights: we disallow
boolean combinations of selectors, enforce annotated cat-
egorical or numerical embeddings for the residual stream,
and enforce the use of a beginning-of-sequence token. We
discuss the motivations for each of these changes in Ap-
pendix B, where we also explain how any RASP program
can be refactored to be compatible with these restrictions.
In practice, we can implement programs to solve all tasks
described by Weiss et al. (2021).

If RASP is the high-level language we compile, Craft is
our “assembly language”, offering slightly more abstrac-
tion than pure weight matrices (cf. Figure 3). Craft pro-
vides a transformer implementation using vector spaces
with labelled basis dimensions and operations on them.
This lets us define projections or other linear operations
in terms of basis direction labels, which simplifies con-
structing model components that act on different vector spaces. As a bonus, models represented in
Craft are independent of specific transformer implementations. Models compiled by Tracr can be
translated into weights of any standard decoder-only transformer model (without layer norm).

Tracr translates RASP programs to transformer weights in six steps:

1. Construct a computational graph (Figure 4(a)).
2. Infer s-op input and output values (Figure 4(a)).
3. Independently translate s-ops into model blocks (Figure 4(b)).
4. Assign components to layers (Figure 4(c)).
5. Construct the model (Figure 4(c)).
6. Assemble weight matrices.

Let us go through these step by step. Figure 4 gives a schematic overview using an example program.

1. Construct a computational graph (Figure 4(a)). First, we trace the whole program to create a
directed graph representing the computation. The graph has source nodes representing tokens and
indices and a sink node for the output s-op. Each operation in the RASP program becomes a node
in the computational graph.

3Our approach is complementary: we construct neural networks to implement specific behaviours.

4

https://github.com/google-deepmind/tracr

{“x”, “y”} {0, 1, 2}

tokens indices

is_x prevs

frac_prevs

{0, 1}

{0, ⅓, ⅔, ½, 1}

(a) Steps 1 & 2: Graph with
inferred s-op value sets.

{“x”, “y”} {0, 1, 2}

tokens indices

is_x prevs

frac_prevs

{0, 1}

{0, ⅓, ⅔, ½, 1}

MLP: is_x

Attn: prevs

(b) Step 3: Nodes translated to
MLPs and attention heads.

M
LP

: i
s_

x

A
tt

n:
 p

re
vs

no
-o

p
 a

tt
n

no
-o

p
 m

lp

Input Output
(c) Steps 4 & 5: Nodes allocated to locations
in a model.

Figure 4: Schematic overview of how Tracr compiles the frac_prevs program from Figure 2
with a input vocabulary {”x”, ”y”} and context size 3. (a) shows the computational graph with value
annotations after step 2 of the compilation. (b) shows how is_x and frac_prevs are translated to
model components independently in step 3. (c) shows the assembled model which has two no-op
components because models blocks always need to have one attention and one MLP layer.

2. Infer s-op values (Figure 4(a)). For each s-op, we need to decide how to embed it in the residual
stream. To use categorical encodings, we need to know which values an s-op can take. All nodes
have a finite set of output values because computations are deterministic, and we have a finite input
vocabulary and context size. Therefore, in the second step, we traverse the graph and annotate each
node with its possible outputs. This annotation uses simple heuristics that ensure we find a superset
of the values an s-op will take, though, sometimes, an output set can contain values that the s-op
never takes in practice.

3. Independently translate s-ops (Figure 4(b)). Next, we consider each node in the computational
graph independently and translate it into a model block. Elementwise operations become MLP blocks,
and select-aggregate operations become attention blocks. We use a library of manually engineered
MLP and attention blocks to approximate arbitrary functions for numerical and categorical inputs and
outputs. MLPs with categorical inputs and outputs function as lookup tables. MLPs with numerical
inputs and outputs use piecewise linear approximations. For attention layers, we translate a selector
into the WQK operator and the corresponding aggregate operation into the WOV operator. We only
support attention with categorical inputs. We also do a few basic simplifications of RASP programs
at this stage. For example, we combine consecutive elementwise operations into a single s-op. For
more details on the MLP and attention blocks, see Appendix D.

4. Assign components to layers (Figure 4(c)). To construct a transformer model, we need to allocate
all model blocks in the computational graph to layers. Ideally, we want to find the smallest model to
perform the desired computation. We can generally formulate this as a combinatorial optimization
problem with several constraints: the transformer architecture has alternating attention and MLP
layers, and all computations that depend on each other need to be in the correct order. For scope
reasons, we solve this problem heuristically. First, we compute the longest path from the input to a
given node. This path length is an upper bound for the layer number to which we can allocate the
node. Then we apply additional heuristics to combine layers with blocks that we can compute in
parallel. This approach returns a correct but sometimes suboptimal layer allocation.

5. Construct the model (Figure 4(c)). We construct the residual stream space as the direct sum
of all model components’ input and output spaces. In other words, we embed each s-op in its own
orthogonal subspace, which is reserved for its sole use throughout the entire network. Now, we
can traverse the computational graph in the order determined by the layer allocation and stack the
components to obtain a full transformer represented in Craft.

6. Assemble weight matrices. Finally, we translate the Craft representation of the model into
concrete model weights. First, we combine parallel MLP layers into a single layer and parallel
attention heads into a single layer. In attention layers, we then factor the WQK and WOV matrices
into separate Wq, Wk, Wo, Wv weight matrices. Finally, we adjust the shapes of all weights and
connect them to our transformer architecture. We can then infer the model configuration (depth, layer
width, residual stream size, etc.) to fit the elements we have created.

We use a standard decoder-only transformer implementation in Haiku (Hennigan et al., 2020),
notably removing layer norms. Extending Tracr to support any other transformer implementation is
straightforward by reimplementing only step 6.

5

smaller = select(tokens , tokens , <=)
target_pos = selector_width(smaller)
sel_sort = select(target_pos , indices , ==)
sort = aggregate(sel_sort , tokens)

Figure 5: RASP program that sorts a sequence
of numbers without duplicates. Attn 1 and MLP
1 implement the selector_width primitive
(cf. Appendix D) which the program uses to
compute the target position for each token. Attn
2 moves the tokens to the desired position, and
MLP 2 is a no-op.

bos 3 5 4 2
indices: 0
indices: 1
indices: 2
indices: 3
indices: 4

one
sort: 1
sort: 2
sort: 3
sort: 4
sort: 5

target_pos: 0
target_pos: 1
target_pos: 2
target_pos: 3
target_pos: 4
target_pos: 5

target_pos_80_selector_width_attn_output
tokens: 1
tokens: 2
tokens: 3
tokens: 4
tokens: 5
tokens: bos
tokens: pad

Input

bos 3 5 4 2

Attn 1

bos 3 5 4 2

MLP 1

bos 3 5 4 2

Attn 2

bos 3 5 4 2

MLP 2

We are now ready to compile models with Tracr and walk through a few example programs.

4 Exploring Compiled Transformers

In this section, we walk through two example programs to illustrate how the compiled models work.
While these models are not necessarily realistic, they represent configurations of weights that could,
in principle, be learned. Examining these models can therefore be a powerful didactic tool for
understanding how transformers perform complex computation, which we hope will expand our
collective imagination for their inner workings.

We were able to compile RASP programs for all the tasks described in Weiss et al. (2021), though we
had to modify a few programs to only use features supported by Tracr. Appendix G contains more
examples.

4.1 Example 1: Counting tokens

Figure 2 shows our primary running example, the frac_prevs program, that computes the fraction
of previous “x" tokens.

The compiled frac_prevs model has a 14-dimensional residual stream, but it uses 12 out of these
for the input embeddings. The remaining two dimensions contain the main numerical variables used
in the computation: is_x and frac_prevs (the output variable). The input embeddings have a few
special dimensions. In particular, tokens:bos is the beginning of sequence token which we need
to implement arbitrary attention patterns, and one is an input dimension that is always 1, used as a
constant, e.g., to add a bias in MLP layers.

The compiled model uses one MLP layer and one attention head. However, because our model
architecture always starts with an attention layer, the compiled model has four layers, with the first
and last layers being no-ops. The first MLP layer computes the indicator variable is_x based on the
input tokens. The following attention layer computes a causal attention pattern and uses it to compute
the faction of previous “x” tokens.

4.2 Example 2: Sorting

As a second example, let us consider sorting a sequence of numbers. Figure 5 shows a sort_unique
program that sorts a sequence of unique tokens.

The program computes uses a selector to select smaller tokens for each input token, and then
uses the selector_width primitive in RASP to compute the target position for each token.
selector_width counts the number of elements in each row of a selector that are 1, in this case the
number of elements that are smaller than a given input token. selector_width can be implemented
in terms of other RASP operations (Weiss et al., 2021). However, in Tracr we treat it as a primitive

6

that compiles directly to an attention and MLP layer (here Attn 1 and MLP 1). See Appendix D for
more details. The model then uses a second attention layer to move each token to its target position.

Weiss et al. (2021) propose a sort program that can handle duplicates (cf. their Figure 13). However,
that implementation uses a composite selector

select(tokens , tokens , <) or (
select(key , key , ==) and select(indices , indices , <))

to treat duplicates, which is not currently supported by Tracr. In Appendix G, we provide an
alternative implementation of sort that handles duplicates by adding a small multiple of indices to
the keys and then applying sort_unique.

4.3 More examples

Tracr can compile a wide range of RASP programs. In Appendix G, we discuss several additional
examples, leading up to a program to check balanced parentheses (Dyck-n). Our open-source
Tracr implementation (https://github.com/google-deepmind/tracr) contains a library of
even more example programs to compile.

5 Compressing Compiled Transformers

Superposition is an important phenomenon in large language models (see Section 2.3, Elhage et al.
(2022b), and Scherlis et al. (2022)). But to the best of our knowledge, it has not yet been studied in
detail for models with more than two layers or in transformer models executing multi-step algorithms.
Tracr lets us examine these models, and we can force different levels of superposition by applying a
gradient-descent-based compression algorithm.

In addition to helping us study superposition, compressed models could be more efficient and realistic.
Tracr models can be sparse and inefficient because they reserve an orthogonal subspace of the
residual stream for each s-op.

Here, we present two case studies of compressing compiled models using the frac_prevs and
the sort_unique programs from Section 4. These sketch how Tracr can be practically useful in
advancing interpretability research, while also giving a glimpse of how Tracr could be extended to
produce more realistic models.

5.1 Gradient Descent Based Compression

We use a single linear projection W ∈ RD×d to compress the disentangled residual stream with size
D to a smaller space with dimension d < D. We modify the model to apply WT whenever it reads
from and W whenever it writes to the residual stream (see Figure 6). We freeze all other weights and
train only W using stochastic gradient descent (SGD). Since vanilla Tracr models are sparse and
have orthogonal features, this process can be viewed as learning the projection from a “hypothetical
disentangled model" to the “observed model" described by Elhage et al. (2022b).

We want the compressed model to minimise loss under the constraint that it implements the same
computation as the original model. We train W to minimise Ex[Lout(W,x) + Llayer(W,x)], where

Lout = loss(f(x), f̂W (x)); Llayer =
∑

layer i

(hi(x)− ĥW,i(x))
2

Here, f(x) is the output of the compiled model for input x, f̂W (x) is the output of the compressed
model, and hi(x) and ĥW,i(x) are the output vectors at layer i of the respective models.

For categorical outputs, Lout is the softmax cross-entropy loss, whereas, for numerical outputs, it is
the mean-squared error. Llayer is a regularization term that incentives the compressed model to match
the per-layer outputs of the original model. To minimise this loss, the compressed model will have to
approximate the computation of the original model but with a smaller residual stream. We give both
loss terms equal weight, but we found other weighting factors give similar results in practice.

7

https://github.com/google-deepmind/tracr

Figure 6: Training setup for compressing a compiled transformer model. At each layer, we use
the same matrix W ∈ RD×d to embed the disentangled D-dimensional residual stream to d ≤ D
dimensions. We freeze the layer weights and only train W to compress the model.

0 1 2 3

training steps ×105

10−2

100

ou
tp

u
t

lo
ss

d = 4

d = 8

d = 12

(a) Training loss

5 10

embedding size d

0.00

0.02

0.04

0.06

fi
n

a
l

o
u

tp
u

t
lo

ss

(b) Output loss vs. d (c) SGD Compression (d) PCA

Figure 7: Compressing the frac_prevs model Figure 2. (a) shows the loss during training for
different embedding sizes d and (b) shows the final loss for different embedding sizes d. After about
d = 6 the compressed model solves the task essentially as well as the original compiled model which
uses D = 14 dimensions. (c) shows WTW for the compression procedure described in Section 5
with d = 8 where W is the learned compression matrix. As a comparison, (d) shows the same plot
for applying PCA and retaining only the first 8 components. In contrast to PCA, our compression
procedure produces a compression matrix W that retains features necessary for the task (e.g., is_x
and frac_prevs) and discards features that are unimportant (e.g., tokens:a).

We could set up this compression in other ways. For example, we could use a different projection at
each layer, use different matrices for embedding and unembedding, or modify weights other than W
when compressing the model. These design choices come with a tradeoff between making the model
more expressible and potentially more realistic and enforcing the ground truth computation. For
simplicity, we use a shared W for embedding/unembedding at every layer, and we already observe a
rich structure in models compressed with this procedure.

Appendix E contains more details on the training setup, hyperparameters, and resources used.

5.2 What Does the Compression Learn?

As our first case study, Figure 7 shows the example model from Figure 2, that computes the fraction
of token “x”. By learning an embedding matrix W , we can reduce the residual dimension from
D = 14 to d = 6 without hurting performance (cf Figure 7(b)). Once we reduce d further, the
model’s performance starts to suffer.

To understand the compression better, we can study how W embeds the original D features in d < D
dimensions. We can only do this because we started with a compiled model with known features.
Figure 7 shows WTW for compressing the model to d = 8. We can compare this to using principle
component analysis (PCA) to compress the model. To interpret the results, we need to use our
knowledge of the algorithm the model implements. The input tokens:x and the variables is_x
and frac_prevs are crucial for computing the fraction of tokens that is “x”, and we find that these
variables mostly get separate dimensions in the compressed residual stream. The other input tokens
stored in tokens:a, tokens:b, tokens:c are not necessary for solving the task, and so they are
discarded in the compressed model. Other variables, such as the indices embeddings, are stored
in non-orthogonal dimensions in the compressed space. This is consistent with existing findings on
superposition as the indices embeddings are sparse and do not occur together (Elhage et al., 2022b).

8

Compiled Compressed Error

0 10 20

embedding size d

0.0

0.5

1.0

ac
cu

ra
cy

0 10 20

embedding size d

0.0

0.5

1.0

co
si

n
e

si
m

il
ar

it
y

Figure 8: We compress sort_unique
(Figure 5). The plots on the right show
that the compressed model achieves
nearly perfect accuracy, but the layer
outputs of the compressed model are
different from the original compiled
model. The left plot shows the average
layer outputs of the compiled model,
the compressed model, and the squared
difference. The compressed model
seems to learn to use a different (nu-
merical) encoding for the target_pos
variable, which causes the discrepancy.

However, our results go beyond previous work on superposition. Tracr models often have multiple
variables that depend on each other and encode shared information. For example, in frac_prevs,
the is_x variable is an indicator that essentially contains the same information as the input dimension
tokens:x.4 In Figure 7, we see that the embeddings of is_x and tokens:x share part of the
embedding space. Intuitively, this occurs because the variables encode similar information.

Future experiments could aim to further clarify the effect of shared information between variables on
superposition. Tracr provides, for the first time, a setting to systematically study superposition in
transformer models that implement nontrivial algorithms.

5.3 Do the Compressed Models Still Implement the Same Computation?

Even if the compressed models successfully achieve a low loss, we need to check if they implement
the same computation as the compiled models, or else we would no longer know the ground truth
mechanisms the models implement. To this end, we evaluate the average cosine similarity between
the output at each layer of the two models. Values far from 1 suggest the compressed model is
structured differently from the base model.

We find that for some models the cosine similarity stays substantially below 1 even as the compressed
model gets close to 100% in accuracy. For example, Figure 8 shows results from compressing the
sort_unique model. Here, the compressed model achieves almost perfect accuracy on the task, but
the average cosine similarity of the outputs at individual layers stays around 0.8, far shy of 1.

By inspecting the models’ outputs at each layer, we can attribute the error to the target_pos variable.
In the compiled model, target_pos is encoded as a one-hot vector. However, the compiled model
only uses a single dimension. This suggests that the compressed model moves the tokens to the target
position with a numerical encoding of the target position rather than a categorical encoding.

This difference in encodings shows that even with a fairly restrictive compression setup, compressed
models may not stay faithful to the original RASP programs. This is both a setback for adding
compression to the compiler—the compiler’s annotations no longer serve as the exact ground
truth—but also an opportunity. The ways neural networks solve algorithmic tasks regularly surprise
researchers (Nanda et al., 2023). Studying such discrepancies could be a way to learn more about the
ways NNs naturally represent certain computations without reverse-engineering entire models.

6 Related Work

There are many approaches to interpretability in machine learning (Carvalho et al., 2019), and in
language models specifically (Danilevsky et al., 2020; Belinkov and Glass, 2019; Rogers et al., 2020).
In this paper, we focus on interpretability in the sense of giving a faithful (Jacovi and Goldberg,
2020) and detailed account of the mechanisms learned by a model, sometimes called mechanistic
interpretability (Olah, 2022) or transparency (Räukur et al., 2023).

4They are not exactly the same because is_x is only populated in a later layer.

9

Mechanistic interpretability has been used to reverse engineer circuits in state-of-the-art vision
models (Cammarata et al., 2020), small transformer models trained on toy tasks (Olsson et al., 2022;
Nanda et al., 2023), and medium-sized language models (Wang et al., 2023). Reverse-engineered
circuits can be used as more realistic alternative to compiled models. However, they are labor-
intensive to identify, and our knowledge of them can be incomplete or inaccurate even when they are
analysed carefully. For example, Chan et al. (2022) show that the “induction head” hypothesis by
Olsson et al. (2022) needs to be modified to adequately explain in-context learning performance even
in small attention-only transformers.

While Tracr is based on RASP (Weiss et al., 2021), there are potential alternatives for constructing
transformer models. Wei et al. (2022) and Akyürek et al. (2023) study more general computational
models for transformers. Based on this line of work, Giannou et al. (2023) propose a Turing-complete
model for constructing transformers, whereas RASP might have limited expressibility (Weiss et al.,
2021; Merrill et al., 2022). However, the work by Giannou et al. (2023) is purely theoretical, and the
practical cost-benefit trade-off between their approach and our RASP-based approach is unclear.

Evaluation is a perennial topic of debate in interpretability, and there is little consensus on the best
approach (Lipton, 2018; Yang et al., 2019; Mohseni et al., 2021). We hope that compiled models
contribute a new perspective to this discussion and can complement other evaluation methods.

Our approach is closest to prior work trying to create a ground truth for evaluating interpretability, via
careful manipulation of the training mechanism and dataset. Yang and Kim (2019) and Adebayo et al.
(2020) introduce label correlations to the background of images, and Zhou et al. (2022) use label
reassignments to achieve a similar goal. However, these approaches focus on convolutional image
classification models, and they can only modify part of a model to have a ground truth interpretation.
Tracr, on the other hand, creates transformer models that implement fully human-readable code.

Since releasing an early version of our work, Conmy et al. (2023) successfully used Tracr to evaluate
a method for automatically detecting circuits in transformer models, and Friedman et al. (2023) built
on Tracr and studied learning transformer programs instead of manually writing them.

7 Discussion & Conclusion

We proposed to compile human-readable programs to neural network weights as a testbed for
developing and evaluating interpretability tools. To this end, we introduced Tracr which compiles
human-readable code to the weights of a transformer model.

Applications. Compiled transformer models can be broadly useful for accelerating interpretability
research. We highlight four usecases that could be particularly useful. First, we can use Tracr to
create test cases and ultimately benchmarks for interpretbility tools. This can help to confirm methods
work as expected and surface potential failure modes. Second, we can measure our understanding
of a model by manually replacing components of it with compiled components (similar to Nanda
et al. (2023)). Over time, the research community could build a library of programs that represent our
understanding of what neural networks learn. Third, we can use compiled models to isolate and study
phenomena that occur in real neural networks. Our study of superposition in Section 5 demonstrates
the benefits of studying an isolated phenomenon in a model we otherwise fully understand. Finally,
compiled models can help us understand how transformers can implement certain algorithms and
improve our ability to form concrete intuitions and hypotheses about models we want to interpret.
Appendix A.1 discusses these applications in more detail.

Limitations. RASP and Tracr have important limitations in terms of expressivity, efficiency and
realism compared to real transformer models. While many limitations can be overcome in future
versions, some are fundamental to using compiled models. Clearly, we will likely never compile
fully featured language models in Tracr. Therefore, we should interpret experiments conducted on
compiled models carefully, and treat evaluations based on them as a minimum bar rather than a full
validation of a technique. Appendix A.2 discusses these limitations in detail.

Despite these limitations, we think Tracr provides a promising new approach to studying transform-
ers and to evaluating interpretability tools. The current approach to doing interpretability research
is similar to trying to invent a microscope lens without ever being able to point it at familiar, well-
understood shapes. Tracr enables researchers to point their interpretability methods at models they
fully understand to calibrate, evaluate, and improve the methods.

10

Acknowledgements

We thank Avraham Ruderman, Jackie Kay, Michela Paganini, Tom Lieberum, and Geoffrey Irving
for valuable discussions, Victoria Krakovna and Marlene Staib for collaborating on early experiments
with compiling RASP, and Chris Olah and Tristan Hume for feedback on an early draft of this paper.
We thank the LessWrong user “Gurkenglas” for pointing out a mistake in an earlier draft of the way
to implement selectors combined with and described in Appendix F.

Author Contributions

VM proposed the initial idea for Tracr and wrote our RASP implementation. DL, VM, JK and MR
designed and developed Tracr. DL designed, implemented, and ran the compression experiments in
Section 5. MR wrote documentation and led the open-sourcing process. JK derived the theoretical
results in Appendix F. TM and VM advised on research direction. DL, SF, and VM wrote the
manuscript. DL led the project.

References
J. Adebayo, M. Muelly, I. Liccardi, and B. Kim. Debugging tests for model explanations. In Advances

in Neural Information Processing Systems, 2020.

M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dic-
tionaries for sparse representation. IEEE Transactions on signal processing, 54(11):4311–4322,
2006.

E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is in-
context learning? Investigations with linear models. In International Conference on Learning
Representations (ICLR), 2023.

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Y. Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics,
48(1):207–219, 2022.

Y. Belinkov and J. Glass. Analysis methods in neural language processing: A survey. Transactions of
the Association for Computational Linguistics, 7:49–72, 2019.

N. Cammarata, S. Carter, G. Goh, C. Olah, M. Petrov, L. Schubert, C. Voss, B. Egan, and S. K. Lim.
Thread: Circuits. Distill, 2020. URL https://distill.pub/2020/circuits.

D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. Machine learning interpretability: A survey on
methods and metrics. Electronics, 8(8):832, 2019.

L. Chan, A. Garriga-Alonso, N. Goldwosky-Dill, R. Greenblatt, J. Nitishinskaya, A. Radhakrishnan,
B. Shlegeris, and N. Thomas. Causal scrubbing, a method for rigorously testing interpretabil-
ity hypotheses. AI Alignment Forum, 2022. https://www.alignmentforum.org/posts/
JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing.

A. Conmy, A. N. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso. Towards
automated circuit discovery for mechanistic interpretability. In Advances in Neural Information
Processing Systems, 2023.

M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P. Sen. A survey of the state of
explainable AI for natural language processing. AACL-IJCNLP 2020, 2020.

D. L. Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306,
2006.

11

https://distill.pub/2020/circuits
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and
C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
URL https://transformer-circuits.pub/2021/framework/index.html.

N. Elhage, T. Hume, C. Olsson, N. Nanda, T. Henighan, S. Johnston, S. ElShowk, N. Joseph,
N. DasSarma, B. Mann, D. Hernandez, A. Askell, K. Ndousse, A. Jones, D. Drain, A. Chen,
Y. Bai, D. Ganguli, L. Lovitt, Z. Hatfield-Dodds, J. Kernion, T. Conerly, S. Kravec, S. Fort,
S. Kadavath, J. Jacobson, E. Tran-Johnson, J. Kaplan, J. Clark, T. Brown, S. McCandlish,
D. Amodei, and C. Olah. Softmax linear units. Transformer Circuits Thread, 2022a. URL
https://transformer-circuits.pub/2022/solu/index.html.

N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds, R. Lasenby,
D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wattenberg, and
C. Olah. Toy models of superposition. Transformer Circuits Thread, 2022b. URL https:
//transformer-circuits.pub/2022/toy_model/index.html.

D. Friedman, A. Wettig, and D. Chen. Learning transformer programs. In Advances in Neural
Information Processing Systems, 2023.

A. Giannou, S. Rajput, J.-y. Sohn, K. Lee, J. D. Lee, and D. Papailiopoulos. Looped transformers as
programmable computers. In International Conference on Machine Learning (ICML), 2023.

T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020. URL http:
//github.com/deepmind/dm-haiku.

A. Jacovi and Y. Goldberg. Towards faithfully interpretable NLP systems: How should we define
and evaluate faithfulness? In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020.

M. L. Leavitt and A. Morcos. Towards falsifiable interpretability research. In NeurIPS Workshop:
ML Retrospectives, Surveys & Meta-Analyses (ML-RSA), 2020.

Z. C. Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability
is both important and slippery. Queue, 16(3):31–57, 2018.

K. Meng, D. Bau, A. J. Andonian, and Y. Belinkov. Locating and editing factual associations in GPT.
In Advances in Neural Information Processing Systems, 2022.

W. Merrill, A. Sabharwal, and N. A. Smith. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856, 2022.

S. Mohseni, N. Zarei, and E. D. Ragan. A multidisciplinary survey and framework for design and
evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems, 11
(3-4):1–45, 2021.

N. Nanda, L. Chan, T. Liberum, J. Smith, and J. Steinhardt. Progress measures for grokking via
mechanistic interpretability. In International Conference on Learning Representations (ICLR),
2023.

I. E. Nielsen, D. Dera, G. Rasool, R. P. Ramachandran, and N. C. Bouaynaya. Robust explainability:
A tutorial on gradient-based attribution methods for deep neural networks. IEEE Signal Processing
Magazine, 39(4):73–84, 2022.

C. Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. 2022.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell,
Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernan-
dez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown,
J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads.
Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/
in-context-learning-and-induction-heads/index.html.

12

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2022/solu/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

T. Räukur, A. Ho, S. Casper, and D. Hadfield-Menell. Toward transparent AI: A survey on interpreting
the inner structures of deep neural networks. In IEEE Conference on Secure and Trustworthy
Machine Learning (SaTML), 2023.

A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in BERTology: What we know about how
BERT works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020.

A. Scherlis, K. Sachan, A. S. Jermyn, J. Benton, and B. Shlegeris. Polysemanticity and capacity in
neural networks. arXiv preprint arXiv:2210.01892, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a
circuit for indirect object identification in GPT-2 small. In International Conference on Learning
Representations (ICLR), 2023.

C. Wei, Y. Chen, and T. Ma. Statistically meaningful approximation: a case study on approximating
Turing machines with transformers. In Advances in Neural Information Processing Systems, 2022.

G. Weiss, Y. Goldberg, and E. Yahav. Thinking like transformers. In International Conference on
Machine Learning (ICML), 2021.

F. Yang, M. Du, and X. Hu. Evaluating explanation without ground truth in interpretable machine
learning. arXiv preprint arXiv:1907.06831, 2019.

M. Yang and B. Kim. Benchmarking attribution methods with relative feature importance. arXiv
preprint arXiv:1907.09701, 2019.

Y. Zhou, S. Booth, M. T. Ribeiro, and J. Shah. Do feature attribution methods correctly attribute
features? In AAAI Conference on Artificial Intelligence, 2022.

13

A Applications and Limitations of Tracr

We provide an open-source implementation of Tracr because we think it has many potential appli-
cations in interpretability research. In this section, we discuss applications we see for Tracr and
compiled transformers more generally and reflect on the current limitations of Tracr and how they
can be addressed.

A.1 Applications of compiled models in interpretability research

Compilers like Tracr allow researchers to set up controlled experiments that test specific hypotheses
about the computational structure of transformers. In this way, it acts as a laboratory for research in
interpretability, enabling research that might otherwise be intractable.

Understanding model phenomena and developing new techniques. Compiled models can be
used as a testbed for studying how learning affects circuits, and developing new approaches for
interpreting transformer models. This is the approach we demonstrate in this work in section 5,
where we successfully induce superposition in compressed Tracr models. Future work could analyse
superposition in Tracr models, extending previous work in toy models (Elhage et al., 2022b; Scherlis
et al., 2022). In particular, Tracr allows studying how the structure of computation implemented
by a model affects which features will be stored in superposition. One goal for this line of research
could be to predict how a specific Tracr model will be compressed, which features will be stored in
superposition and how. A complementary approach is to try reversing the superposition induced by a
compression procedure, e.g., using ideas from compressed sensing and dictionary learning (Donoho,
2006; Aharon et al., 2006).

Test cases for interpretability tools. Compiled models serve as a natural foundation for testing the
faithfulness (Jacovi and Goldberg, 2020) of an explanation, and provide a way to falsify (Leavitt and
Morcos, 2020) the explanations given by interpretability techniques that aim to describe the inner
workings of models.

For instance, classifier probes (Belinkov, 2022; Bau et al., 2017) aim to determine the locations in the
model where particular features are represented. A simple example of this approach is training linear
classifiers using intermediate activations of a subject model as inputs. The performance of these
classifiers at predicting some feature using activations from layer L is then taken as a proxy for the
extent to which the feature is represented at that layer. Applying this method and correctly interpreting
its results is challenging (Belinkov, 2022). Tracr-compiled models provide an opportunity to see
what these methods say about models whose representations we understand fully, contextualising
their results on real models.

Ultimately, compiled models could be used to build libraries of test cases for interpretability tools,
which could in turn enable quantitative evaluation metrics.

Replacing model components. Another way to evaluate our understanding of how a model works is
to replace parts of the model with hand-coded components. For example, Nanda et al. (2023) test
their understanding of how a transformer implements modular addition by replacing components
of the model with their own idealised implementation and find that this can increase downstream
performance, which is strong evidence that the proposed explanation is correct. While Tracr
compiles an algorithm into a full transformer model, it could be adapted to only compile part of a
model to replace part of a trained model. This could make it easier to evaluate our understanding of a
large model.

Building intuition for algorithms implementable by transformers. Weiss et al. (2021) highlight
that RASP can be used to gain intuition for how transformers might implement certain tasks. Tracr
is a natural next step in this direction, spelling out the relationship between the program and a
transformer implementing it in complete detail. We caution, however, that Tracr is but one approach
to doing so, while real learned models could exhibit greater variety in their algorithms.

A.2 Limitations of RASP and Tracr

RASP and Tracr are limited in terms of expressivity, efficiency and realism compared to real
transformer models. Many of these limitations could be overcome in future versions of Tracr.

14

Expressivity. RASP is designed for algorithmic tasks that map an input sequence to a discrete output
sequence. However, current language models usually map a sequence of input tokens to a probability
distribution over the next token. Circuits in real models often consist of components that increase or
decrease the probability of some tokens based on previous tokens (Wang et al., 2023). RASP, and
hence Tracr, cannot model such "probabilistic" computation, but could potentially be extended to
support it. RASP only uses binary attention patterns, which inherently limits the range of algorithms
it can implement (Merrill et al., 2022). A way to extend RASP to support numeric attention patterns
is discussed in Weiss et al. (2021).

Efficiency. Tracr models store all variables in orthogonal subspaces of the residual stream. Even if
a variable is only used in part of the computation, Tracr reserves a subspace of the residual stream
for it in all layers of the model. Real models use a more compressed representation and likely reuse
dimensions for multiple features. Improved versions of the compression procedure discussed in
Section 5 could address this limitation, as would using a constraint optimisation solver instead of a
heuristic for layer allocation.

Realism. Tracr constructs layers from hand-coded parameter matrices. This is both unrealistic and
inefficient, but could be addressed by learning the layers in isolation, then assembling them into a
full model manually. Similarly, instead of manually splitting the WQK and WOV matrices, matrix
factorisation could be used to get more efficient solutions. Also, Tracr models align their features
with the computational basis. This is unrealistic, and makes the resulting models easy to interpret
just by inspecting the residual stream activations. Rotating the basis of the compiled model is a
straightforward way to address this if obfuscation is needed; compression would be an even more
comprehensive approach.

While all of these issues could be overcome in a more sophisticated compiler, there are fundamental
limitations on the role compiled models can play. Compiled models are an intermediate step between
very simple toy models and real learned models. They help us understand ideas and methods, but
results in compiled models do not necessarily generalise to real models. Compared with real models,
compiled models will always be simpler. For example, we will likely never compile full-fledged
language models. Compiled models will be more likely to be intepretable (e.g., the axis-aligned
orthogonal residual stream bases in Tracr), and more likely to fit into existing paradigms for thinking
about transformers. When using them to evaluate interpretability tools, we should be careful to make
sure that the tools do not exploit this, treating such evaluations as a minimum bar rather than a full
validation of a technique. Conversely, some methods might conceivably rely on features present in
real models but not in compiled models.

B Modifications to RASP

Disallow arbitrary selector combinations. RASP allows boolean combinations of selectors; how-
ever, real transformers have no natural analogue. Combining selectors with different input variables
is particularly problematic. For example, in RASP we can define a selector

select(A, B, ==) and select(C, D, ==)

using four s-ops A, B, C and D. However, a real attention pattern only has two input vector spaces.
There is no straightforward and efficient construction for representing arbitrary compositions of
selectors (appendix F). Because of this, we restrict RASP to selectors with only two input variables.
In practice, this limitation seems not severe. In particular, we could implement programs to solve all
tasks described by Weiss et al. (2021).

If a composite selector cannot be avoided, one can always refactor it into an atomic selector by first
using s-ops to create a product spaces over the inputs. In the example above, we’d construct two
s-ops whose values are pairs over values of A, B and C, D respectively. Then, we could construct an
atomic selector operating on these composite s-ops:

select(
product(A, B),
product(C, D),
lambda (a,b), (c,d): a==c and b==d

)

15

While this refactoring can be done mechanically, and would naturally generalise to arbitrary selector
combinations, we chose not to include it in our compiler implementation for two reasons. First,
without compression it is inefficient: the s-op dimensions scale as a product of the input s-op
dimensions. Second, doing this automatically would break the 1-1 correspondence between selectors
in RASP and attention heads in the compiled model: the compound s-ops require MLP blocks.

Encoding annotations. A compiled model needs to pass information between layers. In a transformer,
it is natural to do this in the residual stream (Elhage et al., 2021). However, our compiler must decide
how to represent information in the residual stream. For simplicity, we only use categorical and
numerical encodings. We encode categorical variables as one-hot vectors in a dedicated subspace of
the residual stream. We encode numerical variables as the magnitude of a dedicated one-dimensional
subspace of the residual stream. We require each s-op to be either categorical or numerical and
augment RASP to annotate s-ops with the desired encoding. S-ops are categorical by default.

Even when both categorical and numerical encodings are possible for the same information, categori-
cal encoding generally uses more dimensions and often requires an extra decoding step. However,
some aggregate operations only work with one type of encoding. For instance, aggregation with a
mean across token positions is natural for numerical encodings but not categorical ones.

Beginning of sequence token. Transformers often assume any input sequence starts with a dedicated
“beginning of sequence” token (BOS). We make the BOS token mandatory in RASP because it is
crucial when implementing arbitrary attention patterns. In particular, RASP allows selectors that can
produce all-zero rows; this is convenient when programming in RASP, but the softmax makes this be-
haviour impossible in a real attention head. In these situations, we use the BOS token as a “default" po-
sition to attend to: it is attended to iff no other token is. This allows the non-BOS part of the sequence
to emulate the intended RASP behaviour. In our case, this choice comes from practical considerations;
but, interestingly, real models sometimes show similar behaviour (e.g., see Elhage et al., 2021).

C Reading Model Output Figures

In the main paper and Appendix G, we show figures of a forward pass in a compiled model. We
found that these figures can be confusing to read at first, especially as the compiled models get bigger.
This section serves as a reference for how to interpret these figures.

As an example, let us walk through the figure for the frac_prevs model from Figure 2:

bos x a c x
frac_prevs

indices: 0
indices: 1
indices: 2
indices: 3
indices: 4

is_x
one

tokens: a
tokens: b
tokens: bos
tokens: c
tokens: pad
tokens: x

Input

bos x a c x

Attn 1

bos x a c x

MLP 1

bos x a c x

Attn 2

bos x a c x

MLP 2

The figure has 5 panels, each of which shows the content of the residual stream after the corresponding
layer in the model. This allows us to follow what the model does step-by-step. The residual stream
has size [sequence length x dimensionality], therefore we visualize it as a 2-dimensional
heatmap. In this example, we have a size of 5× 14 including the BOS token position.

We show a forward pass for a specific input sequence [bos, x, a, c, x]. On the x-axis of
each panel we label the token positions with the corresponding input token. The y-axis of the plot
contains the dimensions of the residual stream. Thanks to our knowledge of the program the model
implements, we can label each dimension according to what it encodes. Dimensions starting with
‘tokens’ contain the (categorical) input embeddings. Dimensions starting with ‘indices’ contain the
(categorical) position embeddings. Labels that contain a ‘:’ are dimensions that correspond to a
categorical (‘one-hot’) enoding and the value after the ‘:’ is the value encoded in this dimension.

16

Labels without a ‘:’ mean that this dimension encodes a numerical value. In each of the four panels
we show the full residual stream content as a heatmap. Entries that were changed by the layer
corresponding to the panel are highlighted with a red border.

Let’s go through the plot step by step and map it to the code we used to compile this model:

is_x = (tokens == "x")
prevs = select(indices , indices , <=)
frac_prevs = aggregate(prevs , is_x)

In the leftmost panel we see the residual stream after the input embedding layer. It contains the
categorical encoding of the tokens and the categorical encoding of the indices. For example at the
token position of the ‘a’ token, the dimension tokens:a contains 1, and the dimension indices:1
contains 1. The auxiliary dimension one contains 1 at every token position.

The first attention layer is a no-op, so the residual stream afterwards (shown in the second panel) is
the same as before. No entry is highlighted.

MLP 1 computes the first line of the rasp program is_x = (tokens == "x"). It writes the result
into a numerical dimension in the residual stream labelled with is_x. For this concrete sequence the
layer writes a 1 into both token positions that contain the token ‘x’ in the input.

Attn 2 computes the select-aggregate operations in lines 2 and 3 of the RASP program. It computes
the fraction of previous ‘x’ tokens, and writes the result into a single dimension labelled frac_prevs.
It writes values between 0 and 1 in all token positions except for the BOS token position. For this
example the result will be [1, 1/2, 1/3, 1/2].

The final MLP 2 layer is a no-op again and does not change anything in the residual stream. The
output unembedding layer will then read the result from the frac_prevs dimension.

D Tracr Implementation Details

This section highlights a few more implementation details of Tracr. We describe how we construct
MLP and attention blocks, how we implement the selector width primitive, and how we extend RASP
and Tracr to use causal attention. For the full implementation and documentation, refer to the code
repository at https://github.com/google-deepmind/tracr.

D.1 MLP and Attention Blocks

For MLP layers, we distinguish between Map operations with a single input and output and
SequenceMap operations with two inputs and one output. We can recursively represent functions
with more than two inputs using SequenceMaps.

We translate Maps with categorical inputs and outputs to MLPs that act as a lookup table.
SequenceMaps with categorical inputs and outputs become MLPs where the first layer maps to
an encoding of all pairs of inputs and the second layer acts as a lookup table.

For numerical inputs and outputs, we explicitly construct MLP layers as universal function approxi-
mators. In these MLPs, the first layer discretises the input, and the second layer maps each discrete
bucket to a corresponding output value. We know which input/output values can occur, so we can
choose the discretisation around these known input values to minimise the approximation error.

We now turn our attention to the attention blocks, which we construct from RASP selectors.

We first construct the W̃QK matrix to implement the desired attention pattern in the attention logits.
We will refer to this as the direct attention matrix. This matrix has low rank, with its row space being
the part of the residual stream where the query s-op is stored, and the column space being where
the key s-op is stored. We adjust the direct attention matrix matrix by adding a rank-one update
WBOS = βBOSxonex

⊺
tokens:bos with βBOS = 1 or βBOS = 1

2 , to ensure that the BOS token is
attended to either always, or whenever no other token is. (xone and xtokens:bos here are unit vectors for
the special embedding dimensions introduced in Section 4.) We then scale up the matrix by an inverse-
temperature parameter T−1 (100 by default), getting WQK = T−1(W̃QK +WBOS). As a result,

17

https://github.com/google-deepmind/tracr

the attention weights Aij = softmax
(
q⊺
i WQK k⃗

)
j
= exp(q⊺

i WQKkj)/
∑

j′ exp(q
⊺
i WQKkj′) are

very close to 1/#{selected tokens} on selected tokens and 0 elsewhere.

The WOV matrix maps the value input to the corresponding output dimensions. Attention layers only
support categorical key and query inputs. The value inputs can be numerical or categorical. We can
only use categorical values if the head never attends to more than one token.

D.2 Selector Width Primitive

RASP provides the selector width primitive, which counts the number of 1s in each row of a selector.
It provides an alternative to aggregate for processing selectors.

Weiss et al. (2021) provide a selector width implementation in pure RASP, making it not necessarily
a language primitive. However, the most efficient implementation uses the BOS token, which exists
Tracr but is not exposed to the RASP program.

Therefore, Tracr translates selector width directly into an efficient implementation in Craft con-
sisting of an attention layer and an MLP layer. The attention layer implements an attention pattern
that matches the selector to compute the width of. It uses the BOS token as value input, resulting in
the attention head computing x = 1/(1 + w) where w is the desired selector width output. The next
MLP layer then computes w = 1/x− 1 and cleans the BOS token position.

D.3 Causal Attention

Most transformer models used in practice use causal attention, i.e., they apply a mask to the attention
patterns that allows the model to attend only to previous tokens. This allows training the models
autoregressively. However, RASP assumes non-causal (i.e. bidirectional) attention by default. While
all models discussed in the main paper use non-causal attention, Tracr also supports causal attention.

To enable this, we extend RASP to support causal attention via a flag set during evaluation. To
evaluate a RASP program in the causal evaluation mode, we apply a causal mask to the output of each
selector. Causal evaluation changes the semantics of some RASP operations, and, in general, it is
necessary to adapt RASP programs to function with causal attention. For example, the frac_prevs
program no longer needs to compute a causal mask manually. However, for example, the length
implementation by Weiss et al. (2021) no longer correctly computes the length of a sequence because
it requires attending to future tokens.

Similarly, Tracr has a flag to enable causal compilation. Most of the compilation process does not
change, and we only need to ensure to compile selectors to causal attention heads.

E Compression Training Details

We implemented the compression described in Section 5 in Jax on top of the Haiku transformer
implementation that comes with Tracr. We train W using the AdamW optimizer (implemented in
Optax) with a weight decay factor of 0.1, and parameters β1 = 0.9, β2 = 0.99. We train for 3× 105

steps with a batch size of 256. We decay the learning rate linearly from 10−3 to 10−6 over the first
half of training. Each compression run requires between 1 and 4 hours of run time on two CPU cores
(depending on the size of the model to compress).

F Theoretical Results on Combining Attention Heads

The RASP language permits combining arbitrary selectors elementwise using boolean operators,
such as and, or, and not. It is not immediately obvious what operators can be implemented given
the way we encode selectors as attention matrices WQK , as described in Appendix D.1.

First, let’s consider not operator for a selector select(query, key, pred) with given direct
attention matrix W̃QK . One way to implement not select(query, key, pred) is to note that it’s
equivalent to select(query, key, not pred). Another is to use a transformed direct attention
matrix W̃ not

QK = −W̃QK , alongside a βnot
BOS that’s 0 or − 1

2 .

18

Next, let’s consider the and operator on two selectors select(query_a, key_a, pred_a) and
select(query_b, key_b, pred_b) whose direct attention matrices W̃A

QK ,WB
QK are given, and

produce 0-1 attention logits. We can observe that taking W̃ and
QK = W̃A

QK + W̃B
QK results in attention

logits taking value 2 when both selectors are active, and at most 1 otherwise; so by the same procedure
in Appendix D.1, with βand

BOS taking value 3
2 or 2, we can construct W and

QK = T−1(W̃ and
QK +W and

BOS)
that produces the desired attention pattern in the post-softmax attention weights.

We can compose these constructions, negating the two given selectors before combining them
with and, to get nor, with W̃ nor

QK = −W̃A
QK − W̃B

QK and βand
BOS taking value − 1

2 or 0, resulting
in an implementation of select(query_a, key_a, pred_a) nor select(query_b, key_b,
pred_b).

So far these are fairly natural constructions – the boolean operators not and and can be used to
construct all other possible boolean operators, so we might expect that indeed all combinations of
selectors via boolean operators can be compiled to transformer weights this way.

Alas, it is not so. Unlike the implementation of not, the implementations of and and nor above
did not result in a direct attention matrix that produces the correct pattern (potentially shifted by a
constant) in the attention logits, but rather only in the attention weights after temperature-adjusted
softmax, meaning they cannot be composed further to produce arbitrary logical statements.

If we were to try to implement or, the easiest way would be to negate the nor by composing the
transformations – but the resulting W̃ or

QK = −(−W̃A
QK − W̃B

QK) is actually the same direct attention
matrix we used for and. This produces attention logit 1 or 2 where the selectors’ or is active, and 0
where it isn’t. However, the temperature adjustment with T−1 ≫ 1 that forces the attention to be
near-zero where neither selector is active will then also do the same thing when only one selector
is active, so the attention weights will be different between tokens where both selectors are active
versus only one selector.

In fact, this obstruction to implementing or can be generalized, as follows.

Lemma F.1. Consider two selectors select(query_A, key_A, pred_A) and select(query_B
, key_B, pred_B), with direct attention matrices W̃A

QK and W̃B
QK . For ease of analysis, let’s

suppose query_A, key_A, query_B, and key_B are stored in separate, orthogonal subspaces QA,
KA, QB , KB .

Now suppose there exists an attention matrix W̃ or
QK , with row space contained in QA + QB and

column space contained in RA+RB , that, after adjustment by some BOS logit offset βor
BOS and some

temperature T → 0, produces attention weights converging to the normalized selector weights for
select(query_A, key_A, pred_A) or select(query_B, key_B, pred_B). Then, these se-
lectors are not generic – they satisfy some very limiting constraints about their predicates.

Proof. Let’s begin by assuming the second selector, B, is not constant, selecting some tokens and not-
selecting other tokens. This implies the existence of basis vectors q0

B ,q
1
B ∈ QB and k0

B ,k
1
B ∈ KB

such that q0
B
⊺
W̃B

QKk0
B = 0 and q1

B
⊺
W̃B

QKk1
B = 1. Holding these constant, consider some basis

vectors qA ∈ QA and kA,k
′
A ∈ KA. Then, for query vector qA + q1

B , all tokens with key vector
kA+k1

B or k′
A+k1

B must be selected, which means they must have equal attention logits. Therefore,
(qA + q1

B)
⊺W̃ or

QK(kA + k1
B) = (qA + q1

B)
⊺W̃ or

QK(k′
A + k1

B), so q⊺
AW̃

or
QKkA = q⊺

AW̃
or
QKk′

A.

Now, consider k = kA + k0
B , k′ = k′

A + k0
B , q = qA + q0

B , and, for some basis vector q′
A ∈ QA,

let q′ = q′
A + q0

B . We have logit differences q⊺W̃ or
QKk′ − q⊺W̃ or

QKk = q0
B
⊺
W̃ or

QK(k′ − k) =

q′⊺W̃ or
QKk′ − q′⊺W̃ or

QKk. Therefore, among tokens where key_B has vector k0
B (let’s call these

k0
B-tokens), the tokens that have highest logit for query vector q′ are the same as those for query

vector q. However, the selected tokens among the k0
B-tokens are either none of them, or exactly

those with the highest logit (which depends on key_A). Because of the definition of or, k0
B-tokens

are selected exactly if select(query_A, key_A, pred_A) would select them.

Putting the above observations together, it follows that for query_A vectors qA and q′
A, pred_A

will either select no keys for one of them, or will select the same keys for both of them. In
other words, pred_A must be rewritable in the form query_pred_A(query_A) and key_pred_A

19

(key_A). Equivalently, pred_A’s matrix has rank 1; we can say in short that pred_A is a rank-1
predicate, or that select(query_A, key_A, pred_A) is a rank-1 selector.

If we suppose our initial assumption to be false, then pred_B is constant, and can thus be just as well
rewritten to be a predicate of query_A and key_A; then, it is easy to derive the necessary W̃ or

QK from
select(query_A, key_A, pred_A or pred_B).

We can repeat the argument interchanging the selectors, to conclude that either the operation is trivial
(because one predicate is constant), or both selectors must be rank-1.

The above conclusion may be averted in the case that we have a priori information that certain values
of qA,kA,qB ,kB cannot co-occur, or if some of the input s-ops are shared. We leave exploring that,
as well as whether or can be implemented in the case of rank-1 predicates, to future work.

A notable special case of the above is the case where query_A and query_B compute the same
s-op, and key_A and key_B also compute the same s-op. (They may be the same s-op, or redundant
copies.) Then simple rewriting is possible, similarly to the or case explained earlier. For example:
simplifiable_selector = select(tokens , indices , <=) or select(tokens , "a", ==)
simplified_selector = select(tokens , indices , q <= k or q == "a")

A similar strategy of matching s-ops can be used to circumvent the lemma and straightforwardly
implement operators like or, by constructing combined s-ops query_both and key_both with
output types representing all pairs of queries and keys of the two selectors. These s-ops may be
computed by the preceding MLP – however, the encodings occupy dimensionality multiplicative in
the sizes of the constituent s-op output types, which is an impediment to scaling these circuits very
far.

Due to the composability limitations of each approach considered, we did not implement boolean
operators acting on selectors, apart from simple cases where the query and key s-ops agree.

G More Compiled Models

Here, we present a few additional RASP programs and the compiled Tracr models.

Figure 9 shows and extended sort program. It works similarly to the sort_unique program in
Figure 5, but sorts any sequence of values by a sequence of keys and can handle duplicates occurring
in the keys.

Figure 10 shows the pair_balance program, which computes the difference in the fraction of open
and closed parenthesis tokens. We can now use it as a subroutine for the dyck-n program, which
checks if a sequence of n different types of parentheses is balanced:

Input: pairs

1 # Compute running balance of each type of parenthesis
2 balances = [pair_balance(pair) for pair in pairs]
3

4 # If balances were negative anywhere -> parentheses not
balanced

5 any_negative = balances [0] < 0
6 for balance in balances [1:]:
7 any_negative = any_negative or (balance < 0)
8

9 select_all = select(1, 1, ==)
10 has_neg = aggregate(select_all , any_negative)
11

12 # If all balances are 0 at the end -> closed all parentheses
13 all_zero = balances [0] == 0
14 for balance in balances [1:]:

20

15 all_zero = all_zero and (balance == 0)
16

17 select_last = select(indices , length - 1, ==)
18 last_zero = aggregate(select_last , all_zero)
19

20 dyck_n = (last_zero and not has_neg)

Figure 11 shows the compiled dyck-2 model for pairs = (“()”, “{}”).

21

Input: keys, vals, min_key, context_length

1 keys = (keys + indices + min_key) / context_length
2 smaller = select(keys , keys , <=)
3 target_pos = selector_width(smaller)
4 sel_sort = select(target_pos , indices , ==)
5 sort = aggregate(sel_sort , vals)

bos 4 3 3 4
indices: 0
indices: 1
indices: 2
indices: 3
indices: 4

one
sequence_map: 1.0
sequence_map: 1.2
sequence_map: 1.4
sequence_map: 1.6
sequence_map: 1.8
sequence_map: 2.0
sequence_map: 2.2
sequence_map: 2.4
sequence_map: 2.6
sequence_map: 2.8
sequence_map: 3.0
sequence_map: 3.2
sequence_map: 3.4
sequence_map: 3.6
sequence_map: 3.8
sequence_map: 4.0
sequence_map: 4.2
sequence_map: 4.4
sequence_map: 4.6
sequence_map: 4.8
sequence_map: 5.0
sequence_map: 5.2
sequence_map: 5.4
sequence_map: 5.6
sequence_map: 5.8

sort: 1
sort: 2
sort: 3
sort: 4
sort: 5

target_pos: 0
target_pos: 1
target_pos: 2
target_pos: 3
target_pos: 4
target_pos: 5

target_pos_75_selector_width_attn_output
tokens: 1
tokens: 2
tokens: 3
tokens: 4
tokens: 5
tokens: bos
tokens: pad

Input

bos 4 3 3 4

Attn 1

bos 4 3 3 4

MLP 1

bos 4 3 3 4

Attn 2

bos 4 3 3 4

MLP 2

bos 4 3 3 4

Attn 3

bos 4 3 3 4

MLP 3

Figure 9: Compiled sort program. Attn 1 is a no-op, MLP 1 adds a small multiple of indices to
the keys, and the rest of the model essentially implements sort_unique.

22

Input: open_token, close_token

1 bools_open = (tokens == open_token)
2 opens = frac_prevs(bools_open)
3 bools_close = (tokens == close_token)
4 closes = frac_prevs(bools_close)
5 pair_balance = opens - closes

bos (() (
bools_close
bools_open

closes
indices: 0
indices: 1
indices: 2
indices: 3
indices: 4

one
opens

pair_balance
tokens: (
tokens:)
tokens: bos
tokens: pad

Input

bos (() (

Attn 1

bos (() (

MLP 1

bos (() (

Attn 2

bos (() (

MLP 2

Figure 10: RASP program that uses frac_prevs as a subroutine to compute the fraction of open
and closed parenthesis tokens and computes the difference. The compiled model uses open_token
= “(” and close_token = “)”. Note that the compiled model has the same number of layers as the
single frac_prevs model in Figure 2. Attn 1 is still a no-op, MLP 1 and Attn 2 compute both calls
to frac_prevs in parallel, and MLP 2 computes the final result.

23

bo
s
{
}
{
}

an
y_
ne
ga
ti
ve
_1
4

ba
la
nc
e_
()
_1
6

ba
la
nc
e_
{}
_1
7

bo
ol
s_
cl
os
e_
29

bo
ol
s_
cl
os
e_
33

bo
ol
s_
op
en
_2
7

bo
ol
s_
op
en
_3
1

cl
os
es
_2
1

cl
os
es
_2
3

ha
s_
ne
g_
9

in
di
ce
s:

 0

in
di
ce
s:

 1

in
di
ce
s:

 2

in
di
ce
s:

 3

in
di
ce
s:

 4

la
st
_z
er
o_
5:
 F
al
se

la
st
_z
er
o_
5:

Tr
ue

le
ng
th
_1
5:

 0

le
ng
th
_1
5:

 1

le
ng
th
_1
5:

 2

le
ng
th
_1
5:

 3

le
ng
th
_1
5:

 4

le
ng
th
_1
5:

 5

le
ng
th
_1
5_
se
le
ct
or
_w
id
th
_a
tt
n_
ou
tp
ut

ma
p_
10
:

 -
1

ma
p_
10
:

0

ma
p_
10
:

1

ma
p_
10
:

2

ma
p_
10
:

3

ma
p_
10
:

4

ma
p_
11
:
Fa
ls
e

ma
p_
11
:
 T
ru
e

ma
p_
12
:
Fa
ls
e

ma
p_
12
:
 T
ru
e

ma
p_
24
:
Fa
ls
e

ma
p_
24
:
 T
ru
e

ma
p_
25
:
Fa
ls
e

ma
p_
25
:
 T
ru
e

no
t_
ha
s_
ne
g_
6:
 F
al
se

no
t_
ha
s_
ne
g_
6:

Tr
ue

on
e

op
en
s_
20

op
en
s_
22

se
qu
en
ce
_m
ap
_1
8:
 F
al
se

se
qu
en
ce
_m
ap
_1
8:

Tr
ue

se
qu
en
ce
_m
ap
_8
:
Fa
ls
e

se
qu
en
ce
_m
ap
_8
:
 T
ru
e

sh
uf
fl
e_
dy
ck
_4
:
Fa
ls
e

sh
uf
fl
e_
dy
ck
_4
:
 T
ru
e

to
ke
ns
:

(

to
ke
ns
:

)

to
ke
ns
:

bo
s

to
ke
ns
:

pa
d

to
ke
ns
:

{

to
ke
ns
:

}

In
pu

t

bo
s
{
}
{
}

At
tn

 1

bo
s
{
}
{
}

M
LP

 1

bo
s
{
}
{
}

At
tn

 2

bo
s
{
}
{
}

M
LP

 2

bo
s
{
}
{
}

At
tn

 3

bo
s
{
}
{
}

M
LP

 3

bo
s
{
}
{
}

At
tn

 4

bo
s
{
}
{
}

M
LP

 4

bo
s
{
}
{
}

At
tn

 5

bo
s
{
}
{
}

M
LP

 5

bo
s
{
}
{
}

At
tn

 6

bo
s
{
}
{
}

M
LP

 6

bo
s
{
}
{
}

At
tn

 7

bo
s
{
}
{
}

M
LP

 7

bo
s
{
}
{
}

At
tn

 8

bo
s
{
}
{
}

M
LP

 8

Fi
gu

re
11

:C
om

pi
le

d
dy

ck
-2

pr
og

ra
m

fo
rp

ai
rs

=
(“

()
”,

“{
}”

).

24

	Introduction
	Background
	Transformer Architecture
	RASP
	Mechanistic Interpretability and Superposition

	Tracr: A Transformer Compiler for RASP
	Exploring Compiled Transformers
	Example 1: Counting tokens
	Example 2: Sorting
	More examples

	Compressing Compiled Transformers
	Gradient Descent Based Compression
	What Does the Compression Learn?
	Do the Compressed Models Still Implement the Same Computation?

	Related Work
	Discussion & Conclusion
	Applications and Limitations of Tracr
	Applications of compiled models in interpretability research
	Limitations of RASP and Tracr

	Modifications to RASP
	Reading Model Output Figures
	Tracr Implementation Details
	MLP and Attention Blocks
	Selector Width Primitive
	Causal Attention

	Compression Training Details
	Theoretical Results on Combining Attention Heads
	More Compiled Models

