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Abstract

We examine the relationship between the mutual information between the output
model and the empirical sample and the generalization of the algorithm in the
context of stochastic convex optimization. Despite increasing interest in information-
theoretic generalization bounds, it is uncertain if these bounds can provide insight
into the exceptional performance of various learning algorithms. Our study of
stochastic convex optimization reveals that, for true risk minimization, dimension-
dependent mutual information is necessary. This indicates that existing information-
theoretic generalization bounds fall short in capturing the generalization capabilities
of algorithms like SGD and regularized ERM, which have dimension-independent
sample complexity.

1 Introduction

One of the crucial challenges facing contemporary generalization theory is to understand and explain
the behavior of overparameterized models. These models have a large number of parameters compared
to the available training examples. But nonetheless, they tend to perform well on unseen test data.
The significance of this issue has become more pronounced in recent years, as it has become evident
that many state-of-the-art learning algorithms are highly overparameterized Neyshabur et al. [2014],
Zhang et al. [2021]. The classical generalization bounds, which are well designed to describe the
learning behavior of underparameterized models, seem to fail to explain these algorithms.
Understanding the success of overparameterized models seems challenging. Partly, due to the
counter-intuitive nature of the process. Common wisdom suggests that, inorder to learn, one has
to have certain good bias of the problem at hand, and that in learning we need to restrict ourselves
to a class of models that cannot overfit the data. This intuition has been justified by classical
learning models such as PAC learningValiant [1984] as well as regression Alon et al. [1997]. In
these classical models, it can be even demonstrated Vapnik and Chervonenkis [2015], Blumer et al.
[1989] that learning requires more examples than the capacity of the class of model to be learnt, and
that avoiding interpolation is necessary for generalization. These results, though, are obtained in
distribution-independent setups where one assumes worst-cast distributions over the data.
For this reason, researchers have been searching for new, refined models, as well as improved
generalization bounds that incorporate distributional as well as algorithmic assumptions. A promising
approach, in this direction, tries to connect the generalization performance to the amount of information
the learner holds regarding the data Russo and Zou [2019], Xu and Raginsky [2017], Bassily et al.
[2018]. For example, Xu and Raginsky [2017] demonstrated an upper bound on the generalization
gap which informally states:
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generalization gap(𝑤𝑆) = 𝑂

(√︄
𝐼 (𝑤𝑆 , 𝑆)

|𝑆 |

)
(1)

Namely, given an empirical sample 𝑆, and an output model 𝑤𝑆 , the difference between its empirical
error and its true error can be upper bounded by 𝐼 (𝑤𝑆 , 𝑆), the mutual information between these two
random variables. Notice that Eq. (1) does not depend on any trait of the class of feasible models
to be considered. In particular, it does not depend, apriori, on number of “free parameters", or
a complexity measure such as VC dimension, the dimension of 𝑤𝑆 , and not even on some prior
distribution. However, it remains a question whether this method and technique can be useful in
analysing state-of-the-art learning algorithms. While there has been a lot of work trying to establish
the success of learning algorithms in various setups Neu et al. [2021], Xu and Raginsky [2017], Bu
et al. [2020], Aminian et al. [2021], Pensia et al. [2018], many of the established bounds are opaque,
and often there is no comprehensive end-to-end analysis that effectively illustrates how generalization
is to be bounded by Eq. (1) and simultaneously obtain good empirical performance. In fact, there
is also evidence Carlini et al. [2021], Feldman [2020] that memorizing data is required, in some
regimes, for effective learning. Towards better understanding, we will focus, in this work, on the setup
of Stochastic Convex Optimization Shalev-Shwartz et al. [2009] (SCO), and provide accompanying
lower bounds to Eq. (1) that will describe how much mutual information is necessary for learning.

SCO as a case study for overparametrization: SCO is a very clean and simple setup where a
learner observes noisy instances of (Lipschitz) convex functions, defined in ℝ𝑑 , and is required to
minimize their expectation. On the one hand, it provides simple, amenable to rigorous analysis,
definitions of learnability and learning. On the other hand, this model is the cradle of prototypical
algorithms such as Gradient Descent (GD) and Stochastic Gradient Descent (SGD), as well as
accelerated methods, which are the workhorse behind state-of-the-art optimization methods.
Moreover, SCO is an ideal model for understanding overparameterization. It is known Feldman
[2016] that in this setup, Ω(𝑑) examples are needed in order to avoid overfitting. In fact, even concrete
algorithms such as GD and regularized-GD may overfit unless they observe dimension-dependent
sample size Amir et al. [2021a,b]. In other words, the capacity of the model and its ability to overfit
does indeed scale with the dimension. Nevertheless, it is also known that some algorithms do learn
with far fewer examples. For example SGDHazan et al. [2016], Regularized-ERMShalev-Shwartz
et al. [2009], Bousquet and Elisseeff [2002] and a stable variant of GD Bassily et al. [2020] all learn
with 𝑂 (1/ε2) examples, a dimension independent magnitude. To put it differently, learning in SCO is
not just a question of finding the empirical risk minimizer, but also a question of how – what algorithm
was used, and learning is not demonstrated by naive uniform convergence bounds that scale with the
number of parameters in the model.
Therefore, SCO is a natural candidate to study how information theoretic bounds play a role in
learning. We might even hope that these bounds shed light on why some algorithms succeed to learn
while others fail. Existing algorithms don’t avoid memorizing the data, but it is unclear if holding
information on the data is necessary. So we start here with the simplest question:

What is the smallest amount of mutual information required for learning in SCO?

Our main result shows that, in contrast with the dimension-independent learnability results in this
setup, the information between the model and the sample has to be dimension-dependent. As such, the
complexity of the class appears implicitly in Eq. (1). As a result, carrying Ω(𝑑) bits of information
over the sample is necessary for learning at optimal rates, and Eq. (1) doesn’t yield the optimal
generalization performance of algorithms such as Regularized ERM, SGD and stable-GD.

1.1 Related Work

Information-theoretic generalization bounds have a long history of study in ML theory McAllester
[1998, 1999], Langford and Shawe-Taylor [2002]. Generalization bounds that directly relate to the
information between output and input of the learner initiated in the works of Xu and Raginsky [2017],
Bassily et al. [2018], Russo and Zou [2019], Bassily et al. [2018] demonstrated limitations for such
generalization bounds, for proper ERM learners, and Livni and Moran [2020] showed that any learner
(proper or not), that learns the class of thresholds must leak unbounded amount of information. In
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this work we focus on stochastic optimization and on learning Lipschitz functions. In the setup of
SCO the above is not true, and one can construct learners that leak �̃� (𝑑) bits of information (see
Proposition 1). But we would like to know whether information-theoretic bounds behave like the
uniform convergence bounds (dimension dependent) or capture the minmax learning rates (dimension
independent).
Several lines of works applied the analysis of Xu and Raginsky [2017] to provide algorithmic-
dependent analysis in the context of stochastic optimization. Pensia et al. [2018] and followup
improvements Rodríguez-Gálvez et al. [2021], Negrea et al. [2019], Haghifam et al. [2020] provided
information-theoretic generalization bounds for Stochastic Gradient Langevine Dynamics (SGLD)
and Neu et al. [2021] extends the idea to analyze vanilla SGD. Aminian et al. [2021] also provides full
characterization of the closely related, Gibbs Algorithm and shows that the information can inverseley
scale with the sample bounds. The bounds in these works are implicitly dimension independent
which may seem contradictory to the result established here. Importantly, the above bounds may
depend on hyper-parameters such as noise in SGLD and temparature in Gibbs algorithm, and these
hyperparameters may affect the optimization performance of the algorithms. The bounds we obtain
are applicable only to algorithms with non-trivial true risk, which depends on hyperparameter choice,
and as such there is no real contradiction. Taken together, the noise, for example, in SGLD needs to
scale with the dimension in order to obtain non-trivial information-theoretic bounds, but that will lead
to a large empirical error. Similarly, if the temperature in the Gibbs algorithm doesn’t scale with the
dimension, one can potentially achieve small empirical error but at the expanse of high information.
Most similar to our work, recently, Haghifam et al. [2022] provided the first set of limitations
to information theoretic generalization bounds. They focus on the Gradient Descent method and
perturbed variants of it, and provide limitations to both MI bounds as well as conditional mutual
information (CMI) bounds Steinke and Ullman [2015] and their individual sample variants Bu et al.
[2020], Negrea et al. [2019], Haghifam et al. [2020], Zhou et al. [2022]. In contrast, we focus on
the mutual information bound (as well as its individual sample version of Bu et al. [2020]), but we
provide bounds that are irrespective of the algorithm.
The key idea behind our lower bound proof builds on privacy attacks developed in the differntial
privacy literature Bun et al. [2014], Kamath et al. [2019], Steinke and Ullman [2015]. In the context
of classification, lower and upper bounds techniques Alon et al. [1997], Bun et al. [2020] were
successfully imported to obtain analogous information-theoretic bounds Livni and Moran [2020],
Pradeep et al. [2022]. In optimization, though, bounds behave slightly different and therefore, bounds
from classification cannot be directly imported to the context of optimization.

2 Setup and Main Results

We begin by describing the classical setup of Stochastic Convex Optimization (SCO), following
Shalev-Shwartz et al. [2009]. In this model, we assume a domain Z, a parameter space W ⊆ ℝ𝑑 and
a function 𝑓 (𝑤, 𝑧), termed loss function. The function 𝑓 satisfies that for every 𝑧0 ∈ Z, the function
𝑓 (𝑤, 𝑧0) as a function over the parameter 𝑤 is convex and 𝐿-Lipschitz.
For concreteness, we treat 𝐿 as a constant, 𝐿 = 𝑂 (1), and we concentrate on the case where W is the
unit ball. Namely:

W = {𝑤 : ∥𝑤∥ ≤ 1}.
As we mostly care about lower bounds, these won’t affect the generality of our results. Given a
distribution 𝐷, the expected loss of a parameter 𝑤 is given by

𝐿𝐷 (𝑤) = 𝔼
𝑧∼𝐷

[ 𝑓 (𝑤, 𝑧)] .

The excess true risk of 𝑤, with respect to distribution 𝐷,is denoted as:

∆𝐷 (𝑤) = 𝐿𝐷 (𝑤) − 𝐿𝐷 (𝑤★), where, 𝐿𝐷 (𝑤★) := min
𝑤∈W

𝔼
𝑧∼𝐷

[ 𝑓 (𝑤, 𝑧)] .

We also denote the excess empirical risk, given sample 𝑆 = {𝑧1, . . . , 𝑧𝑚}:

∆𝑆 (𝑤) =
1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖) − min
𝑤∈W

1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖).
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Leranbility We will focus here on the setup of learning in expectation. In particular, a learning
algorithm 𝐴 is defined as an algorithm that receives a sample 𝑆 = (𝑧1, . . . , 𝑧𝑚) and outputs a parameter
𝑤𝐴
𝑆

. We will normally supress the dependence of the parameter 𝑤𝐴
𝑆

in 𝐴 and simply write 𝑤𝑆 . The
algorithm 𝐴 is said to learn with sample complexity 𝑚(ε) if it has the following property: For every
ε > 0, if 𝑆 is a sample drawn i.i.d from some unknown distribution 𝐷, and |𝑆 | ≥ 𝑚(ε) then:

𝔼
𝑆∼𝐷𝑚

[∆𝐷 (𝑤𝑆)] ≤ ε.

A closely related setup requires that the learner succeeds with high probability. Standard tools such as
Markov’s inequality and boosting the confidence Schapire [1990] demonstrate that the two definitions
are essentially equivalent in our model.

Information Theory We next overview basic concepts in information theory as well as known
generalization bounds that are obtained via such information-theoretic quantities. We will consider
here the case of discrete random variables. We elaborate more on this at the end of this section, and
how our results extend to algorithms with continuous output. Therefore, throughout, we assume
a discrete space of possible outcomes Ω as well as a distribution ℙ over Ω. Recall that a random
variable 𝑋 that takes values in X is said to be distributed according to 𝑃 if ℙ(𝑥 = 𝑋) = 𝑃(𝑥) for every
𝑥 ∈ X. Similarly two random variables 𝑋 and 𝑌 that take values in X and Y respectively have joint
distribution 𝑃 if

ℙ(𝑥 = 𝑋, 𝑦 = 𝑌 ) = 𝑃(𝑥, 𝑦).

For a given 𝑦 ∈ Y, the conditional distribution 𝑃𝑋 |𝑦 is defined to be 𝑃 (𝑥 |𝑦 = 𝑌 ) = 𝑃 (𝑥,𝑦)∑
𝑥 𝑃 (𝑥,𝑦)

, and
the marginal distribution 𝑃𝑋 : X → [0, 1] is given by 𝑃𝑋 (𝑥) =

∑
𝑦 𝑃(𝑥, 𝑦). If 𝑃1 and 𝑃2 are two

distributions defined on a discrete set X then the KL divergence is defined to be:

𝐷𝐾𝐿 (𝑃1∥𝑃2) =
∑︁
𝑥∈X

𝑃1 (𝑥) log
𝑃1 (𝑥)
𝑃2 (𝑥)

.

Given a joint distribution 𝑃 that takes values in X×Y the mutual information between random variable
𝑋 and 𝑌 is given by

𝐼 (𝑋;𝑌 ) = 𝔼
𝑌

[
𝐷𝐾𝐿

(
𝑃𝑋 |𝑌

𝑃𝑋 ) ] .
We now provide an exact statement of Eq. (1)
Theorem (Xu and Raginsky [2017]). Suppose 𝑓 (𝑤, 𝑧) is a bounded by 1 loss function. And let 𝐴
be an algorithm that given a sample 𝑆 = {𝑧1, . . . , 𝑧𝑚} drawn i.i.d from a distribution 𝐷 outputs 𝑤𝑆 .
Then

𝔼
𝑆

[
𝐿𝐷 (𝑤𝑆) −

1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖)
]
≤

√︂
2𝐼 (𝑤𝑆 , 𝑆)

𝑚
. (2)

Remark on Continuous Algorithms As stated, we focus here on the case of algorithms whose
output is discrete, and we also assume that the sample is drawn from a discrete set. Regarding the
sample, since we care about lower bounds and our constructions assume a discrete set, there is no loss
of generality here. Regarding the algorithm’s output, in the setup of SCO there is also no loss of
generality in assuming the output is discrete. Indeed, we can show that if there exists a continuous
algorithm with sample complexity 𝑚0 (ε), and bounded mutual information over the sample, then
there exists also a discrete algorithm with sample complexity 𝑚(ε) = 𝑚0 (𝑂 (ε)) with even less mutual
information.
To see that notice that, since we care about minimizing a Lipschitz loss function, given any accuracy
ε, we can take any finite ε-approximation subset of the unit ball and simply project our output to
this set. Namely, given output 𝑤𝑆 , where 𝑆 > 𝑚(ε), we output �̄�𝑆 , the nearest neighbour in the
ε-approximation sub set. Because 𝐿𝐷 is 𝑂 (1) Lipschitz, we have that

|𝐿𝐷 (�̄�𝐴𝑆 ) − 𝐿𝐷 (𝑤★) | ≤ |𝐿𝐷 (�̄�𝐴𝑆 ) − 𝐿𝐷 (𝑤𝐴𝑆 ) | + |𝐿𝐷 (𝑤𝐴𝑆 ) − 𝐿𝐷 (𝑤★) | ≤ 𝑂 (ε),

hence up to a constant factor the algorithm has the same learning guarantees. On the other hand, due
to data processing inequality:

𝐼 (�̄�𝐴𝑆 , 𝑆) ≤ 𝐼 (𝑤𝐴𝑆 , 𝑆).
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2.1 Main Result

Eq. (2) provides a bound over the difference between the expected loss of the output parameter and
the empirical loss. Without further constraints, it is not hard to construct an algorithm that carries
little information on the sample. But, to obtain a bound over the excess risk of the parameter 𝑤𝑆 , one
is required not only to obtain a generalization error gap but also to non-trivially bound the empirical
risk. The following result shows that requiring both has its limits:
Theorem 1. For every 0 < ε < 1/54 and algorithm 𝐴, with sample complexity 𝑚(ε), there exists
a distribution 𝐷 over a space Z, and loss function 𝑓 , 1-Lipschitz and convex in 𝑤, such that, if
|𝑆 | ≥ 𝑚(ε) then:

𝐼 (𝑤𝑆; 𝑆) ≥
𝑚∑︁
𝑖=1

𝐼 (𝑤𝑆 , 𝑧𝑖) = Ω̃
(

𝑑

ε5 · 𝑚6 (ε)

)
. (3)

Theorem 1 accompanies the upper bound provided in Eq. (2) and shows that, while the generalization
gap is bounded by the mutual information, the mutual information inversely scales with the optimality
of the true risk. Taken together, for any algorithm with non-trivial learning guarantees, there is at
least one scenario where it must carry a dimension-dependent amount of information on the sample or
require a large sample. Indeed, either 𝑚(ε) = Ω( 6

√︁
𝑑/ε5), (and then, trivially, the sample complexity

of the algorithm scales with the dimension) or, via Eq. (3), we obtain dimension dependent mutual
information, and in turn, Eq. (2) is non-vacuous only if the sample is larger than the dimension.
The first inequality is standard and follows from standard chain rule argument (see e.g. [Bu et al.,
2020, proposition 2]). The second inequality lower bounds the information with the individual
samples. Recently, Bu et al. [2020] obtained a refined bound that improves over Xu and Raginsky
[2017] by bounding the generalization with the information between the individual samples and
output. Theorem 1, together with subadditivity of the square function, shows that the individual
sample bound of Bu et al. [2020] can also become dimension dependent.

3 Discussion

Our main result shows a necessary condition on the mutual information between the model and
empirical sample. Theorem 1 shows that for any algorithm with non-trivial learning guarantees, there
is at least one scenario where it must carry a dimension-dependent amount of information on the
sample or require a large sample. A natural question, then, is whether natural structural assumptions
may circumvent the lower bound and allow to still maintain meaningful information theoretic bounds
in slightly different setups. To initiate a discussion on this we begin by looking deeper into the
concrete construction at hand in Theorem 1. We notice (see Section 4 and the supplementary material)
that the construction we provided for Theorem 1 relies on a distribution 𝐷 that is always supported on
functions of the form:

𝑓 (𝑤, 𝑧) = ∥𝑤 − 𝑧∥2 = ∥𝑤∥2 − 2𝑤 · 𝑧 + 1, 𝑧 ∈ {−1/
√
𝑑, 1/

√
𝑑}𝑑 . (4)

The constant 1 has no effect over the optimization, nor on the optimal solution, therefore we can treat
𝑓 as equivalent to the following function

𝑓 ≡ ∥𝑤∥2 − 2𝑤 · 𝑧.

The distribution over the element 𝑧 is also quite straightforward and involves only bias sampling of
the coordinates. The function 𝑓 , then, is arguably the simplest non-linear convex function that one
can think of and as we further discuss it holds most if not all of the niceties a function can hold that
allow fast optimization – it is strongly convex, smooth, and in fact enjoys generalization bounds that
can even be derived using standard uniform convergence tools. Indeed for any choice 𝑤𝑆

𝔼
𝑆∼𝐷𝑚

𝐿𝐷 (𝑤𝑆) −
1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤𝑆 , 𝑧𝑖) = 2 𝔼
𝑆∼𝐷𝑚

sup
∥𝑤 ∥≤1

[ 1
𝑚

𝑚∑︁
𝑖=1

𝑤 · 𝑧𝑖 − 𝔼
𝑧∼𝐷

[𝑤 · 𝑧]]

≤ 𝑂 (1/
√
𝑚)

Where the last inequality follows from a standard Rademacher bound over the complexity of linear
classifiers (see Shalev-Shwartz and Ben-David [2014]). In other words, while under further structural
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assumptions one might hope to obtain meaningful information theoretic bounds, it should be noted
that such structural assumptions must exclude a highly simplistic class of functions that are in fact
extremely easy to learn and even enjoy dimension independent uniform convergence bounds.
We now discuss further the niceties of this function class and the implications to refined
algorithmic/distributional-dependent generalization bound via the information-theoretic bounds.
We begin by analyzing algorithms that achieve the minimax rate.

Algorithmic-dependent generalization bounds As discussed, it is known that SGD Hazan et al.
[2016], regularized-ERM Shalev-Shwartz et al. [2009], Bousquet and Elisseeff [2002], as well as
stabilized versions of Gradient Descent Bassily et al. [2020] have the following minmax rate for
learning 𝑂 (1)-Lipscthiz convex functions over an 𝑂 (1)-bounded domain:

𝔼 [∆𝐷 (𝑤𝑆)] = 𝑂 (1/
√
𝑚).

Plugging the above in Eq. (3) we obtain that any such algorithm must carry at least Ω(𝑑/𝑚5/2) bits of
information. which entails an information theoretic bound in Eq. (2) of 𝑂 (

√
𝑑/𝑚7/4). This exceeds

the true excess risk of such algorithms when 𝑑 ≫ 𝑚 and becomes a vacuous bound when we don’t
assume the sample scales with the dimension (even though the algorithm perfectly learns in this
setup). Now, we do not need Theorem 1 to obtain generalization gaps over these concrete algorithms,
as a more direct approach would do. But, one might hope that by analyzing noisy versions of these
algorithms, or some other forms of information-regularization, we could obtain some insight on the
generalization of these algorithms. But, our lower bound applies to any algorithm with meaningful
information-theoretic generalization bound. In particular, adding noise, for example, either makes the
algorithm diverge or the noise is too small to delete enough information.

Distributional-dependent generalization bounds Next, we would like to discuss the implications
to distributional assumptions. The above discussion shows that any trait of an algorithm that makes
it optimal is not captured by the amount of information it holds on the data (in the setup of SCO).
Distinct from SCO, in practice, many of the underlying problems can be cast into binary classification
where it is known Blumer et al. [1989] that without further distributional assumptions learnability
cannot be separated from uniform convergence as in SCO.
An interesting question, then, is if information theoretic generalization bounds can be used to obtain
distribution-dependent bounds.
The function 𝑓 (𝑤, 𝑧) in Eq. (4) is known to be strongly-convex for every 𝑧. Recall that a function 𝑓 is
called 1-strongly convex if 𝑓 − 1

2 ∥𝑤∥2 is convex. It is known Shalev-Shwartz et al. [2009] that any
ERM over a strongly convex will achieve suboptimality:

𝔼[∆𝐷 (𝑤𝑆)] = 𝑂 (1/𝑚).

Moreover, the above result can be even strengthened to any approximate empirical risk minimizer, that
is a minimizer with an additive Θ(1/𝑚2) error over the empirical risk Shalev-Shwartz et al. [2009],
Amir et al. [2021b]. But even further, for the particular structure of 𝑓 , which is a regularized linear
objective, by [Sridharan et al., 2008, Thm 1] we have:

𝔼[∆𝐷 (𝑤𝑆)] ≤ �̃� (𝔼[∆𝑆 (𝑤𝑆)] + 1/𝑚).
Together with Theorem 1 we obtain the following algorithmic-independent result:
Theorem 2. There exists a family of distributions D, such that for any algorithm 𝐴 and 𝑚 > 3, there
exists a distribution 𝐷 ∈ D such that if ∆𝑆 (𝑤𝑆) ≤ 1/54 and |𝑆 | > 𝑚 then :

𝐼 (𝑤𝑆 , 𝑆) = Ω̃
(

𝑑

𝑚6 · (𝔼[∆𝑆 (𝑤𝑆)] + 1)5

)
,

but for any algorithm 𝐴 and distribution 𝐷 ∈ D:

𝔼[∆𝐷 (𝑤𝑆)] = �̃� (𝔼[∆𝑆 (𝑤𝑆)] + 1/𝑚) .

In other words, even without algorithmic assumptions, we can construct a class of distributions
which make the problem easy to learn, but the information bounds are still dimension dependent. In
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particular, for any algorithm such that ∆𝑆 (𝑤𝑆) = 𝑂 (1/𝑚) we will have that the bound in Eq. (2) is
order of:

𝔼[∆𝐷 (𝑤𝑆)] = �̃�

(√︁
𝑑/𝑚

)
. (5)

Comparison to uniform convergence bounds: Notice that Eq. (5) is the standard generalization
bound that can be obtained for any ERM algorithm in the setting of stochastic convex optimization.
In detail, through a standard covering number argument (Shalev-Shwartz et al., 2009, thm 5) it is
known that, when 𝑓 is 1-Lipschitz (not necessarily convex even):

sup
𝑤∈W

𝔼
𝑆

[
𝐿𝐷 (𝑤) −

1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖)
]
≤ �̃� (

√︁
𝑑/𝑚).

In other words, the bound we obtain in Eq. (5) can be obtained for any algorithm, with minimal
assumptions, irrespective of the mutual information between output and sample. We remark, though,
that, through a similar covering argument, one can show that indeed there are algorithms where one
can recover the above bound via information-theoretic reasoning.
Proposition 1. Given a 1-Lipschitz function 𝑓 , there exists an algorithm 𝐴 that given input sample 𝑆
outputs a parameters 𝑤𝑆 ∈ W: such that

1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤𝑆 , 𝑧𝑖) ≤ min
𝑤★∈W

1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑤★, 𝑧𝑖) +
√︂

𝑑

𝑚
, (6)

and
𝐼 (𝑤𝑆 , 𝑆) = �̃� (𝑑 log𝑚).

In particular,
𝐿𝐷 (𝑤𝑆) − 𝐿𝐷 (𝑤★) = �̃� (

√︁
𝑑/𝑚).

Sketch. The result follows a simple covering argument. In particular, it is known that there exists a
finite subset W̄ ⊆ W of size |W̄| = 𝑂

(√
𝑚
𝑑
)

such that for every 𝑤 ∈ W there is �̄� ∈ W̄ such that

∥𝑤 − �̄�∥ ≤
√︁
𝑑/𝑚 (e.g. Wu [2017]). Now. we consider an ERM that is restricted to the set �̄� . By

Lipschitness we have that Eq. (6) holds. The information is bounded by the entropy of the algorithm
and we have that

𝐼 (𝑊𝑆 , 𝑆) ≤ 𝐻 (𝑊𝑆) ≤ log |W̄| = 𝑂 (𝑑 𝑙𝑜𝑔𝑚).
The genearlization gap can be bounded via Eq. (2) (or standard union bound). ■

CMI-bounds Similarly to our setting, also in the setting of PAC learning, Livni and Moran [2020],
Bassily et al. [2018] provided limitations to information theoretic generalization bounds. Specifically,
they showed that such bounds become vacous in the task of learning thresholds, and the information
between output and sample may be unbounded. To resolve this issue, which happens because of the
numerical precision required by a thresholds learner, Steinke and Zakynthinou [2020] introduced
generalization bounds that depend on conditional mutual information (CMI). They provided CMI
bounds that can be derived from VC bounds, compression bounds etc... which in a nutshell means
that they are powerful enough to achieve tight learning rates for VC classes such as thresholds.
However, the issue in SCO is not comparable. As we show in Proposition 1 already the classical
information-theoretic bounds are powerful enough to demonstrate generalization bounds that can be
derived via union bound or uniform convergence. In PAC learning, these bounds are also tight, but in
SCO such bounds are dimension-dependent. In that sense, there is no analog result to the limitation
of learning thresholds. Partly because there is no need for infinite precision in SCO. In SCO, though,
we require a separation from uniform convergence bounds, or even more strongly - from dimension
dependent bounds. While Haghifam et al. [2020] does demonstrate certain algorithmic-dependent
limitations for GD and perturbed GD algorithms, one might hope that, similar to PAC learning, here
too CMI-bounds might be able to capture optimal dimension-independent rates for some algorithms.
More formally, given a distribution 𝐷 over Z, we consider a process where we draw i.i.d two random
samples 𝑍 = 𝑆1 × 𝑆2, where 𝑆1 = {𝑧0

1, . . . , 𝑧
0𝑚} ∼ 𝐷𝑚 and 𝑆2 = {𝑧1

1, . . . , 𝑧
1
𝑚} ∼ 𝐷𝑚. Then we

define a sample 𝑆 by randomly picking 𝑧𝑖 = 𝑧0
𝑖

w.p. 1/2 and 𝑧𝑖 = 𝑧1
𝑖

w.p. 1/2 (independently from
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𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑚). Then, Steinke and Zakynthinou [2020] showed that, similarly to Eq. (17),
the generalization of an algorithm can be bounded in terms of

generalization(𝐴) = 𝑂

(√︁
CMI𝑚 (𝐴)/𝑚

)
, CMI𝑚 (𝐴) = 𝐼 (𝑤𝑆 , 𝑆 |𝑍) . (7)

Recall that, given a random variable 𝑍 , the conditional mutual information between r.v. 𝑋 and r.v. 𝑌
is defined as:

𝐼 (𝑋;𝑌 |𝑍) = 𝔼
𝑍

[
𝔼
𝑌

[
𝐷𝐾𝐿

(
𝑃𝑋 |𝑍

𝑃𝑋 |𝑌,𝑍 ) ] ] .
One can show that CMI𝑚 (𝐴) = 𝑂 (𝑚). The simplest way to achieve a dimension independent
generalization bound would be to subsample. If algorithm 𝐴 observes a sample 𝑆 of size 𝑚 and
subsamples 𝑓 (𝑚) samples, then we trivially obtain the generalization gap: 𝑂 (1/

√︁
𝑓 (𝑚). Taking

Eq. (7) into consideration by subsampling 𝑂 (
√
𝑚) examples, Eq. (7) will lead to a dimension

independent generalization bound of 𝑂 (1/ 4√𝑚). So it is possible to obtain dimension independent
bounds through the CMI framework, nevertheless it is stll not clear if we can beat the above, nonoptimal
and naive subsampling bound
Open Problem. Is there an algorithm 𝐴 in the SCO setup that can achieve

CMI𝑚 (𝐴) = 𝑜(
√
𝑚),

as well as
𝔼 [∆𝐷 (𝐴)] = 𝑂 (1/

√
𝑚).

4 Technical overview

We next outline the key technical tools and ideas that lead to the proof of Theorem 1. A full proof
of Theorem 1 is provided in the supplementary material. As discussed we draw our idea from the
privacy literature Steinke and Ullman [2015], Kamath et al. [2019], Bun et al. [2014] and build on
fingerprinting Lemmas Boneh and Shaw [1998], Tardos [2008] to construct our “information attacks".
We employ a simplified and well-tailored version of the fingerprinting Lemma, due to Kamath et al.
[2019], to construct a lower bound on the correlation between the output and the data. From that
point our proof differ from standard privacy attacks.
Given the above correlation bound, we now want to lower bound the mutual information between
the two correlated random variables (i.e. the output of the algorithm and the empirical mean).
Surprisingly, we could not find in the literature an existing lower bound on the mutual information
between two correlated random variables. The next Lemma provides such a lower bound and as
such may be of independent interest.. We next depict these two technical Lemmas that we need for
our proof – the fingerprinting Lemma due to Kamath et al. [2019] and a lower bound on the mutual
information between two correlated random variables.
For describing the fingerprinting Lemma, let us denote by 𝑈 [−1/3, 1/3] the uniform distribution over
the interval [−1/3, 1/3], and given 𝑝 ∈ [−1/3, 1/3], we denote by 𝑍1:𝑚 ∼ 𝑈𝑚 (𝑝) a random process
where we draw 𝑚 i.i.d random variables 𝑍1, . . . , 𝑍𝑚 where 𝑍 ∈ {±1} and 𝔼[𝑍] = 𝑝:
Lemma 1 (Fingerprinting Lemma (Kamath et al. [2019])). For every 𝑓 : {±1}𝑚 → [− 1

3 ,
1
3 ], we

have:

𝔼
𝑃∼𝑈 [−1/3,1/3]

𝔼
𝑍1:𝑚∼𝑈𝑚 (𝑃)

[
1 − 9𝑃2

9 − 9𝑃2 · ( 𝑓 (𝑍1:𝑚) − 𝑃) ·
𝑚∑︁
𝑖=1

(𝑍𝑖 − 𝑃) + ( 𝑓 (𝑍1:𝑚) − 𝑃)2

]
≥ 1

27

The above theorem shows that if a random variable 𝑓 (𝑍1:𝑚) uses the sample to non-trivially estimate
the random variable 𝑃, then the output must correlate with the empirical mean. Notice that, in
particular, it means that 𝑓 (𝑍1:𝑚) is not independent of 𝑍1:𝑚 and certain information exists. Our next
Lemma quantifies this statement and, as far the author knows, is novel. The proof is provided in the
supplementary material
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Lemma 2. Let 𝑋 and 𝑌 be two random variables such that 𝑋 is bounded by 1, 𝔼(𝑋) = 0 and
𝔼(𝑌2) ≤ 1. If 𝔼[𝑋𝑌 ] = β then: √︁

𝐼 (𝑋,𝑌 ) ≥ β2

2
√

2
.

The proof of Lemma 2 is provided in the supplementary material

With Lemmas 1 and 2 at hand, the proof idea is quite straightforward. For every 𝑧 ∈ {−1/
√
𝑑, 1/

√
𝑑}𝑑

we define the following loss function:

𝑓 (𝑤, 𝑧) =
𝑑∑︁
𝑡=1

(𝑤(𝑡) − 𝑧(𝑡))2 = ∥𝑤 − 𝑧∥2. (8)

For every distribution 𝐷, one can show that the minimizer 𝑤★ = arg min 𝐿𝐷 (𝑤) is provided by
𝑤 = 𝔼[𝑧]. By a standard decomposition we can show:

𝐿𝐷 (𝑤𝑆) − 𝐿𝐷 (𝑤★) = 𝔼
[
∥𝑤𝑆 + (𝑤★ − 𝑧) − 𝑤★∥2 − ∥𝑤★ − 𝑧∥2]

= 𝔼
[
∥𝑤𝑆 − 𝑤★∥2 + 2(𝑤𝑆 − 𝑤★) · (𝑤★ − 𝑧) + ∥𝑤★ − 𝑧∥2 − ∥𝑤★ − 𝑧∥2]

= 𝔼
[
∥𝑤𝑆 − 𝑤★∥2] + 2𝔼

[
(𝑤𝑆 − 𝑤★) · (𝔼[𝑧] − 𝑧)

]
= 𝔼

[
∥𝑤𝑆 − 𝑤★∥2] (9)

Now, for simplicity of this overview we only consider the case that ∆(𝑤𝑆) = Ω(1) is some non-trivial
constant, for example we may assume that ∆(𝑤𝑆) < 1/54 and let us show that for every coordinate, 𝑡,
the mutual information between 𝑤𝑆 (𝑡) and

∑
𝑧𝑖 (𝑡) is order of Ω(1/𝑚2). Then by standard chain rule,

and proper derivations the end result can be obtained.

Indeed, one can observe that if ∆(𝑤𝑆) < 1/54, and since 𝑤★ = 𝔼[𝑧] = 𝑃 we have that 𝔼((
√
𝑑𝑤𝑆 (𝑡) −

𝑃(𝑡))2) ≤ 1/54. In turn, we can use Lemma 1, and show that in expectation over 𝑃 we also have:

𝔼

[(√
𝑑𝑤𝑆 (𝑡) − 𝑃

)
·
(
𝑚∑︁
𝑖=1

(√
𝑑𝑧𝑖 (𝑡) − 𝑃

))]
= Ω(1).

We now use Lemma 2, and convexity, to lower bound the individual sume of the mutual information,∑𝑚
𝑖=1 𝐼 (𝑤𝑠 (𝑡); 𝑧𝑖 (𝑡) |𝑃). By standard technique we conclude that there exists 𝑃 for which the mutual

information is bounded.
The above outline does not provide a bound that scales with the accuracy of ∆(𝑤𝑆), and we need
to be more careful in our analysis for the full derivation. The detailed proof is provided in the
supplementary material.
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A Proof of Lemma 2

The proof relies on the following two well-known and useful results, Pinsker’s inequality and the
coupling Lemma. For that, we define the total variation between two distributions 𝑃1 and 𝑃2

∥𝑃1 − 𝑃2∥ = sup
𝐸⊆X

(∑︁
𝑥∈𝐸

𝑃1 (𝑥) − 𝑃2 (𝑥)
)
.

The first Lemma, relates the total variation distance between two distributions to their KL distance
(see for example Duchi [2016]):
Lemma (Pinsker’s inequality). Let 𝑃1 and 𝑃2 be two distributions over a finite domain X then:

∥𝑃1 − 𝑃2∥ ≤
√︂

1
2
𝐷𝐾𝐿 (𝑃1∥𝑃2). (10)

The next Lemma will help us to relate the correlation between two r.v.s and the total variation distance,
for a proof we refer to Aldous [1983]:
Lemma (Coupling Lemma). Suppose 𝑃1 and 𝑃2 are two distributions over a finite domain X. Then
for any distribution 𝐷 over joints random variables 𝑋1, 𝑋2 that take value in X such that 𝐷𝑋1 = 𝑃1
and 𝐷𝑋2 = 𝑃2: ∥𝑃1 − 𝑃2∥ ≤ 𝐷 (𝑋1 ≠ 𝑋2), further there exists a distribution 𝐷 as above such that:

∥𝑃1 − 𝑃2∥ = 𝐷 (𝑋1 ≠ 𝑋2). (11)

Let 𝑃 be the joint distribution over two random variables as in Lemma 2. For every 𝑦, let 𝑋𝑦 be a
random variable that is distributed according to 𝑃𝑋 |𝑦 , namely 𝑃(𝑋𝑦 = 𝑥) = 𝑃(𝑋 = 𝑥 |𝑦 = 𝑌 ).
By the coupling Lemma, there exists a distribution 𝐷𝑦 over the joint random variables 𝑋 and 𝑋𝑦 such
that

∥𝑃𝑋 − 𝑃𝑋 |𝑦 ∥ = 𝐷𝑦 (𝑋 ≠ 𝑋𝑦).
Now, we consider a distribution, 𝐷, over random variables 𝑋, 𝑋𝑌 , 𝑌 as follows: first we randomly
pick 𝑌 according to 𝑃𝑌 , then given 𝑦 = 𝑌 , we choose 𝑋, 𝑋𝑦 according to 𝐷𝑦 . That means, that 𝑋𝑦 is
distributed according to 𝑃𝑋 |𝑦 , and 𝑋 is distributed according to 𝑃𝑋 for every 𝑦 = 𝑌 . In particular, 𝑋
and 𝑌 are independent and:

𝔼
𝐷
(𝑋 · 𝑌 ) = 𝔼[𝑋] 𝔼[𝑌 ] = 0, (12)

and 𝑋𝑌 and 𝑌 are distributed according to 𝑃 and

𝔼
𝐷
[𝑋𝑌𝑌 ] = β. (13)

Next, we have that for every 𝑦, as 𝑋 and 𝑋𝑦 are bounded by 1:

𝔼
𝐷𝑦

[𝑋2] + 𝔼
𝐷𝑦

[𝑋2
𝑦] − 2 𝔼

𝐷𝑦

[𝑋 · 𝑋𝑦] = 𝔼
𝐷𝑦

[(𝑋 − 𝑋𝑦)2]

= 𝐷𝑦 (𝑋 ≠ 𝑋𝑦) 𝔼
𝐷𝑦

((𝑋 − 𝑋𝑦)2 |𝑋 ≠ 𝑋𝑦)

≤ 4𝐷𝑦 (𝑋 ≠ 𝑋𝑦)
= 4∥𝐷𝑋 − 𝐷𝑋 |𝑦 ∥

≤ 4
√︂

1
2
𝐷𝐾𝐿

(
𝐷𝑋 |𝑦

𝐷𝑋 ) Pinsker’s inequality

Taking expectation over 𝑦 on both sides, dividing by 2 and by Jensen’s inequality:

𝔼
𝐷
[𝑋2] − 𝔼

𝐷
[𝑋 · 𝑋𝑌 ] ≤ 2𝔼

𝑌

[√︂
1
2
𝐷𝐾𝐿

(
𝐷𝑋 |𝑦

𝐷𝑋 ) ]
≤

√︁
2𝐼 (𝑋,𝑌 ) (14)

Next, we write: 𝑋𝑌 = β𝑌 +
(√︃

𝔼𝐷 [𝑋2
𝑌
] − β2

)
𝑍𝑌 , where 𝑍𝑌 =

𝑋𝑌−β𝑌√
𝔼𝐷 [𝑋2

𝑌
]−β2

.
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Notice that

𝔼[𝑍2
𝑌 ] ≤

𝔼[(𝑋𝑌 − β𝑌 )2]
𝔼[𝑋2

𝑌
] − β2

=
𝔼[𝑋2

𝑌
] − 2β2 + β2 𝔼[𝑌2]
𝔼[𝑋2

𝑌
] − β2

𝐸𝑞. (13)

≤ 1. 𝔼[𝑌2] ≤ 1 (15)

Now from Eq. (12) and Cauchy Schwartz, we obtain:

𝔼
𝐷
[𝑋 · 𝑋𝑌 ] = 𝔼

𝐷

[(√︂
𝔼
𝐷
[𝑋2
𝑌
] − β2

)
𝑋 · 𝑍𝑌

]
𝐸𝑞. (12)

≤
√︂
𝔼
𝐷
[𝑋2
𝑌
] − β2

√︂
𝔼
𝐷
[𝑋2] 𝔼

𝐷
[𝑍2
𝑌
] C.S

≤
√︂
𝔼
𝐷
[𝑋2] − β2

√︂
𝔼
𝐷
[𝑋2] 𝐸𝑞. (15). (16)

Plugging the above in Eq. (14) we get (where we supress the subscript 𝐷 in 𝔼𝐷):√︁
𝐼 (𝑋,𝑌 ) ≥ 1

√
2
𝔼[𝑋2

𝑌 ] −
1
√

2
𝔼[𝑋 · 𝑋𝑌 ] 𝐸𝑞. (14)

≥ 1
√

2
𝔼[𝑋2

𝑌 ] −
1
√

2

√︁
𝔼[𝑋2]

√︃
𝔼[𝑋2] − β2 𝐸𝑞. (16)

=

√︂
𝔼[𝑋2]

2

(√︁
𝔼[𝑋2] −

√︃
𝔼[𝑋2] − β2

)
=

√︁
𝔼[𝑋2] +

√︁
𝔼[𝑋2]

2
√

2

(√︁
𝔼[𝑋2] −

√︃
𝔼[𝑋2] − β2

)
≥

√︁
𝔼[𝑋2] +

√︁
𝔼[𝑋2] − β2

2
√

2

(√︁
𝔼[𝑋2] −

√︃
𝔼[𝑋2] − β2

)
≥ β2

2
√

2
.

B Proof of Theorem 1

For a vector 𝑝 ∈ [−1/3, 1/3]𝑑 we define a distribution 𝐷 (𝑝) where 𝑧 ∼ 𝐷 (𝑝) is such that
𝑧 ∈ {1/

√
𝑑,
√
𝑑}𝑑 and each coordinate 𝑧(𝑡) is chosen uniformly such that 𝔼[𝑧(𝑡)] = 𝑝(𝑡)/

√
𝑑. The

loss function is the same as in Eq. (8), namely:

𝑓 (𝑤, 𝑧) = ∥𝑤 − 𝑧∥2.

Next, given an algorithm 𝐴 and positive ε < 1/54, choose 𝑚 such that 𝑚 > 𝑚(ε). Then, from the
output of the algorithm we construct an estimator of 𝑝, by letting

𝑝(𝑡) =
{√

𝑑𝑤𝑆 (𝑡) |
√
𝑑𝑤𝑆 (𝑡) | ≤ 1

sgn(
√
𝑑𝑤𝑆 (𝑡)) o.w.

.

Using the inequality developed in Eq. (9), and because |𝑝(𝑡) | ≤ 1, we have that

𝔼
[
∥𝑝(𝑡) − 𝑝(𝑡)∥2] ≤ 𝔼

[
∥
√
𝑑𝑤𝑆 (𝑡) − 𝑝(𝑡)∥2

]
≤ 𝑑 𝔼

[
𝐿𝐷 (𝑤𝑆) − 𝐿𝐷 (𝑤★)

]
≤ 𝑑 𝔼[∆𝐷 (𝑤𝑆)] ≤ 𝑑ε

(17)
Next, for fixed 𝑝 we define two random variables:

14



𝑋𝑝 (𝑡) =
1 − 9𝑝(𝑡)2

9 − 9𝑝(𝑡)2

√︃
𝔼

(
(𝑝(𝑡) − 𝑝(𝑡))2) 𝑚∑︁

𝑖=1
(
√
𝑑𝑧𝑖 (𝑡)−𝑝), 𝑌𝑝 (𝑡) =

1√︃
𝔼

(
(𝑝(𝑡) − 𝑝(𝑡))2) (𝑝(𝑡) − 𝑝(𝑡)) .

(18)
We now apply Lemma 1 with 𝑍𝑖 = 𝑧𝑖 (𝑡), and

𝑓 (𝑍1:𝑚) = 𝑓 (𝑧1 (𝑡), . . . , 𝑧𝑚 (𝑡)) := 𝑝(𝑡) and, 𝑃 = 𝑝(𝑡).

Notice that 𝑓 is not necessarily a deterministic function of 𝑧1 (𝑡), . . . , 𝑧𝑚 (𝑡) as it is allowed to depend
on the independent random variables 𝑧𝑖 ( 𝑗) with 𝑗 ≠ 𝑡. Nevertheless, applying Lemma 1 to each
realization of 𝑓 then by the definition of 𝑋𝑝 and𝑌𝑝 , we have that for uniformly chosen 𝑝 and uniformly
chosen coordinate 𝑡, we have that

𝔼
𝑝,𝑡

[
𝔼

𝑆∼𝐷𝑚 (𝑝)

[
𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)

] ]
≥ 1

27
− 𝔼
𝑝,𝑡

[𝔼
𝑆
(𝑝(𝑡) − 𝑝(𝑡)2)] ≥ 1

27
− ε ≥ 1

54
, (19)

and we have the following second moment bound, via Cauchy Schwartz:

𝔼
𝑝,𝑡

[(
𝔼

𝑆∼𝐷𝑚 (𝑝)
[𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)]

)2
]
≤ 𝔼
𝑝,𝑡

[
𝔼
𝑆
[𝑋2

𝑝 (𝑡)] 𝔼
𝑆
[𝑌2
𝑝 (𝑡)]

]
≤ 𝑚ε. (20)

Write 𝑍 = 𝔼𝑆∼𝐷𝑚 (𝑝)
[
𝑋𝑝 (𝑡)𝑌𝑝 (𝑦)

]
, and Apply Paley-Zygmund inequality [Paley and Zygmund,

1932] (see Remark 1 for the exact version of the inequality we use here), to obtain: :

ℙ𝑝,𝑡

(
𝔼

𝑆∼𝐷𝑚 (𝑝)

[
𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)

]
≥ 1

2
· 1

54

)
≥ ℙ𝑝,𝑡

(
𝑍 ≥ 1

2
· 𝔼
𝑝,𝑡

[𝑍]
)

𝐸𝑞. (19)

≥ (1 − 1/2)2 · 𝔼𝑝,𝑡
[𝑍]2

𝔼𝑝,𝑡 [𝑍2]
Paley-Zygmund

=
1
4

1
542𝑚ε

𝐸𝑞𝑠. (19)𝑎𝑛𝑑 (20)

≥ 1
106𝑚ε

. (21)

We conclude that for a random pair (𝑝, 𝑡), with probability at least 1
106𝑚ε

, we have that

𝔼[𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)] ≥
1

108
.

In particular, there exists a vector 𝑝 such that, by taking expectation over 𝑡, for 𝑑

106𝑚ε
of the coordinates,

𝑡, we have that

𝔼
𝑆
[𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)] ≥

1
108

. (22)

Let us fix the above 𝑝, for the choice of algorithm 𝐴 and ε > 0, and we assume now that the data
is distributed according to 𝐷 (𝑝) and we denote by G(𝑝) the set of coordinates 𝑡 ∈ [𝑑] that satisfy
Eq. (22). In particular we have that

|G(𝑝) | ≥ 𝑑

106𝑚ε
. (23)

15



Next, given a sample 𝑧1, . . . , 𝑧𝑚, let us denote z(𝑡 )
𝑖

the tuple,z(𝑡 )
𝑖

= (𝑧𝑖 (1), . . . , 𝑧𝑖 (𝑡 − 1). We apply
standard chain rule to obtain:

𝑚∑︁
𝑖=1

𝐼 (𝑤𝑆; 𝑧𝑖) =
𝑚∑︁
𝑖=1

𝑑∑︁
𝑡=1

𝐼

(
𝑤𝑆; 𝑧𝑖 (𝑡)

���z(𝑡 )𝑖 )
≥

𝑚∑︁
𝑖=1

𝑑∑︁
𝑡=1

𝐼

(
𝑤𝑆 (𝑡); 𝑧𝑖 (𝑡)

���z(𝑡 )𝑖 )
info processing

=

𝑑∑︁
𝑡=1

𝑚∑︁
𝑖=1

𝐼

((
𝑤𝑆 (𝑡), z(𝑡 )𝑖

)
; 𝑧𝑖 (𝑡)

)
− 𝐼

(
z(𝑡 )
𝑖

; 𝑧𝑖 (𝑡)
)

chain rule

=

𝑑∑︁
𝑡=1

𝑚∑︁
𝑖=1

𝐼

(
(𝑤𝑆 (𝑡), z(𝑡 )𝑖 ); 𝑧𝑖 (𝑡)

)
z(𝑡 )
𝑖

⊥ 𝑧𝑖 (𝑡)

≥
∑︁
𝑡∈G(𝑝)

𝑚∑︁
𝑖=1

𝐼 (𝑤𝑆 (𝑡); 𝑧𝑖 (𝑡)) info processing (24)

Next, we define:

𝑋 𝑖𝑝 (𝑡) =
1 − 9𝑝(𝑡)2

9 − 9𝑝(𝑡)2

√︃
𝔼

(
(𝑝(𝑡) − 𝑝(𝑡))2) (√𝑑𝑧𝑖 (𝑡) − 𝑝).

Notice that

|𝑋 𝑖𝑝 (𝑡) | ≤ 2
√︃
𝔼

(
(𝑝(𝑡) − 𝑝(𝑡))2) ,

and that 𝔼
[
𝑌𝑝 (𝑡)2] ≤ 1. Also, notice, that as 𝑝 is fixed, 𝑋 𝑖𝑝 (𝑡) is determined by 𝑧𝑖 (𝑡) and similarly

𝑌𝑝 (𝑡) is determined by 𝑤𝑆 (𝑡), we thus have by information processing inequality:

𝑚∑︁
𝑖=1

𝐼 (𝑤𝑆; 𝑧𝑖) ≥
𝑚∑︁
𝑖=1

∑︁
𝑡∈G(𝑝)

𝐼 (𝑤𝑆 (𝑡); 𝑧𝑖 (𝑡)) 𝐸𝑞. (24)

≥
𝑚∑︁
𝑖=1

∑︁
𝑡∈G(𝑝)

𝐼
©«

𝑋 𝑖𝑝 (𝑡)

2
√︃
𝔼

(
(𝑝(𝑡) − 𝑝(𝑡))2) ;𝑌𝑝 (𝑡)

ª®®¬ data processing inequality

≥
𝑚∑︁
𝑖=1

∑︁
𝑡∈G(𝑝)

𝔼[𝑋 𝑖𝑝 (𝑡)𝑌𝑝 (𝑡)]4

128𝔼
[
(𝑝(𝑡) − 𝑝(𝑡))2

]2

≥ 𝑚
∑︁
𝑡∈G(𝑝)

𝔼[ 1
𝑚

∑𝑚
𝑖=1 𝑋

𝑖
𝑝 (𝑡)𝑌𝑝 (𝑡)]4

128𝔼
[
(𝑝(𝑡) − 𝑝(𝑡))2

]2 convexity

≥
∑︁
𝑡∈G(𝑝)

𝔼[𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)]4

128𝑚3 𝔼
[
(𝑝(𝑡) − 𝑝(𝑡))2

]2 𝑋𝑝 (𝑡) =
𝑚∑︁
𝑖=1

𝑋 𝑖𝑝 (𝑡)
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Next we apply Eq. (22) that shows that 𝔼[𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)] ≥ 128 and continue the analysis:
𝑚∑︁
𝑖=1

𝐼 (𝑤𝑆; 𝑧𝑖) ≥
∑︁
𝑡∈G(𝑝)

𝔼[𝑋𝑝 (𝑡)𝑌𝑝 (𝑡)]4

128𝑚3 𝔼
[
(𝑝(𝑡) − 𝑝(𝑡))2

]2

≥
∑︁
𝑡∈G(𝑝)

1

1285𝑚3 𝔼
[
(𝑝(𝑡) − 𝑝(𝑡))2

]2 𝐸𝑞. (22)

≥ |G(𝑝) |
©«

1
1285𝑚3

1(
1

|G(𝑝) |
∑
𝑡∈G(𝑝) 𝔼[(𝑝(𝑡) − 𝑝(𝑡))2]

)2

ª®®¬ Convexity of 1/(𝑥)2, for 𝑥 > 0

≥ |G(𝑝) |3

1285𝑚3 𝔼[∥𝑝(𝑡) − 𝑝(𝑡)∥2]2

≥ |G(𝑝) |3

1285𝑚3𝑑2ε2

≥ 𝑑

1285 · 1018 · 𝑚6ε5 𝐸𝑞. (22),
(25)

Overall then, we have that:
𝑚∑︁
𝑖=1

𝐼 (𝑤𝑆; 𝑧𝑖) = Ω̃
(

𝑑

𝑚6ε5

)
Remark 1 (Remark on Paley-Zygmund inequality). Paley Zygmund inequality states that for a random
varialbe 𝑍:

ℙ(𝑍 > θ 𝔼[𝑍]) ≥ (1 − θ)2𝔼[𝑍]2

𝔼[𝑍2]
.

It is often assumed that 𝑍 is a non-negative random variable for the inequality to hold. It is not hard
to see that the inequality holds for any random variable with nonnegative expectation (which is our
case here). Indeed, the two-line proof goes as follows:

First,
𝔼[𝑍] = 𝔼[𝑍1𝑍≤θ 𝔼[𝑍 ] + 𝔼[𝑍1𝑍>θ 𝔼[𝑍 ]] ≤ θ 𝔼[𝑍] + 𝔼[𝑍1𝑍>θ 𝔼[𝑍 ]] .

The second term in RHS is at most 𝔼[𝑍2]1/2 · ℙ(𝑍 > θ 𝔼[𝑍])1/2 by Cauchy Schwartz inequality. The
desired inequality then follows by by rearranging terms, dividing in 𝔼[𝑍2]1/2 and taking square of
both sides (which requires positivity of 𝔼[𝑍]).
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