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I Proof of Lower Bound

Lemma 1. Considering a fixed W r[1] with size of m, the constraint cos(W r[1],W r[2]) ⩽ ϵr where
ϵr = o(1) holds with the probability at least F (α), where F denotes the cumulative function of a
standard Gaussian distribution. P (cos(W r[1],W r[2]) ⩽ ϵr) > F (α), if

m∑
i=1

σi ⩾
ϵ′r −

∑m
i=1 µi

α
∑m

i=1 |W r[1]i|
⩾ 0, (1)

where for any variation a, ai denotes the ith element of a, m is the size of W r, ϵ′r = o(1) and
ϵ′r = ϵr × ∥W r[1]∥p∥W r[2]∥p.

Proof. First, we define the cosine similarity of gradients of h[1] and h[2] over x as,

cos(∇(x,W r[1]),∇(x,W r[2])). (2)

According to the chain rule of derivation, the cosine similarity can be transformed into,

cos(∇r+1,n(x,W r[1])∇r,r+1(x,W r[1])∇1,r(x,W r[1]),

∇r+1,n(x,W r[2])∇r,r+1(x,W r[2])∇1,r(x,W r[2])),
(3)

where ∇i,j(x,W r) denotes the gradient from layer j to layer i over x. The angle
⟨∇(x,W r[1]),∇(x,W r[2])⟩ can be divided into,

⟨∇(x,W r[1]),∇(x,W r[2])⟩ =⟨∇r+1,n(xr+1,W r[1]),∇r+1,n(xr+1,W r[2])⟩
+ ⟨∇r,r+1(xr,W r[1]),∇r,r+1(xr,W r[2])⟩
+ ⟨∇1,r(x,W r[1]),∇1,r(x,W r[2])⟩

(4)

Since the weights in layer 1 to layer r are all the same, ⟨∇1,r(x,W r[1]),∇1,r(x,W r[2])⟩ is
related only to xr, where xi is the input feature map of layer i, and x is x1. We can use
⟨∇r,n(xr,W r[1]),∇r,n(xr,W r[2])⟩ to represent ⟨∇1,n(x,W r[1]),∇1,n(x,W r[2])⟩. Thus Eq. 4
can be simplified as,

⟨∇(xr,W r[1]),∇(xr,W r[2])⟩ =⟨∇r,r+1(xr,W r[1]),∇r,r+1(xr,W r[2])⟩
+ ⟨∇r+1,n(xr+1,W r[1]),∇r+1,n(xr+1,W r[2])⟩

(5)
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Let cos(∇1,n(x,W r[1]),∇1,n(x,W r[2])) ⩽ ϵR, there must exists am ϵr that satisfies
cosr,n(∇(xr,W r[1]),∇r,n(xr,W r[2])) ⩽ ϵr. As written in Eq. 5, the cosine similarity can be
expanded as,

cos(∇r,n(xr,W r[1]),∇r,n(xr,W r[2])) =cos(∇r,r+1(x,W r[1]),∇r,r+1(x,W r[2])

+∇r+1,n(xr+1,W r[1]),∇r+1,n(xr+1,W r[2]))
(6)

Using the sum-angle formula for the cosine function, 6 can be expanded as,

cos(∇(x,W r[1]),∇(x,W r[2])) = cos(∇r,r+1[1],∇r,r+1[2])cos(∇r+1,n[1],∇r+1,n[2])

− sin(∇r,r+1[1],∇r,r+1[2])sin(∇r+1,n[1],∇r+1,n[2]),
(7)

as shown in the main text, where ∇a,b[i] denotes ∇a,b(xa,Wr[i]). We can obtain that
⟨∇r+1,n[1],∇r+1,n[2]⟩ is related only to the angle of the outputs ⟨y[1], y[2]⟩. Assume that
y1 − y2 ⩽ ϵy where ϵy = o(1), i.e. the angle ⟨y[1], y[2]⟩ ⩽ ϵyang where ϵyang = o(1). Thus,
sin(∇r+1,n[1],∇r+1,n[2]) = o(1), and cos(∇r+1,n[1],∇r+1,n[2]) is close to 1 . Now that Eq.7 can
be simplified by approximation as,

cos(∇(x,W r[1]),∇(x,W r[2])) ≈ cos(∇r,r+1[1],∇r,r+1[2]). (8)

So, we can approximate the bound of cos(∇r,r+1[1],∇r,r+1[2]) as cos(∇r,r+1[1],∇r,r+1[2]) ⩽ ϵr.

Since ∇r,r+1 = W r, we can find that cos(∇r,r+1[1],∇r,r+1[2]) = cos(W r[1],W r[2]). As is
defined in the main text, W r = µ+ δ ⊙ σ. Once the attack is accomplished, W r[1] is fixed, so that
the cosine similarity can be expanded as,

cos(∇r,r+1[1],∇r,r+1[2]) =
W r[1] · (µ+ δ[2]⊙ σ)

∥W r[1]∥p∥W r[2]∥p
⩽ ϵr (9)

where ϵr = o(1), δ[i] is the δ in W r[i], and m is the size of W r. Thus, to make 9 hold with a
probability of F (α), we must let the upper bound of σ bigger than α, i.e.

α ⩽
ϵ′r −

∑m
i=1 µi∑m

i=1 σi

∑m
i=1 |W r[1]i|

, (10)

where ϵ′r is ϵr × ∥W r[1]∥p∥W r[2]∥p = o(1). Since ϵr = o(1), we have ϵ′r < µ. Since σi and |W r
i |

are all positive, we have that α is negative, so Eq.9 can be transferred as the lower bound of σ, where,

m∑
i=1

σi ⩾
ϵ′r −

∑m
i=1 µi

α
∑m

i=1 |W r[1]i|
. (11)

Thus, the lower bound of σ is set as Eq.11

II Proof of Upper Bound

Only the highest confidence term in the output of the neural network affects the classification result.
The change in the predicted outcome is defined according to the difference in the confidence of the
ground-truth term in the two outputs. To make the change in the prediction result smaller than the
minimal term ϵy . The difference between two outputs ∆yk can be defined as,

∆yk = y[1]− y[2] ⩽ ϵy. (12)
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Using the function of the network to represent y, we have,

∆yk = Hr+1,n(W r[1]⊙H1,r(x))−Hr+1,n(W r[2]⊙H1,r(x)) ⩽ ϵy, (13)

where Hi,j denotes the function of network from layer i to layer j. For linear part in H, Hi,j(W r ⊙
x) = Hi,j(W r)⊙Hi,j(x). For the nonlinear part, which is always defined as ReLU , we have,

ReLU(a⊙ b)

{
> ReLU(a)⊙ReLU(b), if a < 0 and b < 0,

= ReLU(a)⊙ReLU(b), if a > 0 or b > 0.
(14)

Thus, we can approximate that in DNNs, Hi,j(W r ⊙ x) = Hi,j(W r)⊙Hi,j(x). Then we can have
Eq.13 expanded as,

∆yk = Hr+1,n(W r[1])⊙Hr+1,n(H1,r(x))−Hr+1,n(W r[2])⊙Hr+1,n(H1,r(x)) ⩽ ϵy. (15)

Since each standard Gaussian distribution is i.i.d., the sum of the two sampled results is also a
Gaussian distribution, whose mean value and variation are added. This property of the Gaussian
distribution is known as convergence. Using the convergence of the Gaussian distribution, it can be
defined that Hr+1,n(W r) ∼ N(µ′, σ̃). The calculation process of µ′ and σ̃ is introduced in the main
text. Thus, except for the Fully Connection layer (FC layer), Hr+1,n−1(W r) ∼ N(µ′, σ̃) can be
represented as µ′ + δ ⊙ σ̃. Let xn−1 be the input feature map of the FC layer in the network with no
random weight, and Wn be the weight in the FC layer, and the difference can be expressed as,

∆yk = (σ̃ ⊙ (δ[1]− δ[2]))⊙ xn−1) ·Wn ⩽ ϵy. (16)

It can be obtained that δ[1]− δ[2] ∼ N(0, 2), whose standard deviation is
√
2. SO that if P (δ[1]−

δ[2] < β) = F (
√
2β
2 ). To make P (∆yk < ϵy) ⩾ F (

√
2β
2 ), we have,

P (σ̃ ⊙ (δ[1]− δ[2]))⊙ xn−1) ·Wn ⩽ ϵy) ⩾ F (

√
2β

2
). (17)

Rearranging the Eq.17, we can get,

P ((δ[1]− δ[2]) ⩽
ϵy

(σ̃ ⊙ xn−1) ·Wn
⩾ F (

√
2β

2
). (18)

Let σ′
i = σ̃i × Wn

i , and according to the definition of the cumulative function of the Gaussian
distribution, we can obtain that,

β ⩽
ϵy∑m

i=1 σ
′
i(x

n−1 ·Wn)
(19)

where m is the size of Wn. Since xn−1 · Wn is the highest element in the output of the original
network, we can consider that xn−1 ·Wn > 0. Thus, each term on the right-hand side of the formula
19 is positive, and we can obtain the upper bound as,

m∑
i=1

σ′
i ⩽

ϵy
xn−1 ·Wnβ

, (20)

III Comparison with Random Defence Methods by ResNet for CIFAR

Besides those SOTA methods in the main text, we also compared CTRW with PNI[1] and Adv-
BNN[2] and Learn2Perturb[3] These methods are implemented using the baseline of ResNet for
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Model baseline CTRW (ours) PNI[1] Adv-BNN[3] Learn2Perturb[3]
Natural PGD Natural PGD Natural PGD Natural PGD Natural PGD

ResNet20[4] 75.34 48.62 79.62 66.28 84.90 45.90 65.76 44.95 83.62 51.13
ResNet32[4] 77.66 48.77 81.21 67.67 85.90 43.50 62.95 54.62 84.19 54.62
ResNet44[4] 80.35 49.60 82.39 68.36 84.70 48.50 76.87 54.62 85.61 54.62
ResNet56[4] 80.91 50.27 82.18 68.77 86.80 46.30 77.20 54.62 84.82 54.62

Table 1: Comparasion on CIDAR-10 with other methods using ResNet for CIFAR[4]
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Figure 1: Evaluation under different ϵd and α

CIFAR[4] such as ResNet20, ResNet32, ResNet44, and ResNet56. This series of ResNet has a
smaller feature map in the middle than the original ResNet such as ResNet18, and performs better on
clean samples of CIFAR-10. Therefore, to exclude the interference, this work implements CTRW on
the ResNet-20 series and compares it with existing work. The results are shown in Table 1. CIFAR-10
is used as the dataset and all the settings are the same as in the main text. As can be seen, our method
has the highest robust accuracy under PGD attack, and the natural accuracy is at the middle level
compared to other methods.

IV Evaluation under Different Attack Strength

As mentioned in the main text, we have tested our model under different steps of PGD attacks[5].
however, there are still two other parameters that influence the strength of PGD attack. One is ϵd and
another is the step length α. The higher these two parameters are, the more strong the attack is. To
test the defense capability under a different situation, we evaluated CTRW under PGD with ϵd from 1
to 10 and with α from 1 to 10. The results are shown in Figure 1

V EOT Evaluation

The sampling process of random weights was set to sample 1 times per iteration step in adversarial
training and once per batch of data in defense. For the attack algorithm, multiple iterations in a
round of attack are randomly sampled only once. To verify the performance of the model under
EOT, we re-trained and evaluated the model with CTRW added on CIFAR-10 using ResNet18 as the
baseline using the EOT method. We set the PGD to randomly sample once per iteration and kept
the other experimental settings as in the main text. Compared to the baseline, the accuracy of our
model improved by 6.8% under EOT and decreased by 13.4% compared to the model trained under
non-EOT. Since the random sampling process has minimized the correlation between the gradient
at the time of attack and the gradient at the time of inference as much as possible. So resampling
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in each attack iteration step may lead to a shift in the gradient, instead the correlation between the
gradient at attack time and at inference time increases. This explains one reason for the performance
degradation after increasing the sampling frequency.

VI Evaluation of Black-Box Attack

We include more evaluation of black-box attacks, such as Square and Pixle. We conducted an
evaluation of ResNet-18 on CIFAR-10. The robust accuracy is shown in Table 2. It is clear from the
table that CTRW has an equally strong defense against black-box attacks.

Model Square Pixle
baseline 54.68 8.10

CTRW(ours) 77.73 72.14
Table 2: Comparison under black box attack

VII Evaluation of model without adversarial training

It is interesting to see the performance without adversarial training. We evaluated with ResNet-18
on CIFAR-10. All the algorithms are trained with natural training. The results are shown in Table 3.
According to the table, it can be seen that confrontational training is very important for CTRW. It
can also be seen that networks that incorporate the designed random weights are inherently robust,
although this is not significant.

Model Natural PGD20

baseline 84.17 0.00
CTRW(ours) 84.61 3.44

Table 3: Results of models without adversarial training

VIII Evaluation on Vision Transformer

Our proposed algorithm can be simply deployed to other neural networks, such as Vision Transformer
(ViTs)[6]. For illustration, we deploy CTRW on Vision Transformer-Small (ViT-S) and evaluate the
performance on CIFAR-10. The results are shown in Table 4. The experimental results demonstrate
the better performance of CTRW even on deeper networks.

Model cw20 PGD20

baseline 34.62 33.49
CTRW(ours) 45.21 45.68

Table 4: Results of ViT[6] based adversarial robust models
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