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Abstract

Deep neural networks have been found to be vulnerable in a variety of tasks. Ad-
versarial attacks can manipulate network outputs, resulting in incorrect predictions.
Adversarial defense methods aim to improve the adversarial robustness of networks
by countering potential attacks. In addition to traditional defense approaches,
randomized defense mechanisms have recently received increasing attention from
researchers. These methods introduce different types of perturbations during the
inference phase to destabilize adversarial attacks. Although promising empirical re-
sults have been demonstrated by these approaches, the defense performance is quite
sensitive to the randomness parameters, which are always manually tuned without
further analysis. On the contrary, we propose incorporating random weights into
the optimization to exploit the potential of randomized defense fully. To perform
better optimization of randomness parameters, we conduct a theoretical analysis of
the connections between randomness parameters and gradient similarity as well as
natural performance. From these two aspects, we suggest imposing theoretically-
guided constraints on random weights during optimizations, as these weights play a
critical role in balancing natural performance and adversarial robustness. We derive
both the upper and lower bounds of random weight parameters by considering
prediction bias and gradient similarity. In this study, we introduce the Constrained
Trainable Random Weight (CTRW), which adds random weight parameters to the
optimization and includes a constraint guided by the upper and lower bounds to
achieve better trade-offs between natural and robust accuracy. We evaluate the
effectiveness of CTRW on several datasets and benchmark convolutional neural
networks. Our results indicate that our model achieves a robust accuracy approx-
imately 16% to 17% higher than the baseline model under PGD-20 and 22% to
25% higher on Auto Attack.

1 Introduction

Deep neural networks (DNNs) have rapidly become valuable tools for processing complex information
[1, 2, 3, 4, 5]. However, their widespread usage has also increased the risk of adversarial attacks [6],
making it essential to design robust learning techniques that can withstand such attacks [7]. Many
works have demonstrated that DNNs are highly sensitive to small changes in input, which has led to
the development of adversarial attack algorithms such as the Fast Gradient Sign Method (FGSM)
[8], Projected Gradient Descent (PGD) [9] based attack, and Automatic Attack (AA) [10], among
others. These white-box attacks assume that the network structure and parameters are accessible at
the time of the attack, whereas they are black-box otherwise. Among them, white-box attacks are
always regarded as critical threats to DNNs since the gradients are available for attack generation.
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Various defense methods, such as PGD-based Adversarial Training (AT) [9], have provided the basic
algorithm for training robust models against adversarial attacks. Data preprocessing techniques
are also used to enhance model adversarial robustness [11]. Besides these defense mechanisms,
randomized techniques have gained wide interest in improving adversarial robustness since these
white-box attacks are very sensitive to gradients to some extent [12]. Increasing the randomness of
the network can reduce the similarity of gradients after each inference, which ultimately lowers the
success rate of attack algorithms. Recent effective adversarial defense efforts have added randomness
to specific modules or intermediate results of the network, demonstrating superior performance
[7, 13, 14, 15, 16].
However, existing randomized defense algorithms always treat randomness parameters such as µ
and σ as hyperparameters [7, 13, 15], requiring significant tuning experiments. For instance, Li
et al. [15] have set the mean value as 0 and the standard deviation as 1, following the standard
Gaussian distribution. Although manually tuning the randomness parameters can be effective since
the defense performance is sensitive to these hyperparameters, the correlation between randomness
parameters and adversarial robustness is still unexplored. Thus, instead of manually tuning the
randomness parameters through methods like grid search, we propose discovering theoretically-
guided randomness parameters that can achieve better adversarial robustness. Specifically, we focus
on the gradients in randomized mechanisms and the prediction bias when randomness is involved.
By exploring the constraints on the magnitude of randomness, we establish connections between
randomness parameters and gradient similarity as well as natural performance.
Based on previous studies, we propose a defense module called Constrained Trainable Random Weight
(CTRW). We update the random parameters, including µ and σ, by training them in parallel with the
neural network to ensure that the block can adapt to DNNs with different structures. Furthermore, we
constrain the variance according to the established constraints after each update, ensuring that the
variance always remains within the optimal range. In this work, we conducted sufficient evaluations
to demonstrate the superiority of CTRW on different benchmarks. Moreover, we provide empirical
evidence for the theoretical analysis by conducting experiments on the location of CTRW and the
constraints. In our experiments under Automatic Attack (AA) on ResNet18 [17], the model with
CTRW improved the robust accuracy by 25.87% over the baseline model. On the Wide Residual
Network (WRN) [18], the module improved the robustness accuracy by 21.99% over the baseline
and by 6.47% over the state-of-the-art (SOTA) random algorithm.

2 Randomized Parameter Optimization with Constraints
Let H be a hypothesis space of classification task and we consider a classifier h ∈ H which maps
the input x to the logits h(x). Adversarial attacks are designed to maximize the loss function L
with a small perturbation ∆. Given the ground truth label y and maximum perturbation size ϵd, the
adversarial examples x̃ = x+∆ can be generated via gradient ascent in white-box setting as

x̃∗ = argmax
x̃:∥x̃−x∥p≤ϵd

L(h(x̃), y), (1)

where the perturbation ∆ is constrained by lp-norm. Traditional adversarial training algorithm
performs a min-max game as

h∗ = argmin
h∈H

Ex,y∼X,Y [L(h(x̃), y], (2)

To further improve the adversarial robustness, randomized mechanisms are introduced to prevent
attackers from deriving precise and powerful adversarial examples via the involvement of randomness
during attacking and inference phases [7, 13, 14, 19]. Given two classifier h1 and h2 sampled from a
subsetH ⊂ H, the defense scheme can be formulated as

H∗ = argmin
h2∈H

Ex,y∼X,Y [L(h2(x̃
′
1), y], where x̃′

1 = argmax
x̃′
1:∥x̃′

1−x∥p≤ϵd

L(h1(x̃
′
1), y). (3)

Note that sampled classifiers fromH share all the weight parameters except for the injected noise.
Thus, without additional cost, different classifiers can be randomly sampled from optimized H∗

during each forwarding to form a defense. The white-box attack is transferred to a black-box attack
when the adversarial example x̃ generated on h1 is difficult to generalize to another sampled classifier
h2.
In this work, we investigate the incorporation of a random weight during the network forwarding
process, whereby layers h1 and h2 share all the weight parameters except for the random weight.
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Figure 1: CTRW and the whole random adversarial defense framework pipeline.

To be specific, let r be the layer that employs the random weight, and let W r be the weight in the
r-th layer. We assume that W r follows a normal distribution N(µ, σ2), where µ and σ2 denote the
mean and variance, respectively. To ensure that the random weight is adapted to the training data, we
involve µ and σ in the network optimization process. Although the random sampling process is not
differentiable, the parameters can be optimized via a reparameterization trick as

W r = µ+ δ ⊙ σ, (4)

where δ is sampled from a standard Gaussian distribution, i.e. N(0, 1). In h1 and h2, the only
difference lies in δ, which results in different W r values. By utilizing the technique mentioned in
Equation 4, the training process of the random parameters can be visualized as shown in Figure 1a,
using the pipeline depicted in Figure 1b. The variance σ2 plays a crucial role in determining the
level of randomness as it directly controls its magnitude. To ensure the effectiveness of randomized
mechanisms, a relatively large σ is required to guarantee the difficulty of transferring adversarial
examples within the classifier subsetH. However, an excessively large σ can significantly impact the
natural performance. While a naive solution for optimizing σ could involve adversarial training on
both clean examples x and adversarial examples x̃, such as Trades [11], it incurs additional training
costs on clean examples. To achieve a unified optimization of σ, we propose an implicit approach
that imposes constraints with upper and lower bounds on σ to ensure both the natural performance
and defense capability. Let W [i] be the weight including W r of hi, the objective function can be
redefined as

H∗ = argmin
hW [2]∈H

Ex,y∼X,Y [L(hW [2](x̃), y], where x̃ = argmax
x̃:∥x̃−x∥p≤ϵd

L(hW [1](x̃), y),

s.t.
∑

σ ∈ [A,B],
(5)

where
∑

σ denotes the sum of every elements in σ, A and B represent the lower and upper bounds
of σ, respectively. Therefore, when σ is too low, the associated randomness may be insufficient,
making the adversarial example x̃ easily transfer between h1 and h2. On the other hand, if σ is too
high, excessive randomness can lead to performance degradation for any h ∈ H. To understand the
relationship between A, B, and the optimization objective, selecting them through grid search is not
sufficient. Thus, to better tune the bounds of σ, we aim to establish, from a theoretical perspective,
how A and B impact the gap between h1 and h2, as well as the performance degradation of any
h ∈ H. The theoretical analysis will guide for tuning the reference. Therefore, we have developed
objectives for the upper and lower bounds, respectively.

2.1 Lower Bound for Gradient Similarity

The white-box attacks such as FGSM, PGD, and MIFGSM [8, 9, 20] have high success rates in white-
box settings due to the direct derivation of gradients in Eq. 1. However, in randomized mechanisms,
the gradients change for the same input due to the random sampling of the classifier h fromH during
each forwarding. The success of randomized defense can be attributed to the differences in gradients,
resulting in poor perturbation generation during attacks and possible ineffectiveness in inference due
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to the changes in output. To quantify and analyze the relationship between the random parameter and
gradient difference, we propose measuring their cosine similarity. Formally, For any h1 and h2, the
cosine similarity between gradient∇ on x at different weights is computed as

cos(∇(x,W r[1]),∇(x,W r[2])). (6)

The random weights are obtained through element-wise multiplication (Hadamard product) of the
input of the layer in the neural network. To ensure that a large gradient difference, we require the
cosine similarity of the gradients to be always less than a threshold ϵ∇. However, since the random
weights are sampled from an unbounded distribution, we cannot guarantee that the cosine similarity
will always meet this requirement, and can only provide a probabilistic bound. Assume that the
random sampled weights are W r[1] and W r[2] respectively, the objective function can be formulated
as

µ, σ = argmax
W r∼N(µ,σ2)

P
(
cos(∇(x,W r[1]),∇(x,W r[2])) ⩽ ϵ∇

)
. (7)

Considering the random weights on the r-th layer, there exists a constant mapping between the
gradient of xr−1 and the gradient of x0 since the network parameters are all fixed. Thus, we focus on
the gradient of xr−1 instead of the one of x0. Given random weights W r[1] and W r[2], we denote
the outputs as y[1] and y[2] respectively. According to the chain rule, the gradient can be computed as
the product of the gradient of the layer after r and the gradient of the random layer. Thus, the angle
⟨∇(x,W r[1]),∇(x,W r[2])⟩ can be split into the sum of two angles, and then using the summation
formula for the cosine function it can be derived that

cos(∇(x,W r[1]),∇(x,W r[2])) = cos(∇r,r+1[1],∇r,r+1[2])cos(∇r+1,n[1],∇r+1,n[2])

− sin(∇r,r+1[1],∇r,r+1[2])sin(∇r+1,n[1],∇r+1,n[2]),
(8)

where∇i,j [1] and∇i,j [2] are the gradient of xi propagated from xj with W [1] and W [2] respectively.
Assume that y[1] − y[2] ⩽ ϵy → 0+, i.e. the angle ⟨y[1], y[2]⟩ ⩽ ϵyang → 0+. Since ∇1r+1,n

and ∇2r+1,n are only related to y[1] and y[2] in a multiplicative manner, the upper bound of angle〈
∇r+1,n[1],∇r+1,n[2]

〉
can be limited as ϵ∇ang → 0. Based on Eq. 8, the cosine similarity is mainly

influenced by and positively correlated with cos(∇1r,r+1,∇2r,r+1). Note that the random layers
only include the Hadamard product of random weight and the input, the derivatives ∇r,r+1[1] and
∇r,r+1[2] are exactly the random weight W r[1], W r[2]. Thus, Eq. 7 can be reformulated as

µ, σ = argmax
µ,σ⩾0

P (cos(W r[1],W r[2]) ⩽ ϵr), where W r ∼ N(µ, σ2), (9)

where ϵr is the upper bound of the cosine similarity between W r[1] and W r[2], and ϵr → 0+. Since
each element in W r obeys a Gaussian distribution, we consider using the probability cumulative
function of the Gaussian distribution to constrain the probabilities in Eq. 9.
Specifically, to ensure that P (cos(W r[1],W r[2]) ⩽ ϵr) is sufficiently large, a lower bound is devised
in the form of a cumulative probability function of the standard normal distribution. This lower
bound on the probability is specified as F (α). In order for P (cos(W r[1],W r[2]) ⩽ ϵr) < F (α),
the condition α < 0 needs to be satisfied. Although α < 0 seems to be a low-confidence guarantee,
this bound plays an important role and its effectiveness will be empirically verified in Table 6. The
proof of this part is in Eq. (10) in the first part of the supplementary material. Based on this, an upper
bound on the σ associated with the weights can be defined.

Lemma 1. Consider a fixed W r[1] with size of m, and a constant ϵr that satisfies ϵr = o(1) and an
α < 0. Let ϵ′r = ϵr×∥W r[1]∥p∥W r[2]∥p, we have ϵ′r = o(1). Assume that

∑m
i=1 µi ≫ 0. Let F de-

note the cumulative function of a standard Gaussian distribution, the constraint cos(W r[1],W r[2]) ⩽
ϵr holds with the probability at least F (α), i.e. P (cos(W r[1],W r[2]) ⩽ ϵr) > F (α), if

m∑
i=1

σi ⩾
ϵ′r −

∑m
i=1 µi

α
∑m

i=1 |W r[1]i|
> 0, (10)

where m is the size of W r, and for any variation a, ai denotes the ith element of a.

Due to Lemma1., when σ has a high enough lower bound, it is guaranteed that F (α) has a large
enough value such that probabilities in Eq. 9 are large enough. During training, σ will be checked
after each optimization and added by the average bias when

∑
σ is lower than the lower bound.
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Figure 2: An Illustration of the projection of the random weight through different layers.

2.2 Upper Bound for Natural Performance

Section 2.1 highlights that a greater σ leads to a higher likelihood of low similarity between gradients.
However, a network’s superior robust accuracy requires not only low cosine similarity between
sampled networks but also satisfactory accuracy on clean examples. While a larger σ may yield lower
similarity between gradients, it may also result in low accuracy due to extreme randomization of
network output. Hence, an upper bound needs to be imposed on σ to ensure satisfactory accuracy.
Additionally, the assumption in Section 2.1 regarding |y1−y2| requires high natural accuracy to hold.
Both convolution and normalization being linear processes, random weights can be mapped to any
layer before the Hadamard product calculation, as shown in Figure 2. After convolution, each random
weight becomes a weighted sum of multiple Independent Identical Distribution (i.i.d.) Gaussian
distribution, resulting in a Gaussian distribution. Let Ha,b denotes layer a to b in H, W r

i,j denotes
the i, jth element of W r, and W l denotes weight in layer l, the mapping of W r between layer l and
layer l − 1 can be can be formulated as

Hr+1,l(W
r
i,j) = Hr+1,l−1(

(ks−1)
2∑

k=− (ks−1)
2

W r
i+k,j+l ∗Wn

i+k,j+l), (11)

where ks denotes the kernel size of the convolution layer. Let Ŵ p denote the random weight projected
to layer p, the specific form of the random weight after mapped by one convolution layer is

Hr+1,r+1(Ŵ
p
i,j) ∼ N(

(ks−1)
2∑

k=− (ks−1)
2

µi+k,j+l ∗ Ŵ p+1
i+k,j+l,

(ks−1)
2∑

k=− (ks−1)
2

(σi+k,j+l ∗ Ŵ p+1
i+k,j+l)

2), (12)

where µi,j and σi,j denotes the (i, j)th element of µ and σ respectively. The mapping of W r at
layer l is obtained by performing l − r recursions on Eq. 11, and the specific form ofHr+1,n(W

r
i,j)

can be calculated be iterating Eq. 12 for n− r times. The sum of each weighted example from the
Gaussian distribution still obeys the Gaussian distribution. Denoting the standard representation of
the Gaussian distribution in Eq. 12 as σ′, we can know that σ ∝ σ′. Thus, σ can be expressed by σ′.

Lemma 2. Given an n layer network and assuming ReLU to be the activation function, let the
parameters of the random weights after mapping n − r times be µ′ and σ′, xl denotes the output
feature map of layer l and W l denotes the weights in layer l. The output difference Y1−Y2 is hoped to
be smaller than a minimal term ϵy . The probability of (Y1−Y2) < ϵy is defined as P ((Y1−Y2) < ϵy).
And P ((Y1 − Y2) < ϵy) is larger than F (

√
2β
2 ), i.e. P ((Y1 − Y2) < ϵy) ⩾ F (

√
2β
2 ), if

∑m
i=1 σ

′
i is

upper bounded as,

m∑
i=1

σ′
i ⩽

ϵy
xn−1 ·Wnβ

, (13)

where m is the size of the feature map.

The σ′ can be obtained through σ according to the forward propagation process of the network. For a
σ, the mapping of the upper bound mentioned in Eq.13 is for higher natural accuracy.
The upper bound B in Eq. 5 can be defined as the one in Lemma 2., which provides a guarantee for
natural performance. In contrast, the lower bound A in Eq. 5 can be defined as the one in Lemma1.,
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Algorithm 1 Adversarial Training under Con-
strain Using Black-Box Attack

Input: Training data:X,Y ; Network:h(x), with
initialized weight:W , including µ and σ;
Lower bound of σ:minσ; Attack iterations:t;
Size of perturbation:ϵd

1: Sample δ from a set of i.i.d.standard Gaussian
distribution;

2: while not converged do
3: Sample a batch of (x, y) ∈ (X,Y );
4: Initialize adversarial perturbation ∆x;
5: for i← 1 to t do
6: ∆x = clipϵd(sign(∇xL(h(x, δ), y)) ·

η);
7: end for
8: Re-sample δ from a set of i.i.d.standard

Gaussian distribution;
9: W = W −∇WL(h(x+∆x, δ), y);

10: Constrain σ by minσ;
11: end while

Algorithm 2 Adversarial Defense under White-
Box Attack
Input: Test data:X,Y ; Network:h(x) with pre-

trained weight:W ; Attack iterations:t; Size of
perturbation:ϵd

Output: ỹ
1: while not converged do
2: Sample a batch of (x, y) ∈ (X,Y );
3: Re-sample δ from a set of i.i.d.standard

Gaussian distribution as δ1;
4: Initialize adversarial perturbation ∆x;
5: for i← 1 to t do
6: ∆x = clipϵd(η · sign(∇xL(h(x +

∆x, δ1), y)))
7: end for
8: Re-sample δ from a set of i.i.d.standard

Gaussian distribution as δ2;
9: ỹ = h(x+∆x, δ2);

10: end while
11: return ỹ;

which provides a guarantee for a low gradient similarity. Since robust accuracy is jointly influenced by
gradient similarity and natural accuracy, A and B in Eq. 5 together guarantee a high robust accuracy.
Thus, it is the σ that is jointly constrained by A and B that keeps the randomness under control in
such a way that robust accuracy is sufficiently high.

2.3 Adversarial Training and Defense

Black-box Adversarial Training To train the whole pipeline, we use black-box attack as a part of
adversarial training as the defense scheme in Eq.3. The optimization can be formulated as

H∗ = argmin
hW [2]∈H

Ex,y∼X,Y [L(hW [2](x̃), y], where x̃ = argmax
x̃:∥x̃−x∥p≤ϵd

L(hW [1](x̃), y),

s.t.
m∑
i=1

σi ∈ [
ϵ′r −

∑m
i=1 µi

α
∑m

i=1 |W r[1]i|
, B], where B ∝ ϵy

xn−1 ·Wnβ
.

(14)

It can be estimated that the lower bound is with a high probability less than 1
|α| as a simplification

of Eq. 10. Thus, based on the analysis in Section 2.2, the trade-off between natural accuracy and
gradient similarity is controlled by |α|. Having the lower bounds selected, σ is constrained by it and
is checked and transformed before each forward propagation period to ensure that σ is in the bound.
Adversarial Defense under White-box When inference, there are two different forward propaga-
tion processes. The attackers first conduct a set of forward propagation to derive the gradients for
adversarial example generation. The second forward propagation will take the generated adversarial
example back to the network for inference. However, due to the random sampling strategy in random-
ized techniques, random weight W is resampled and thus performs a strong defense. The training
and defense schemes of CTRW are demonstrated in Algorithm 1 and Algorithm 2.

3 Related Work
Deep Neural Networks (DNNs) are vulnerable to perturbations [21, 22], resulting in the development
of numerous adversarial attacks and defense algorithms [7, 8, 9, 10, 13, 23, 24, 25, 26, 14, 15, 16, 27,
28, 20, 29, 30, 31]. One common approach for generating adversarial examples in attack algorithms
is the use of gradient-based methods [8, 9, 10, 20]. Adversarial samples generated by adversarial
attacks can be used to expand the diversity of the dataset[32]. However, adversarial samples also pose
a problem of model robustness. In recent years, several stochastic adversarial defense algorithms
have been proposed that leverage random sampling to alter the gradient of the model at each inference
[7, 13, 14, 33, 15, 16]. Some of these methods utilize random numbers as weights that are multiplied
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Table 1: The results of robust accuracy on CIFAR-10 of adversarial defense algorithms.
Model Method Natural PGD20 FGSM AA CW12 MIFGSM DeepFool

ResNet18

baseline 81.84 52.16 56.70 47.69 78.46 54.96 0.35
without constrain 83.64 54.59 58.93 54.99 82.43 57.02 78.39

fixed std 82.62 67.75 65.18 72.03 81.44 65.03 81.25
CTRW (ours) 83.69 69.48 66.49 73.56 82.93 65.47 82.45

WRN34

baseline 85.27 55.06 60.65 52.24 82.24 58.47 0.40
without constrain 85.84 56.68 61.29 57.32 85.00 59.37 79.81

fixed std 84.23 70.03 66.47 72.97 83.83 65.74 83.30
CTRW (ours) 85.87 71.34 66.72 74.23 84.29 65.99 83.66

Table 2: The results of robust accuracy on CIFAR-100 of adversarial defense algorithms.
Model Method Natural PGD20 FGSM AA CW12 MIFGSM DeepFool

ResNet18

baseline 55.81 28.71 31.33 24.48 50.94 30.26 0.79
without constrain 57.01 30.05 32.36 30.78 55.38 31.38 51.39

fixed std 56.26 41.44 38.68 44.71 56.12 37.92 55.77
CTRW (ours) 56.63 42.01 38.85 45.58 56.32 38.20 55.56

WRN34

baseline 60.11 31.69 35.40 28.36 57.11 34.14 0.23
without constrain 60.59 31.97 34.66 32.16 58.81 33.54 54.41

fixed std 60.12 44.22 40.17 48.18 60.07 39.64 59.54
CTRW (ours) 60.62 44.33 40.33 50.47 59.73 39.90 59.30

with intermediate results of the model [7, 13]. Additionally, random noise can be incorporated into
the network either as an additive or as a choice [14, 15], with the latter method adding a choice
to the multiplicative noise [16]. In conclusion, using random weights is a hot research direction
in adversarial defense or other tasks. However, among the existing task-heavy, one part is only
applied to old or simple machine learning methods, such as SVM and LeNet, and the other part
only uses random weights as a tool, instead of investigating the effect of random weights in deep
neural networks on the forward and backward processes of the network [29, 30, 31]. In addition
to this, there is also work in differential privacy that uses random weights[34]. Unfortunately, the
design of random weights also does not take into account the optimization process with the network.
While in the works above, the parameters of the random numbers, such as mean and variance, are
typically pre-defined in these algorithms, Dredze et al. [35] have demonstrated that the parameters
of the random sampling process can also be trained. Building on this insight, Kingma et al. [36]
proposed a re-sampling-based method that enables the incorporation of trainable random weights
into the neural network training process. Adversarial training is the most common method used
by adversarial defense algorithms to achieve a robust model, and the early-stop algorithm has been
proposed by Rice et al. [37] to prevent overfitting in this process. Adversarial training is widely
employed by various adversarial defense algorithms [7, 13, 14, 15, 16]. In contrast to previous work,
the focus of the present study is on training and constraining the parameters of the random sampling
process, allowing for better adaptation of the process to the network and identifying an appropriate
trade-off between accuracy under clean examples and adversarial attacks.

4 Experiments

4.1 Experiment Setup

We evaluate CTRW on CIFAR [38] and Imagenet [39]. We also include various networks for
evaluation, including ResNet18, ResNet50 [17], and WRN34 [18].
CIFAR In the CIFAR-10 and CIFAR-100 datasets, there are 10 and 100 classes respectively. Each
CIFAR dataset contains 5.0× 104 training examples and 1.0× 104 test examples, with all images
scaled to 32× 32 pixels in 3 channels. We implemented CTRW on both ResNet18 [17] and WRN34
[18] for CIFAR. In the experiment, the dataset is split into batches of size 128, and the weight decay
is set to 5.0× 10−4. We use an SGD optimizer with a momentum of 0.9. The learning rate is initially
set to 0.1 and reduced by a multi-step scheduler. The network is trained for 200 epochs, with the
learning rate reduced by a factor of 10 at epochs 100 and 150. For adversarial training, we set ϵd to
8

255 and the step length η to 2
255 for a 10-step PGD [9]. The bounds in CTRW are set to α = 1×10−3
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Table 3: Comparison with SOTA methods.

Methods CIFAR-10 Imagenet
PGD20 AA PGD10 PGD50

RP-Ensemble [42] 60.30 - - -
RP-Regularizer [42] 52.39 - - -

RNA [14] 63.34 67.88 - 54.61
Additive Noise [15] 62.36 58.47 - -

Overfit [37] 55.06 52.24 39.85 39.19
DWQ [43] 52.18 49.70 42.88 42.72

EnsTrans [44] 67.00 - - -
RobustWRN [45] 59.13 52.48 31.14 -

CTRW(ours) 71.34 74.35 59.29 60.16

Table 4: Position Study.

position in one layer Natural PGD20

in-channels 83.69 69.27
out-channels 78.06 59.14

both in- and out-channels 72.69 49.52
filters 68.11 55.34

Table 5: Randomness of results on CIFAR-10.
Baseline Natural PGD20

ResNet18 83.69 ± 0.20 69.27 ± 0.28
WRN34 85.87 ± 0.18 70.87 ± 0.31

and β = 1× 10−2. Thus, the lower bound of the sum of σ can be derived as shown in Eq. 14, and in
the experiment, it is estimated as 1× 103. The model is implemented using PyTorch [40] and trained
and evaluated on a single NVIDIA GeForce RTX 4090 GPU.
Imagenet The Imagenet dataset consists of 1.2×106 training examples and 5.0×104 test examples
from 1000 different classes. The images in the dataset are 3-channel images with a size of 224× 224
pixels. CTRW is implemented on ResNet50 [17]. In the experiment, Imagenet is split into batches
containing 1024 examples. The weight decay and optimizer settings are the same as those in the
CIFAR dataset, but the learning rate is set to 0.02 initially and managed by a cosine annealing
scheduler. During adversarial training, the network is trained for 90 epochs, using a 2-step PGD [9]
to generate adversarial examples. For the PGD attack, we set ϵd to 4

255 and the step length η to 1
255 .

The settings of CTRW are the same as those in the CIFAR dataset. The model is implemented using
PyTorch [40] and trained and evaluated on eight NVIDIA A100 Tensor Core GPUs.
Adversarial Attacks For CIFAR, we choose multiple adversarial attack algorithms, including
black-box and white-box attacks from TorchAttacks [41]. The attack methods include PGD [9],
FGSM [8], MIFGSM [20], Deep Fool [27], CW12 [28], and AA [10]. For PGD, we set the number of
iterations to 20, and the other parameters are the same as in adversarial training. In FGSM, MIFGSM,
and AA, ϵd is set to 8

255 , and in MIFGSM, the step length is 2
255 with a decay of 0.1 over 5 iterations.

The Deep Fool attack consists of 50 steps with an overshoot of 0.02. The CW12 attack is performed
for 1000 steps with c = 1.0× 10−4, a learning rate of 0.01, and κ = 0. For Imagenet, we evaluate a
10-step and a 50-step PGD attack with ϵd set to 4

255

4.2 Results and Discussion

Results on CIFAR-10/100 We demonstrate the effectiveness of CTRW against various attacks
and compare it with other variants, as shown in Table 1 and Table 2. To assess the effectiveness of
trainable µ and σ, as well as the constraints on σ, we added two additional sets of settings. One of
them, labeled without constraint, represents the absence of any constraint on σ during training. In
this setting, we observe that for most pixels, σ → 0+, meaning that random weights converge to
a fixed value. On the other hand, fixed std refers to fixing σ at the lower bound without training,
intending to maximize the probability that the network has low gradient similarity after each sample.
On ResNet18, incorporating CTRW improves the accuracy of the network under PGD attack by
17.32% on CIFAR-10 compared to the baseline, and by 13.3% on CIFAR-100. Under Auto Attack,
adding CTRW results in 25.87% higher accuracy than the baseline on CIFAR-10 and 21.10% higher
on CIFAR-100. On WRN34, the improvement of CTRW under PGD is 16.28% on CIFAR-10 and
12.64% on CIFAR-100. Under AA, WRN34 with CTRW is 21.99% more accurate than the baseline
on CIFAR-10 and 22.11% more accurate on CIFAR-100. To compare the case without bounds, we
plotted the convergence of σ as shown in Figure 3a. The number of models is divided into two groups:
group 1 is number 1 to 4, which represents the models without constrain, while group 2 is number
5 to 8, which represents the models using CTRW. Specifically, within each group, the four models
represent, in order, ResNet18 and WRN34 trained on CIFAR-10, as well as ResNet18 and WRN34
trained on CIFAR-100. It can be observed that the bounds cause σ to converge to a smaller region
with a higher value. These bounds prevent unbounded σ values from degrading the random weights
to fixed weights, resulting in better defense effectiveness of the random weights. When comparing
CTRW with the fixed std setting, it can be seen that random weights have a greater advantage when
σ is trained. This is mainly attributed to the higher adaptability of trainable σ.
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Figure 3: Evaluation under different settings: (a) The distribution of the final convergence of the
standard deviation σ; (b) Comparison of accuracy over different

∑
σ; (c) Robust Accuracy under

different PGD strength; (d) Comparison of CTRW in different positions of one convolution layer.

Effectiveness of Bound on Robust Accuracy According to the experimental setup on CIFAR, the
lower bound is set to 1000. Based on the analysis in Section 2.2, using the network weights, we can
approximate the upper bound as B ≈ 2400. To verify the feasibility of the proposed bounds in this
work, we set a range of values for σ, ranging from 0 to 6 times the image size. Among these values, 0
times the image size was set to 1 to prevent the degradation of random weights into fixed weights. The
results are shown in Figure 3b, with the bound highlighted in orange. An interesting observation is
that the average value of an optimal

∑
σ falls within the bound at 2048. It can be seen that once

∑
σ

exceeds the lower bound, the robust accuracy experiences a significant drop compared to the natural
accuracy. Moving from

∑
σ = 1024 to 1, the natural accuracy drops from 85.05% to 83.64%, while

the robust accuracy experiences a significant drop from 67.72% to 54.59%. Conversely, once
∑

σ
exceeds the upper bound, both the robust accuracy and the natural accuracy decrease simultaneously.
Beyond the upper bound, the gap between robust accuracy and natural accuracy is always around
14%. These experimental observations demonstrate that the bounds defined in Equation 14 effectively
help

∑
σ take reasonable values for both two factors influencing robust accuracy.

Comparison with Other Randomization Methods on CIFAR and Imagenet To demonstrate the
superiority of CTRW, several other methods utilizing full random sampling were used for comparison.
RP-Ensemble [13] trains different networks on multiple random mappings of the original input,
which are then combined into an ensemble. RP-Regularizer [13] adds a regularization term to the
original input to confuse adversarial attacks. The experiments on RP-Ensemble and RP-Regularizer
were replicated by Carbone et al. [42], producing identical results. RNA [14] proposes a method of
randomly selecting the normalization layer to map the random sampling process onto the network
structure. Additive Noise [15] introduces an additive to the input data directly to confuse adversarial
attack algorithms. DWQ [43] integrates random accuracy training and inference, reducing undesirable
adversarial transferability through randomness to enhance model accuracy under adversarial attacks.
EnsTrans [44] applies randomization to the input de-noising layer and output validation layer to resist
internal attacks. RobustWRN [45] proposes a WRN framework for DNNs that is more suitable for
adversarial defense. To compare with these models, we used state-of-the-art adversarial training
strategies [37] for training. All models are compared on CIFAR-10 with WRN34. The results of
the comparison are shown in Table 3. It can be observed that CTRW outperforms other adversarial
defense algorithms under all attacks.

4.3 Ablation Study

Effectiveness of Lower Boundaries In lemma1, α is specified to be less than 0. To verify the
validity of this constraint, we count the number of samples that satisfy cos(W r[1],W r[2]) ⩽ ϵr
when joining the constraint versus not joining the constraint, respectively. Samples that satisfy the
condition cos(W r[1],W r[2]) ⩽ ϵr are called positive samples (PS), and the results are shown in
Table 6. Based on the statistical results, it can be seen that without constraints, the number of samples
that satisfy the condition is 0, that is, P (cos(W r[1],W r[2]) ⩽ ϵr) = 0. While with constraints, the
number of samples that satisfy the condition among 1e5 samples are all 4e4 or more. That is, with
the addition of the constraint, more samples have cosine similarity satisfying the condition of less
than ϵ. It can also be seen that 0.5 > P (cos(W r[1],W r[2]) ⩽ ϵr) > F (α). That is, the assumption
that α < 0 is also satisfied. In addition to this, it can be seen that the constraint in lemma1 effectively
reduces the cosine similarity based on the minimization of the cosine similarity.
Robust Accuracy under Stronger PGD Attacks To verify the effectiveness of CTRW under
PGD attacks of varying strength, we adjusted the number of iteration steps in PGD attacks and tested
the model against PGD from 0 steps (i.e., the clear situation) up to 100 steps, with 10 iterations added
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Dataset Constrain Number of PS Ratio of PS min(cos(W r[1],W r[2])) Acc
CIFAR10 with (ours) 4558 0.4558 -0.0557 69.48
CIFAR10 without 0 0.0000 0.7835 54.59

CIFAR100 with (ours) 4124 0.4124 -0.0669 42.01
CIFAR100 without 0 0.0000 0.7361 30.05
Table 6: Effect of adding or not adding constraints on P (cos(W r[1],W r[2]) ⩽ ϵr) > F (α)

each time. We used CIFAR-10 as the dataset and ResNet18 as the baseline in this ablation study. The
results are shown in Figure 3c. According to the curves in the figure, it can be observed that CTRW
remains stable at 69%± 1% for all PGD attacks with more than 10 steps.
Position of CTRW Considering that the upper and lower bounds of σ may differ on different
layers, we added random weights to different layers and compared the results. We loaded CTRW at
multiple positions in ResNet18 and also added random weights to different positions in the first-layer
convolution of ResNet18. It is important to note that all experiments in this section were conducted
on CIFAR-10. Specifically, we changed the position of CTRW to the front of each residual layer
and the Fully Connected (FC) layer in ResNet18 [17]. In Figure 3d, the numbers in the "position"
column denote the number of the residual layer adjacent to CTRW, where 0 represents the first
convolutional layer and 5 corresponds to the FC layer. We observed that loading CTRW earlier in
the network provides more assistance in terms of robust accuracy. Thus, the best position for CTRW
in the entire network is at the first convolutional layer. Furthermore, the position of CTRW around
the convolutional layer is still a question to be considered. We explored various ways of adding the
random weights. Apart from adding the weights before the in-channels of the convolutional layer,
we also tried the out-channels and both in- and out-channels. Additionally, we placed the random
weights into the convolutional layer on the filter. The results are presented in Table 4. We tested
these methods under PGD-20 and clean examples without altering other settings. We found that
placing the random weights in the in-channel yields the best performance. It is observed that more
random weights do not lead to better performance. Therefore, to ensure the effectiveness of CTRW,
the random weights should only influence the input feature map of the selected convolutional layer.
Randomness of Evaluation According to the analysis in Section 2.2, the inference results may
vary each time. Therefore, to verify the accidental results, we repeated the evaluation on CIFAR-10
multiple times. We recorded the means and standard deviations of the natural and PGD20 evaluations,
which are shown in Table 5. It can be observed that each network exhibits low standard deviations,
indicating that the results of this work are not accidental.
Evaluation of fixed σ To further explore the significance of the values of σ, we fix the values of σ
to the upper bound, the lower bound, and the middle of the upper and lower bounds, respectively, and
compare them with CTRW. The results are shown in Table 7.

Value of σ PGD20

Fixed to lower bound 67.75
Fixed to upper bound 66.06

Fixed to mid value 67.50
CTRW (ours) 69.48

Table 7: Robust accuracy for different values of σ.

5 Conclusion

In this paper, we investigate the role of trainable and restricted random weights in defending against
adversarial attacks. We argue that randomness can enhance the variability of gradients between
inference processes, but can also reduce the overall performance of the network. We designed CTRW
and analyzed the relationship between the bounds of σ and its robust accuracy, and proved the validity
of the bounds. CTRW is found to outperform other randomized methods. The results of this work
provide valuable insights for developing strategies to exploit randomization in adversarial defenses.
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