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Abstract

Diffusion models are a new class of generative models, and have dramatically
promoted image generation with unprecedented quality and diversity. Existing
diffusion models mainly try to reconstruct input image from a corrupted one with a
pixel-wise or feature-wise constraint along spatial axes. However, such point-based
reconstruction may fail to make each predicted pixel/feature fully preserve its
neighborhood context, impairing diffusion-based image synthesis. As a powerful
source of automatic supervisory signal, context has been well studied for learning
representations. Inspired by this, we for the first time propose CONPREDIFF to
improve diffusion-based image synthesis with context prediction. We explicitly
reinforce each point to predict its neighborhood context (i.e., multi-stride fea-
tures/tokens/pixels) with a context decoder at the end of diffusion denoising blocks
in training stage, and remove the decoder for inference. In this way, each point
can better reconstruct itself by preserving its semantic connections with neighbor-
hood context. This new paradigm of CONPREDIFF can generalize to arbitrary
discrete and continuous diffusion backbones without introducing extra parameters
in sampling procedure. Extensive experiments are conducted on unconditional
image generation, text-to-image generation and image inpainting tasks. Our CON-
PREDIFF consistently outperforms previous methods and achieves a new SOTA
text-to-image generation results on MS-COCO, with a zero-shot FID score of 6.21.

1 Introduction

Recent diffusion models [99, 5, 63, 4, 47, 10, 22] have made remarkable progress in image generation.
They are first introduced by Sohl-Dickstein et al. [76] and then improved by Song & Ermon [78]
and Ho et al. [28], and can now generate image samples with unprecedented quality and diversity
[24, 68, 67]. Numerous methods have been proposed to develop diffusion models by improving
their empirical generation results [53, 77, 79] or extending the capacity of diffusion models from a
theoretical perspective [80, 81, 47, 46, 108]. We revisit existing diffusion models for image generation
and break them into two categories, pixel- and latent-based diffusion models, according to their
diffusing spaces. Pixel-based diffusion models directly conduct continuous diffusion process in
the pixel space, they incorporate various conditions (e.g., class, text, image, and semantic map)
[29, 70, 51, 2, 66] or auxiliary classifiers [80, 14, 27, 54, 40] for conditional image generation.

On the other hand, latent-based diffusion models [65] conduct continuous or discrete diffusion process
[87, 30, 1] on the semantic latent space. Such diffusion paradigm not only significantly reduces the
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computational complexity for both training and inference, but also facilitates the conditional image
generation in complex semantic space [62, 38, 58, 19, 98]. Some of them choose to pre-train an
autoencoder [41, 64] to map the input from image space to the continuous latent space for continuous
diffusion, while others utilize a vector quantized variational autoencoder [88, 17] to induce the
token-based latent space for discrete diffusion [24, 75, 114, 85].

Despite all these progress of pixel- and latent-based diffusion models in image generation, both
of them mainly focus on utilizing a point-based reconstruction objective over the spatial axes to
recover the entire image in diffusion training process. This point-wise reconstruction neglects to fully
preserve local context and semantic distribution of each predicted pixel/feature, which may impair the
fidelity of generated images. Traditional non-diffusion studies [15, 45, 32, 50, 110, 8] have designed
different context-preserving terms for advancing image representation learning, but few researches
have been done to constrain on context for diffusion-based image synthesis.

In this paper, we propose CONPREDIFF to explicitly force each pixel/feature/token to predict its local
neighborhood context (i.e., multi-stride features/tokens/pixels) in image diffusion generation with an
extra context decoder near the end of diffusion denoising blocks. This explicit context prediction can
be extended to existing discrete and continuous diffusion backbones without introducing additional
parameters in inference stage. We further characterize the neighborhood context as a probability
distribution defined over multi-stride neighbors for efficiently decoding large context, and adopt an
optimal-transport loss based on Wasserstein distance [21] to impose structural constraint between
the decoded distribution and the ground truth. We evaluate the proposed CONPREDIFF with the
extensive experiments on three major visual tasks, unconditional image generation, text-to-image
generation, and image inpainting. Notably, our CONPREDIFF consistently outperforms previous
diffusion models by a large margin regarding generation quality and diversity.

Our main contributions are summarized as follows: (i): To the best of our knowledge, we for the first
time propose CONPREDIFF to improve diffusion-based image generation with context prediction; (ii):
We further propose an efficient approach to decode large context with an optimal-transport loss based
on Wasserstein distance; (iii): CONPREDIFF substantially outperforms existing diffusion models and
achieves new SOTA image generation results, and we can generalize our model to existing discrete
and continuous diffusion backbones, consistently improving their performance.

2 Related Work

Diffusion Models for Image Generation Diffusion models [99, 76, 78, 28] are a new class of
probabilistic generative models that progressively destruct data by injecting noise, then learn to
reverse this process for sample generation. They can generate image samples with unprecedented
quality and diversity [24, 68, 67], and have been applied in various applications [99, 9, 6]. Existing
pixel- and latent-based diffusion models mainly utilize the discrete diffusion [30, 1, 24] or continuous
diffusion [87, 65] for unconditional or conditional image generation [80, 14, 27, 54, 40, 68]. Discrete
diffusion models were also first described in [76], and then applied to text generation in Argmax
Flow [30]. D3PMs [1] applies discrete diffusion to image generation. VQ-Diffusion [24] moves
discrete diffusion from image pixel space to latent space with the discrete image tokens acquired
from VQ-VAE [88]. Latent Diffusion Models (LDMs) [87, 65] reduce the training cost for high
resolution images by conducting continuous diffusion process in a low-dimensional latent space. They
also incorporate conditional information into the sampling process via cross attention [89]. Similar
techniques are employed in DALLE-2 [62] for image generation from text, where the continuous
diffusion model is conditioned on text embeddings obtained from CLIP latent codes [59]. Imagen
[68] implements text-to-image generation by conditioning on text embeddings acquired from large
language models (e.g., T5 [60]). Despite all this progress, existing diffusion models neglect to
exploit rich neighborhood context in the generation process, which is critical in many vision tasks for
maintaining the local semantic continuity in image representations [111, 45, 32, 50]. In this paper, we
firstly propose to explicitly preserve local neighborhood context for diffusion-based image generation.

Context-Enriched Representation Learning Context has been well studied in learning representa-
tions, and is widely proved to be a powerful automatic supervisory signal in many tasks. For example,
language models [52, 13] learn word embeddings by predicting their context, i.e., a few words before
and/or after. More utilization of contextual information happens in visual tasks, where spatial context
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Figure 1: In training stage, CONPREDIFF first performs self-denoising as standard diffusion models,
then it conducts neighborhood context prediction based on denoised point xi

t−1. In inference stage,
CONPREDIFF only uses its self-denoising network for sampling.

is vital for image domain. Many studies [15, 111, 45, 32, 50, 110, 8, 106, 95, 94, 44] propose to
leverage context for enriching learned image representations. Doersch et al. [15] and Zhang et al.
[110] make predictions from visible patches to masked patches to enhance the self-supervised image
representation learning. Hu et al. [32] designs local relation layer to model the context of local pixel
pairs for image classification, while Liu et al. [45] preserves contextual structure to guarantee the
local feature/pixel continuity for image inpainting. Inspired by these studies, in this work, we propose
to incorporate neighborhood context prediction for improving diffusion-based generative modeling.

3 Preliminary

Discrete Diffusion We briefly review a classical discrete diffusion model, namely Vector Quantized
Diffusion (VQ-Diffusion) [24]. VQ-Diffusion utilizes a VQ-VAE to convert images x to discrete
tokens x0 ∈ {1, 2, ...,K,K + 1}, K is the size of codebook, and K + 1 denotes the [MASK] token.
Then the forward process of VQ-Diffusion is given by:

q(xt|xt−1) = v⊤(xt)Qtv(xt−1) (1)
where v(x) is a one-hot column vector with entry 1 at index x. And Qt is the probability transition
matrix from xt−1 to xt with the mask-and-replace VQ-Diffusion strategy. In the reverse process, VQ-
Diffusion trains a denoising network pθ(xt−1|xt) that predicts noiseless token distribution pθ(x̃0|xt)
at each step:

pθ(xt−1|xt) =

K∑
x̃0=1

q(xt−1|xt, x̃0)pθ(x̃0|xt), (2)

which is optimized by minimizing the following variational lower bound (VLB) [76]:

Ldis
t−1 = DKL(q(xt−1|xt,x0) || pθ(xt−1|xt)). (3)

Continuous Diffusion A continuous diffusion model progressively perturbs input image or feature
map x0 by injecting noise, then learn to reverse this process starting from xT for image generation.
The forward process can be formulated as a Gaussian process with Markovian structure:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI),

q(xt|x0) := N (xt;
√
αtx0, (1− αt)I),

(4)

where β1, . . . , βT denotes fixed variance schedule with αt := 1 − βt and αt :=
∏t

s=1 αs. This
forward process progressively injects noise to data until all structures are lost, which is well approxi-
mated by N (0, I). The reverse diffusion process learns a model pθ(xt−1|xt) that approximates the
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true posterior:
pθ(xt−1|xt) := N (xt−1;µθ(xt),Σθ(xt)), (5)

Fixing Σθ to be untrained time dependent constants σ2
t I , Ho et al. [28] improve the diffusion training

process by optimizing following objective:

Lcon
t−1 = E

q(xt|xt−1)

[
1

2σ2
t

||µθ(xt, t)− µ̂(xt,x0)||2
]
+ C, (6)

where C is a constant that does not depend on θ. µ̂(xt,x0) is the mean of the posterior
q(xt−1|x0,xt), and µθ(xt, t) is the predicted mean of pθ(xt−1 | xt) computed by neural networks.

4 The Proposed CONPREDIFF

In this section, we elucidate the proposed CONPREDIFF as in Figure 1. In Sec. 4.1, we introduce our
proposed context prediction term for explicitly preserving local neighborhood context in diffusion-
based image generation. To efficiently decode large context in training process, we characterize
the neighborhood information as the probability distribution defined over multi-stride neighbors in
Sec. 4.2, and theoretically derive an optimal-transport loss function based on Wasserstein distance
to optimize the decoding procedure. In Sec. 4.3, we generalize our CONPREDIFF to both existing
discrete and continuous diffusion models, and provide optimization objectives.

4.1 Neighborhood Context Prediction in Diffusion Generation

We use unconditional image generation to illustrate our method for simplicity. Let xi
t−1 ∈ Rd to

denote i-th pixel of the predicted image, i-th feature point of the predicted feature map, or i-th image
token of the predicted token map in spatial axes. Let N s

i denote the s-stride neighborhoods of xi
t−1,

and K denotes the total number of N s
i . For example, the number of 1-stride neighborhoods is K = 8,

and the number of 2-stride ones is K = 24.

S-Stride Neighborhood Reconstruction Previous diffusion models make point-wise reconstruction,
i.e., reconstructing each pixel, thus their reverse learning processes can be formulated by pθ(xi

t−1|xt).
In contrast, our context prediction aims to reconstruct xi

t−1 and further predict its s-stride neighbor-
hood contextual representations HN s

i
based on xi

t−1: pθ(xi
t−1,HN s

i
|xt), where pθ is parameterized

by two reconstruction networks (ψp,ψn). ψp is designed for the point-wise denoising of xi
t−1 in xt,

and ψn is designed for decoding HN s
i

from xi
t−1. For denoising i-th point in xt, we have:

xi
t−1 = ψp(xt, t), (7)

where t is the time embedding and ψp is parameterized by a U-Net or transformer with an encoder-
decoder architecture. For reconstructing the entire neighborhood information HN s

i
around each point

xi
t−1, we have:

HN s
i
= ψn(x

i
t−1, t) = ψn(ψp(xt, t)), (8)

where ψn ∈ RKd is the neighborhood decoder. Based on Equation (7) and Equation (8), we unify the
point- and neighborhood-based reconstruction to form the overall training objective:

LCONPREDIFF =

x×y∑
i=1

Mp(x
i
t−1, x̂

i)︸ ︷︷ ︸
point denoising

+Mn(HN s
i
, ĤN s

i
)︸ ︷︷ ︸

context prediction

 , (9)

where x, y are the width and height on spatial axes. x̂i (x̂i
0) and ĤN s

i
are ground truths. Mp and

Mn can be Euclidean distance. In this way, CONPREDIFF is able to maximally preserve local context
for better reconstructing each pixel/feature/token.

Interpreting Context Prediction in Maximizing ELBO We let Mp,Mn be square loss,
Mn(HN s

i
, ĤN s

i
) =

∑
j∈Ni

(xi,j
0 − x̂i,j

0 )2, where x̂i,j
0 is the j-th neighbor in the context of x̂i

0

and xi,j
0 is the prediction of xi,j

0 from a denoising neural network. Thus we have:

xi,j
0 = ψn(ψp(xt, t)(i))(j). (10)
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Compactly, we can write the denoising network as:

Ψ(xt, t)(i, j) =

{
ψn(ψp(xt, t)(i))(j), j ∈ Ni,

ψp(xt, t)(i), j = i.
(11)

We will show that the DDPM loss is upper bounded by ConPreDiff loss, by reparameterizing x0(xt, t).
Specifically, for each unit i in the feature map, we use the mean of predicted value in its neighborhood
as the final prediction:

x0(xt, t)(i) = 1/(|Ni|+ 1) ∗
∑

j∈Ni∪{i}

Ψ(xt, t)(i, j). (12)

Now we can show the connection between the DDPM loss and ConPreDiff loss:

||x̂0 − x0(xt, t)||22 =
∑
i

(x̂i
0 − x0(xt, t)(i))

2,

=
∑
i

(x̂i
0 −

∑
j∈Ni∪{i}

Ψ(xt, t)(i, j)/(|Ni|+ 1))2,

=
∑
i

(
∑

j∈Ni∪{i}

(Ψ(xt, t)(i, j)− x̂i
0))

2/(|Ni|+ 1)2,

(Cauchy Inequality) ≤
∑
i

∑
j∈Ni∪{i}

(Ψ(xt, t)(i, j)− x̂i
0)

2/(|Ni|+ 1),

= 1/(|Ni|+ 1)
∑
i

[(x̂i
0 − ψp(xt, t)(i))

2 +
∑
j∈Ni

(x̂i,j
0 − xi,j

0 )2]

(13)

In the last equality, we assume that the feature is padded so that each unit i has the same number of
neighbors |N |. As a result, the ConPreDiff loss is an upper bound of the negative log likelihood.

Complexity Problem We note that directly optimizing the Equation (9) has a complexity problem
and it will substantially lower the efficiency of CONPREDIFF in training stage. Because the network
ψn : Rd → RKd in Equation (8) needs to expand the channel dimension by K times for large-context
neighborhood reconstruction, it significantly increases the parameter complexity of the model. Hence,
we seek for another way that is efficient for reconstructing neighborhood information.

We solve the challenging problem by changing the direct prediction of entire neighborhoods to
the prediction of neighborhood distribution. Specifically, for each xi

t−1, the neighborhood infor-
mation is represented as an empirical realization of i.i.d. sampling Q elements from PN s

i
, where

PN s
i
≜ 1

K

∑
u∈N s

i
δhu

. Based on this view, we are able to transform the neighborhood prediction
Mn into the neighborhood distribution prediction. However, such sampling-based measurement
loses original spatial orders of neighborhoods, and thus we use a permutation invariant loss
(Wasserstein distance) for optimization. Wasserstein distance [23, 21] is an effective metric for mea-
suring structural similarity between distributions, which is especially suitable for our neighborhood
distribution prediction. And we rewrite the Equation (9) as:

LCONPREDIFF =

x×y∑
i=1

Mp(x
i
t−1, x̂

i)︸ ︷︷ ︸
point denoising

+ W2
2 (ψn(x

i
t−1, t),PN s

i
)︸ ︷︷ ︸

neighborhood distribution prediction

 , (14)

where ψn(x
i
t−1, t) is designed to decode neighborhood distribution parameterized by feedforward

neural networks (FNNs), and W2(·, ·) is the 2-Wasserstein distance as defined below. We provide a
more explicit formulation of W2

2 (ψn(x
i
t−1, t),PN s

i
) in Sec. 4.2.

Definition 4.1. Let P,Q denote two probability distributions with finite second moment defined on
Z ⊆ Rm. The 2-Wasserstein distance between P and Q defined on Z,Z ′ ⊆ Rm is the solution to
the optimal mass transportation problem with ℓ2 transport cost [90]:

W2(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
Z×Z′

∥Z − Z ′∥22dγ(Z,Z ′)

)1/2

(15)

where Γ(P,Q) contains all joint distributions of (Z,Z ′) with marginals P and Q respectively.
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4.2 Efficient Large Context Decoding

Our CONPREDIFF essentially represents the node neighborhood ĤN s
i

as a distribution of neighbors’
representations PN s

i
(Equation (14)). We adopt Wasserstein distance to characterize the distribution

reconstruction loss because PN s
i

has atomic non-zero measure supports in a continuous space, where
the family of f -divergences such as KL-divergence cannot be applied. Maximum mean discrepancy
may be applied but it needs to choose a specific kernel function.

We define the decoded distribution ψn(x
i
t−1, t) as an FNN-based transformation of a Gaussian

distribution parameterized by xi
t−1 and t. The reason for choosing this setting stems from the

fact that the universal approximation capability of FNNs allows to (approximately) reconstruct any
distributions in 1-Wasserstein distance, as formally stated in Theorem 4.2, proved in Lu & Lu [48].
To enhance the empirical performance, our case adopts the 2-Wasserstein distance and an FNN with
d-dim output instead of the gradient of an FNN with 1-dim outout. Here, the reparameterization
trick [42] needs to be used:

ψn(x
i
t−1, t) = FNNn(ξ), ξ ∼ N (µi,Σi),

µi = FNNµ(x
i
t−1),Σi = diag(exp(FNNσ(x

i
t−1))).

(16)

Theorem 4.2. For any ϵ > 0, if the support of the distribution P(i)
v is confined to a bounded space of

Rd, there exists a FNN u(·) : Rd → R (and thus its gradient ∇u(·) : Rd → Rd) with sufficiently large
width and depth (depending on ϵ) such that W2

2 (P
(i)
v ,∇u(G)) < ϵ where ∇u(G) is the distribution

generated through the mapping ∇u(ξ), ξ ∼ a d-dim non-degenerate Gaussian distribution.

Another challenge is that the Wasserstein distance between ψn(x
i
t−1, t) and PN s

i
does not have a

closed form. Thus, we utilize the empirical Wasserstein distance that can provably approximate
the population one as in Peyré et al. [57]. For each forward pass, our CONPREDIFF will get
q sampled target pixel/feature points {xtar

(i,j)|1 ≤ j ≤ q} from PN s
i

; Next, get q samples from

N (µi,Σi), denoted by ξ1, ξ2, ..., ξq, and thus {xpred
(i,j) = FNNn(ξj)|1 ≤ j ≤ q} are q samples from

the prediction ψn(x
i
t−1, t); Adopt the following empirical surrogated loss of W2

2 (ψn(x
i
t−1, t),PN s

i
)

in Equation (14):

min
π

q∑
j=1

∥xtar
(i,j) − xpred

(i,π(j))∥
2, s.t. π is a bijective mapping:[q] → [q]. (17)

The loss function is based on solving a matching problem and needs the Hungarian algorithm with
O(q3) complexity [33]. A more efficient surrogate loss may be needed, such as Chamfer loss based on
greedy approximation [18] or Sinkhorn loss based on continuous relaxation [11], whose complexities
are O(q2). In our study, as q is set to a small constant, we use Equation (17) based on a Hungarian
matching and do not introduce much computational overhead. The computational efficiency of design
is empirically demonstrated in Sec. 5.3.

4.3 Discrete and Continuous CONPREDIFF

In training process, given previously-estimated xt, our CONPREDIFF simultaneously predict both
xt−1 and the neighborhood distribution PN s

i
around each pixel/feature. Because xi

t−1 can be pixel,
feature or discrete token of input image, we can generalize the CONPREDIFF to existing discrete
and continuous backbones to form discrete and continuous CONPREDIFF. More concretely, we can
substitute the point denoising part in Equation (14) alternatively with the discrete diffusion term Ldis

t−1
(Equation (3)) or the continuous (Equation (6)) diffusion term Lcon

t−1 for generalization:

Ldis
CONPREDIFF = Ldis

t−1 + λt ·
x×y∑
i=1

W2
2 (ψn(x

i
t−1, t),PN s

i
),

Lcon
CONPREDIFF = Lcon

t−1 + λt ·
x×y∑
i=1

W2
2 (ψn(x

i
t−1, t),PN s

i
),

(18)

where λt ∈ [0, 1] is a time-dependent weight parameter. Note that our CONPREDIFF only performs
context prediction in training for optimizing the point denoising network ψp, and thus does not
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Figure 2: Synthesis examples demonstrating text-to-image capabilities of for various text prompts
with LDM, Imagen, and ConPreDiff (Ours). Our model can better express local contexts and
semantics of the texts marked in blue.

introduce extra parameters to the inference stage, which is computationally efficient. Equipped
with our proposed context prediction term, existing diffusion models consistently gain performance
promotion. Next, we use extensive experimental results to prove the effectiveness.

5 Experiments

5.1 Experimental Setup

Datasets and Metrics Regarding unconditional image generation, we choose four popular datasets
for evaluation: CelebA-HQ [34], FFHQ [35], LSUN-Church-outdoor [102], and LSUN-bedrooms
[102]. We evaluate the sample quality and their coverage of the data manifold using FID [26] and
Precision-and-Recall [43]. For text-to-image generation, we train the model with LAION [73, 74]

7



Table 1: Quantitative evaluation of FID on MS-COCO for 256 × 256 image resolution.

Approach Model Type FID-30K Zero-shot
FID-30K

AttnGAN [96] GAN 35.49 -
DM-GAN [113] GAN 32.64 -
DF-GAN [86] GAN 21.42 -
DM-GAN + CL [100] GAN 20.79 -
XMC-GAN [107] GAN 9.33 -
LAFITE [112] GAN 8.12 -
Make-A-Scene [22] Autoregressive 7.55 -

DALL-E [61] Autoregressive - 17.89
LAFITE [112] GAN - 26.94
LDM [65] Continuous Diffusion - 12.63
GLIDE [54] Continuous Diffusion - 12.24
DALL-E 2 [62] Continuous Diffusion - 10.39
Improved VQ-Diffusion [85] Discrete Diffusion - 8.44
Simple Diffusion [31] Continuous Diffusion - 8.32
Imagen [69] Continuous Diffusion - 7.27
Parti [104] Autoregressive - 7.23
Muse [7] Non-Autoregressive - 7.88
eDiff-I [3] Continuous Diffusion - 6.95

CONPREDIFFdis Discrete Diffusion - 6.67
CONPREDIFFcon Continuous Diffusion - 6.21

and some internal datasets, and conduct evaluations on MS-COCO dataset with zero-shot FID and
CLIP score [25, 59], which aim to assess the generation quality and resulting image-text alignment.
For image inpainting, we choose CelebA-HQ [34] and ImageNet [12] for evaluations, and evaluate
all 100 test images of the test datasets for the following masks: Wide, Narrow, Every Second Line,
Half Image, Expand, and Super-Resolve. We report the commonly reported perceptual metric LPIPS
[109], which is a learned distance metric based on the deep feature space.

Baselines To demonstrate the effectiveness of CONPREDIFF, we compare with the latest dif-
fusion and non-diffusion models. Specifically, for unconditional image generation, we choose
ImageBART[16], U-Net GAN (+aug) [72], UDM [39], StyleGAN [36], ProjectedGAN [71], DDPM
[28] and ADM [14] for comparisons. As for text-to-image generation, we choose DM-GAN [113],
DF-GAN [86], DM-GAN + CL [100], XMC-GAN [107] LAFITE [112], Make-A-Scene [22], DALL-
E [61], LDM [65], GLIDE [54], DALL-E 2 [62], Improved VQ-Diffusion [85], Imagen-3.4B [69],
Parti [104], Muse [7], and eDiff-I [3] for comparisons. For image inpainting, we choose autoregres-
sive methods( DSI [56] and ICT [91]), the GAN methods (DeepFillv2 [103], AOT [105], and LaMa
[84]) and diffusion based model (RePaint [49]). All the reported results are collected from their
published papers or reproduced by open source codes.

Implementation Details For text-to-image generation, similar to Imagen [68], our continuous
diffusion model CONPREDIFFcon consists of a base text-to-image diffusion model (64×64) [53],
two super-resolution diffusion models [29] to upsample the image, first 64×64 → 256×256, and then
256×256 → 1024×1024. The model is conditioned on both T5 [60] and CLIP [59] text embeddings.
The T5 encoder is pre-trained on a C4 text-only corpus and the CLIP text encoder is trained on an
image-text corpus with an image-text contrastive objective. We use the standard Adam optimizer with
a learning rate of 0.0001, weight decay of 0.01, and a batch size of 1024 to optimize the base model
and two super-resolution models on NVIDIA A100 GPUs, respectively, equipped with multi-scale
training technique (6 image scales). We generalize our context prediction to discrete diffusion models
[24, 85] to form our CONPREDIFFdis. For image inpainting, we adopt a same pipeline as RePaint
[49], and retrain its diffusion backbone with our context prediction loss. We use T = 250 time steps,
and applied r = 10 times resampling with jumpy size j = 10. For unconditional generation tasks,
we use the same denoising architecture like LDM [65] for fair comparison. The max channels are
224, and we use T=2000 time steps, linear noise schedule and an initial learning rate of 0.000096.
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Table 2: Quantitative evaluation of image inpainting on CelebA-HQ and ImageNet.

CelebA-HQ Wide Narrow Super-Resolve 2× Altern. Lines Half Expand
Method LPIPS ↓ LPIPS ↓ LPIPS ↓ LPIPS ↓ LPIPS ↓ LPIPS ↓
AOT [105] 0.104 0.047 0.714 0.667 0.287 0.604
DSI [56] 0.067 0.038 0.128 0.049 0.211 0.487
ICT [91] 0.063 0.036 0.483 0.353 0.166 0.432
DeepFillv2 [103] 0.066 0.049 0.119 0.049 0.209 0.467
LaMa [84] 0.045 0.028 0.177 0.083 0.138 0.342
RePaint [49] 0.059 0.028 0.029 0.009 0.165 0.435
CONPREDIFF 0.042 0.022 0.023 0.022 0.139 0.297

ImageNet Wide Narrow Super-Resolve 2× Altern. Lines Half Expand
Method LPIPS ↓ LPIPS ↓ LPIPS ↓ LPIPS ↓ LPIPS ↓ LPIPS ↓
DSI [56] 0.117 0.072 0.153 0.069 0.283 0.583
ICT [91] 0.107 0.073 0.708 0.620 0.255 0.544
LaMa [84] 0.105 0.061 0.272 0.121 0.254 0.534
RePaint [49] 0.134 0.064 0.183 0.089 0.304 0.629
CONPREDIFF 0.098 0.057 0.129 0.107 0.285 0.506

Our context prediction head contains two non-linear blocks (e.g., Conv-BN-ReLU, resnet block or
transformer block), and its choice can be flexible according to specific task. The prediction head
does not incur significant training costs, and can be removed in inference stage without introducing
extra testing costs. We set the neighborhood stride to 3 for all experiments, and carefully choose the
specific layer for adding context prediction head near the end of denoising networks.

5.2 Main Results

Text-to-Image Synthesis We conduct text-to-image generation on MS-COCO dataset, and quan-
titative comparison results are listed in Tab. 1. We observe that both discrete and continuous
CONPREDIFF substantially surpasses previous diffusion and non-diffusion models in terms of FID
score, demonstrating the new state-of-the-art performance. Notably, our discrete and continuous
CONPREDIFF achieves an FID score of 6.67 and 6.21 which are better than the score of 8.44
and 7.27 achieved by previous SOTA discrete and continuous diffusion models. We visualize
text-to-image generation results in Figure 2, and find that our CONPREDIFF can synthesize images
that are semantically better consistent with text prompts. It demonstrates our CONPREDIFF can
make promising cross-modal semantic understanding through preserving visual context information
generating process, and effectively associating with contextual text information. Moreover, we
observe that CONPREDIFF can synthesize complex objects and scenes consistent with text prompts as
demonstrated by Figure 7 in Appendix A.4, proving the effectiveness of our designed neighborhood
context prediction. Human evaluations are provided in Appendix A.5.

Image Inpainting Our CONPREDIFF naturally fits image inpainting task because we directly
predict the neighborhood context of each pixel/feature in diffusion generation. We compare our
CONPREDIFF against state-of-the-art on standard mask distributions, commonly employed for
benchmarking. As in Tab. 2, our CONPREDIFF outperforms previous SOTA method for most kinds
of masks. We also put some qualitative results in Figure 3, and observe that CONPREDIFF produces
a semantically meaningful filling, demonstrating the effectiveness of our context prediction.

Unconditional Image Synthesis We list the quantitative results about unconditional image genera-
tion in Tab. 3 of Appendix A.3. We observe that our CONPREDIFF significantly improves upon the
state-of-the-art in FID and Precision-and-Recall scores on FFHQ and LSUN-Bedrooms datasets. The
CONPREDIFF obtains high perceptual quality superior to prior GANs and diffusion models, while
maintaining a higher coverage of the data distribution as measured by recall.

5.3 The Impact and Efficiency of Context Prediction

In Sec. 4.2, we tackle the complexity problem by transforming the decoding target from entire
neighborhood features to neighborhood distribution. Here we investigate both impact and efficiency
of the proposed neighborhood context prediction. For fast experiment, we conduct ablation study
with the diffusion backbone of LDM [65]. As illustrated in Figure 4, the FID score of CONPREDIFF
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Figure 3: Inpainting examples generated by our CONPREDIFF.

is better with the neighbors of more strides and 1-stride neighbors contribute the most performance
gain, revealing that preserving local context benefits the generation quality. Besides, we observe
that increasing neighbor strides significantly increases the training cost when using feature decoding,
while it has little impact on distribution decoding with comparable FID score. To demonstrate the
generalization ability, we equip previous diffusion models with our context prediction head. From the
results in Figure 5, we find that our context prediction can consistently and significantly improve the
FID scores of these diffusion models, sufficiently demonstrating the effectiveness and extensibility of
our method. We further conduct ablation study on the trade-off between CLIP and FID scores across
a range of guidance weights in Appendix A.2, the results exhibit our superior generation ability.

Baseline 1-Stride 2-Stride 3-Stride 4-Stride 5-Stride
10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

FI
D 

Sc
or

e

 Ablation Study
 Feature
Distribution

4

5

6

7

8

Re
qu

ire
d 

Se
co

nd
s/

Pi
c 

Feature
Distribution

Figure 4: Bar denotes FID and line
denotes time cost.

LDM DALL-E 2 Improved VQD Imagen

6

8

10

12

FI
D 

Sc
or

e

Effectiveness of Context Prediction
 Original Model
 + Context Prediction

Figure 5: Equip diffusion models
with our context prediction.

6 Conclusion

In this paper, we for the first time propose CONPREDIFF to improve diffusion-based image synthesis
with context prediction. We explicitly force each point to predict its neighborhood context with an
efficient context decoder near the end of diffusion denoising blocks, and remove the decoder for
inference. CONPREDIFF can generalize to arbitrary discrete and continuous diffusion backbones and
consistently improve them without extra parameters. We achieve new SOTA results on unconditional
image generation, text-to-image generation and image inpainting tasks.
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A Appendix

A.1 Limitations and Broader Impact

Limitations While our ConPreDiff boosts performance of both discrete and continuous diffusion
models without introducing additional parameters in model inference, our models still have more
trainable parameters than other types of generative models, e.g GANs. Furthermore, we note the
long sampling times of both and compared to single step generative approaches like GANs or
VAEs. However, this drawback is inherited from the underlying model class and is not a property
of our context prediction approach. Neighborhood context decoding is fast and incurs negligible
computational overhead in training stage. For future work, we will try to find more intrinsic
information to preserve for improving existing point-wise denoising diffusion models, and extend to
more challenging tasks like text-to-3D and text-to-video generation.

Broader Impact Recent generative image models enable creative applications and autonomous
media creation, but can also be viewed as a dual-use technology with negative implications. In
this paper, we use human face datasets only for evaluating the image inpainting performance of our
method, and our method is not intended to create content that is used to mislead or deceive. However,
like other related image generation methods, it could still potentially be misused in the realm of
human impersonation. A notorious example are so-called “deep fakes” that have been used, for
example, to create pornographic “undressing” applications. We strongly disapprove of any actions
aimed at producing deceptive or harmful content featuring real individuals. Besides, generative
methods have the capacity to be harnessed for other malicious intentions, including harassment and
misinformation spread [20], and give rise to significant concerns pertaining to societal and cultural
exclusion as well as biases [83, 82]. These considerations guide our decision not to release the source
code or a public demo at this point in time.

Furthermore, the immediate availability of mass-produced high-quality images can be used to spread
misinformation and spam, which in turn can be used for targeted manipulation in social media.
Datasets are crucial for deep learning as they are the main input of information [101, 92, 93, 97].
Large-scale data requirements of text-to-image models have led researchers to rely heavily on large,
mostly uncurated, web-scraped datasets. While this approach has enabled rapid algorithmic advances
recently, datasets of this nature have been critiqued and contested along various ethical dimensions.
One should consider the ability to curate the database to exclude (or explicitly contain) potential
harmful source images. Creating a public API could offer a cheaper way to offer a safe model than
retraining a model on a filtered subset of the training data or doing difficult prompt engineering.
Conversely, including only harmful content is an easy way to build a toxic model.

A.2 Guidance Scale vs. FID

To further demonstrate the effectiveness of our proposed context prediction, we quantitatively conduct
evaluations about the trade-off between MS-COCO zero-shot FID [26] and CLIP scores. The results
in Figure 6 indicate that the guidance hurts the diversity of GLIDE much more than DALL-E 2 and
CONPREDIFF. The phenomenon reveals that the proposed CONPREDIFF can overall improve the
generation quality of diffusion models.
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Figure 6: Trade-off between guidance scale and FID.
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A.3 More Quantitative Results

We list the unconditional generation results on FFHQ, CelebA-HQ, LSUN-Churches, and LSUN-
Bedrooms in Tab. 3. We find CONPREDIFF consistently outperforms previous methods, demonstrat-
ing the effectiveness of the CONPREDIFF.

Table 3: Evaluation results for unconditional image synthesis.

FFHQ 256× 256

Method FID ↓ Prec. ↑ Recall ↑
ImageBART[16] 9.57 - -
U-Net GAN (+aug) [72] 7.6 - -
UDM [39] 5.54 - -
StyleGAN [36] 4.16 0.71 0.46
ProjectedGAN [71] 3.08 0.65 0.46
LDM [65] 4.98 0.73 0.50

CONPREDIFF 2.24 0.81 0.61
LSUN-Bedrooms 256× 256

Method FID ↓ Prec. ↑ Recall ↑
ImageBART [16] 5.51 - -
DDPM [28] 4.9 - -
UDM [39] 4.57 - -
StyleGAN [36] 2.35 0.59 0.48
ADM [14] 1.90 0.66 0.51
ProjectedGAN [71] 1.52 0.61 0.34
LDM-4 [65] 2.95 0.66 0.48

CONPREDIFF 1.12 0.73 0.59
CelebA-HQ 256× 256

Method FID ↓ Prec. ↑ Recall ↑
DC-VAE [55] 15.8 - -
VQGAN+T. [17] (k=400) 10.2 - -
PGGAN [43] 8.0 - -
LSGM [87] 7.22 - -
UDM [39] 7.16 - -
LDM [65] 5.11 0.72 0.49

CONPREDIFF 3.22 0.83 0.57
LSUN-Churches 256× 256

Method FID ↓ Prec. ↑ Recall ↑
DDPM [28] 7.89 - -
ImageBART [16] 7.32 - -
PGGAN [43] 6.42 - -
StyleGAN [36] 4.21 - -
StyleGAN2 [37] 3.86 - -
ProjectedGAN [71] 1.59 0.61 0.44
LDM [65] 4.02 0.64 0.52

CONPREDIFF 1.78 0.74 0.61

A.4 More Synthesis Results

We visualize more text-to-image synthesis results on MS-COCO dataset in Figure 7. We observe that
compared with previous powerful LDM and DALL-E 2, our CONPREDIFF generates more natural
and smooth images that preserve local continuity.
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“A photo of a dark Goth house” “A teddy bear sitting on
a chair. ”

“A person holding a bunch
of bananas on a table.”

“A group of elephants walking
in muddy water. ” “Green frog on green grass” “The plane wing above the clouds. ”

“ A big round hole in brick wall ” “Reflection of tree in lake” “An orange ball is put on the ground ”

“ Trees on African grassland ” “ Cat fell asleep on the owner’s bed ” “A red hydrant sitting in the
snow.”

“ Pancakes with ketchup ” “A photo of an adult lion.” “A photo of an white
garlic ice cream”

Figure 7: Synthesis examples demonstrating text-to-image capabilities of for various text prompts.
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A.5 Human Evaluations

As demonstrated in qualitative results, our CONPREDIFF is able to synthesize realistic diverse,
context-coherent images. However, using FID to estimate the sample quality is not always consistent
with human judgment. Therefore, we follow the protocol of previous works [104, 68, 62], and
conduct systematic human evaluations to better assess the generation capacities of our CONPREDIFF
from the aspects of image photorealism and image-text alignment. We conduct side-by-side human
evaluations, in which well-trained users are presented with two generated images for the same prompt
and need to choose which image is of higher quality and more realistic (image photorealism) and
which image better matches the input prompt (image-text alignment). For evaluating the coherence of
local context, we propose a new evaluation protocol, in which users are presented with 1000 pairs of
images and must choose which image better preserves local pixel/semantic continuity. The evaluation
results are in Tab. 4, CONPREDIFF performs better in pairwise comparisons against both Improved
VQ-Diffusion and Imagen. We find that CONPREDIFF is preferred in terms of all three evaluations,
and CONPREDIFF is strongly preferred regarding context coherence, demonstrating that preserving
local neighborhood context advances sample quality and semantic alignment.

Table 4: Human evaluation comparing CONPREDIFF to Improved VQ-Diffusion and Imagen.

Improved VQ-Diffusion Imagen

Image Photorealism 72% 65%
Image-Text Alignment 68% 63%
Context Coherence 84% 78%
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