
4 All remaining results
4.1 On the admissibility of ERM
4.1.1 Fixed design setting

We recall the notion of admissibility of f̂n, first established by Chatterjee (2014), with a simplified
proof given by Chen et al. (2017). The result states that for any estimator f̄n, there exists a target
function f∗ ∈ F such that ERM over the data drawn according to (1) has error which is no worse
(up to an absolute constant) than that of f̄n. Hence, while ERM may be suboptimal for some models
f∗ ∈ F , it cannot be ruled out completely as a learning procedure.

It is fairly straightforward to see that Theorem 1 implies f̂n is admissible if at least one f∗ ∈ F exists
with a “small bias”. Our next result offers an alternative proof for Chatterjee’s admissibility theorem.
In this proof, under Assumptions 1 and 2, we demonstrate that there always exists an f∗ ∈ F such
that f̂n exhibits a small bias.

Corollary 2 (Chatterjee’s Admissibility Theorem). Let f̄n : D → Rn be some estimator. Then,
under Assumptions 1,2, there exists an underlying function f∗ ∈ F (that depends on f̄n) such that

ED

∫
(f̂n − f∗)2dP(n) ≤ C · ED

∫
(f̄n − f∗)2dP(n), (17)

where C > 0 is a universal constant that is independent of f̄n, F , P(n).

Remark 5. Under Assumptions 1, 2, and the additional assumption of F being a compact class (in
terms of L2(P(n))), our proof demonstrates that the admissibility property is valid for any ĝn such
that ξ 7→ ĝn(ξ) is O(1)-Lipschitz. Also, it offers a new and simplified perspective on this profound
theorem. Specifically, we show that admissibility hinges on the existence of a target regression
function f∗ ∈ F such that the estimator not only has a “small bias” but is also “stable” around it.
Remarkably, the existence of such a target function is ensured by a purely topological argument—the
Brouwer’s fixed-point theorem. From a statistical perspective, this has a simple interpretation: a
“stable” estimator cannot have a “large” bias on every target function within a compact function class.

Note that if we place f̄n in Corollary 2 to be a minimax optimal estimator immediately yields the
following:

Corollary 3 (Weak admissibility (fixed design)). Under Assumptions 1,2, there exists an underlying
function f∗ ∈ F such that

ED

∫
(f̂n − f∗)2dP(n) ≤ C1 · M(F ,P(n)). (18)

where C1 > 0 is a universal constant that is independent of F , P(n).

We say that the ERM is weakly admissible if there exists f∗ ∈ F such that the error of the ERM on
such f∗ is minimax optimal up to an absolute constant. 1 In these terms, Corollary 3 simply states
that in fixed design and under Assumptions 1,2, the ERM is weakly admissible.

4.1.2 Random Design Setting
In this section we state our new weak admissibility result for the ERM, which is the analogue of
Corollary 3 in the random design setting. We require the following additional technical assumption:

Assumption 8. The function class F is compact with respect to L2(P), and that or every x ∈ X , the
evaluation functional f 7→ f(x) is continuous in the L2(P) norm when restricted to F .

As we assumed that F is closed in Assumption 1, it suffices that F have finite ϵ-entropy for every
ϵ to ensure that F is compact. We will use the regularity condition in order to apply a fixed-point
theorem for continuous functions on a compact convex set in a Banach space.

1In the paper of Kur and Rakhlin (2021), a sharp lower bound on the minimal error of ERM in the fixed
design setting is proven.
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Theorem 6 (Weak admissibility (random design)). Under Assumptions 1,8, there exists a target
function f∗ ∈ F (depending only on n) such that

ED

∫
(f̂n − f∗)2dP ≲ max{V(f̂n,F ,P), IL(n)}.

In particular, Theorem 6 implies that when max{V(f̂n,F ,P), IL(n)} ≲ M(n,F ,P), the ERM is
weakly admissible.

On the other hand, we conjecture that when IL(n) ≫ M(n,F ,P), the ERM is not weakly admissible.
This would follow from the stronger conjecture is that the bound of Theorem 6 is optimal.

4.2 On The Landscape of ERM in the non-Donsker regime

Finally, we establish a counter-intuitive behavior of the landscape around f̂n for various non-
parametric models that lie in the non-Donsker regime.

For our purposes, the “non-Donsker regime” simply means that the model satisfies Assumption 9
below . The conditions in Assumption 9 may seem a bit technical at first glance, but they cover many
well-studied non-parametric models that appear in the shape-constraints literature including convex
regression and α-Hölder regression in the suitable dimensions.

Assumption 9. The model (F ,P) satisfies the following:

1. F is uniformly bounded by an absolute constant Γ > 0.

2. The function ϵ 7→ ϵ2

log(ϵ−1) · logN (ϵ,F ,P) is decreasing in ϵ ∈ (0,Γ).

3. The lower and upper isometry remainders satisfy: IL(n) = o(ϵ2∗) and IU (n) = O(ϵ2∗) .

Now, we are ready to state our result:

Theorem 7. Let (F ,P, ξ) that satisfies Assumptions 1,2, 9 and set ϵ∗ = ϵ(n) as in (10) above. Then,
there exists a sequence CF,P(n) = ω(1) and a sequence of functions f∗ = f∗(n) ∈ F , such that
ED∥f̂n − f∗∥2 ≲ ϵ2∗ (i.e., each f∗ is weakly admissible) and{

f ∈ F :

∫
(f − f̂n)

2dP ≲ ϵ2∗

}
̸⊂ OCF,P(n)·ϵ2∗ , (19)

with probability of at least 1− n−1.

Theorem 7 says that for some target function, the LS solution f̂n displays counterintuitive behavior:
on the one hand, f̂n estimates f∗ optimally, but on the other hand, for most ξ there exist functions
which are very close to f̂n in L2(P), and yet far from being minimizers of the squared error.

5 Discussion and Additional Remarks
5.1 On the optimality of the variance error term in random design setting
When max{IL(n), IU (n)} ≫ ϵ2∗, we have that ϵ2V ≫ ϵ2∗ – our upper bound is larger than the
minimax error. Therefore, this bound seems at first glance to be suboptimal.

However, to the best of our knowledge, all estimators that attain the minimax rate, such as aggregation
and related algorithms (cf. Yang (2004)), depend on the marginal distribution P of the covariates. In
many cases, though, we do not know or have oracle access to the marginal distribution P, and the
estimator only has access to Pn and to F . It is natural to ask what is the minimax rate of “distribution-
unaware” estimators that only depend on Pn and the function class F , when the underlying distribution
P is allowed to vary over some family of distributions.

To this end, given some family of probability distributions P on a domain X , consider the following
measurement of optimality of an estimator:

∆(du)(n,F ,P) = inf
f̄n

sup
Q∈P

R(f̄n,F ,Q)

M(n,F ,Q)
.
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We say that there exists an optimal distribution unaware estimator over (n,F ,P) when
∆(du)(n,F ,P) = Θ(1).

Unsurprisingly, if we do not place additional assumptions on F and P (beyond convexity), then it
may happen that ∆(du)(n,F ,P) = ω(1) – i.e. no single estimator attains the minimax error on every
distribution Q ∈ P . In other words, a minimax optimal estimator for Q must “know” Q. In fact, one
may construct a set of probability distributions P on a domain X and a function class F such that for
any Q ∈ P , M(n,F ,Q) = O(n−1) (the parametric rate), and for any estimator f̄n, one may find
Q ∈ P such that R(f̄n,F ,Q) = Θ(1); and in particular ∆(du)(n,F ,P) = Θ(n) (see Example §1
below).

It’s also intuitively clear that the version space diameter, namely,

Ψ(n,P) := sup
f∗∈F

E[diamP({f ∈ F : ∀i ∈ 1, . . . , n f∗(Xi) = f(Xi)})]

should appear in the error of any “distribution-unaware” estimator in terms of L2(P) (though we
do not know how to show this in complete generality). Clearly, for every model, Ψ(n,P) ≤ IL(n).
Therefore, it is not surprising that the bound of Theorem 3 includes the lower isometry remainder.
The upper isometry remainder IU (n), though, is not tightly connected to Ψ(n,P). Nonetheless, we
conjecture that it cannot be removed from the bound of Theorem 3. Specifically, we propose the
following conjecture:

Conjecture 1. For every n ≥ 1 there exists models (F(n),P) in which f̂n incurs a variance error
term of order ϵ2U ≫ ϵ2∗ ≫ IL(n) or IL(n) ≫ ϵ2U ≫ ϵ2∗.

This conjecture implies that the bound of Theorem 3 cannot be improved under Assumptions.

The intuition behind this conjecture is as follows: the ERM sees the geometry of F with respect
to Pn rather than P, and perturbing the data points X1, . . . , Xn by δ1, . . . , δn can change the finite-
dimensional geometry of the projected function class, reducing the “stability” of f̂n. This is because
f̂n is not a Lipschitz function in the data X with respect to the L2(P)-norm, in contrast to its Lipschitz
properties in ξ with respect to the L2(P(n))-norm. Only if the upper and lower isometry constants
are small, say of the order ϵ2∗ does the metric geometry of Fn not depend too much on X, up to ϵ2∗, in
which case we expect the variance to be bounded by ϵ2∗.

Our confidence that this is the correct explanation for the appearance of IU (n), rather than some
other phenomenon, derives from Theorem 4, which precisely states that the expected conditional
variance of f̂n is upper bounded by the lower isometry radius, i.e.

EXV (f̂n|X) ≲ IL(n). (20)

Therefore, if Conjecture 1 is correct and there are models in which V(f̂n,F ,P) ≳ ϵ2U ≫ IL(n), this
must be due to the variance of conditional expectations:

V
(
Eξ

[
f̂n|X

])
≳ ϵ2U , (21)

and V
(
Eξ

[
f̂n|X

])
is precisely the error term which captures how the geometry of F varies under

different realizations.

5.2 Additional Remarks
5.2.1 Remarks on §2.2

Remark 6. The first part of of Theorem 1 holds for any estimator ĝn for which the map ξ 7→ ĝn(ξ) is
O(1)-Lipschitz, namely,

VD(ĝn) ≍ M(H∗,P(n)),

where H∗ is defined in (8) above. Furthermore, when ξ satisfies Assumption 5, then our proof implies
that

VD(f̂n) ≲ M(H∗,P(n)),

here M(H∗,P(n)) is the minimax rate under isotropic Gaussian noise.
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Remark 7. One can verify that for δ(f∗, n) = ω(M(F ,H∗)), Theorem 1 cannot be true in its full
generality. Therefore, the stability threshold of δ(f∗, n) is tight, up to a multiplicative absolute
constant.

Remark 8. The proof of Theorem 2 is specific to f̂n and cannot be extended immediately to other
estimators. However, it holds for any isotropic noise distribution.

5.2.2 Remarks on §2.3

Remark 9. Herbst’s argument (Wainwright, 2019, §3.1.2) implies that the Lipschitz concentration
property holds for any random vector ξ satisfying a log-Sobolev inequality; the converse is not true
in general. However, in the seminal work of (Milman, 2009), it was shown that if ξ is assumed to be
log-concave, then ξ which satisfies a LCP with constant cL also satisfies a log-Sobolev inequality
with constant Θ(cL).

Remark 10. In the seminal works of Mendelson (cf. the recent paper Mendelson (2017) and references
within) the the small ball condition was introduced to estimate the statistical performance of ERM
under less restrictive assumptions as uniform boundedness, Koltchinskii–Pollard entropy condition
(cf. Rakhlin et al. (2017)) or finite VC-dimension (cf. Mendelson (2014)). Roughly speaking, under
this condition, the lower isometry remainder is relatively small, i.e.

IL(n) ≪ ϵ2∗.

However, it is insufficient to obtain a nice control over the upper isometry remainder, i.e. it may even
happen that

IU (n) ≍ 1.

The ideas that appear in the small-ball method suggest that indeed a small lower isometry remainder
is a mild assumption over a model (n,F ,P), as for example it also provides an upper bound over

sup
f∗∈F

EXDiamP({f ∈ F : (f(X1), . . . , f(Xn)) = (f∗(X1), . . . , f
∗(Xn))}),

as we mentioned earlier.

Remark 11. The assumption of max{IL(n), IU (n)} ≍ ϵ2∗ holds for uniformly bounded classes
whose ϵ-covering numbers are asymptotically equal to the ϵ-covering numbers with bracketing (see
e.g. van de Geer (2000); Birgé and Massart (1993)), which is considered a mild assumption for
analyzing ERM on non-parametric and shape-constrained classes. It also holds for classes that satisfy
the Koltchinskii-Pollard condition (Rakhlin et al., 2017) or the L2 − L2+δ entropy equivalence
condition (see Lecué and Mendelson (2013) and references therein). In the classical regime, i.e. when
F is fixed and n grows, it is hard to construct function classes that does not satisfy this assumption
for n that is large enough (Birgé and Massart, 1993).

Remark 12. Note that a bound similar to that of Theorem 3 cannot hold for the bias error term.
Indeed, one can construct a class F with IL(n) ≲ ϵ2∗ and V(f̂n,F ,P) ≍ ϵ2∗ for which the bias error
term supf∗∈F B2(f̂n) ≍ 1, moreover, for this class one has

EX,ξ∥f̂n − Eξ

[
f̂n|X

]
∥2n ≍ 1.

That is, neither the bias nor the empirical variance converge to zero. A remarkable consequence of
our results is that even though the ERM only observes the random empirical measure Pn, its variance,
measured in terms of P, converges to zero when IL(n) → 0.

Remark 13. Comparing Theorem 5 to Theorem 3 of the previous sub-section, one sees that if
IL(n) ≲ ϵ2∗, the minimax optimality of the variance is implied either by a bound of ϵ2∗ for the upper
isometry constant IU (n) or by the Lipschitz and interpolating Assumptions 6-7, one might wonder
whether the latter set of assumptions actually themselves imply such a bound on IU (n).

In fact, the opposite is true: these assumptions are mutually exclusive as soon as the minimax rate is
o(1). Indeed, the assumption that the function class is almost interpolating (Assumption 7) means
that f̂n(X) := (f̂n(X1), . . . , f̂n(Xn)) closely tracks the observation vector Y (though Assumption
7 only requires this to hold a non-negligible event, the proof of Theorem 5 shows that up to increasing
the absolute constant C, almost interpolation actually holds with high probability). The variance of
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Y is bounded below by that of ξ, which is 1 (measured with respect to ∥ · ∥n), which implies easily
that the empirical variance of f̂n is of order O(1) as well.

On the other hand, a bound of ϵ2∗ on the upper isometry constant means that up to a multiplicative
factor and an additive error of ϵ2∗, when ∥f̂n − Ef̂n∥2 is small then so is ∥f̂n(X) − Ef̂n(X)∥2n.
Taking expectations one obtains that the empirical variance of f̂n is asymptotically bounded by the
population variance plus ϵ2∗, which is certainly o(1).

5.2.3 Remarks on §4.1

Remark 14. Chen et al. (2017) also gave an explicit upper bound of 1.65 · 105 for the the constant
C > 0 in (17). Making the constants explicit in our proof yields a bound of the order 102 rather than
105; we have not attempted to optimize the constants, so we believe this can be improved further.

Remark 15. The assumption that the evaluation functional is continuous in L2(P) may seem restrictive.
In fact, though, the proof of Theorem 6 also goes through if there exists a stronger norm ∥ · ∥′ on F
than the L2(P) norm such that F is compact and the evaluation functionals f 7→ f(x) are continuous
with respect to the topology induced by ∥ · ∥′. (Natural examples of such F , ∥ · ∥′ are provided by
Sobolev spaces.) For simplicity, we have stated the theorem under Assumption 8.

6 Proofs
We begin with additional notation: Given x1, . . . , xn and h : X → R, we denote

Gh = n−1
n∑

i=1

ξih(xi).

For g ∈ F , we set Bn(g, t) := {f ∈ F : ∥f − g∥n ≤ t}, and B(g, t) := {f ∈ F : ∥f − g∥ ≤ t}.
Throughout the proof, we denote by c, c1, c2, . . . ∈ (0, 1), an C,C1, . . . ≥ 0 absolute constants (not
depending on F or on n) that may change from line to line.

6.1 Proof of Theorem 1
In §6.1.1, we fill in the details the proof sketch that was given above under the additional assumption
of (15), and in §6.1.2, we give the full proof without additional assumptions. We remark that our
proof holds for any noise that satisfies the LCP property (12) defined above.

6.1.1 Proof of Theorem 1 under (15)
First, we show that for all t ≥ 0 and for any fixed f ∈ F , the following holds:

Pr
ξ

{∣∣∣∥f̂n − f∥n − Eξ∥f̂n − f∥n
∣∣∣ ≥ t

}
≤ 2 exp(−cLnt

2), (22)

Indeed, this will follow immediately from the LCP condition (12) with cL = n−0.5 if we prove that
h(ξ) = ∥f̂n(ξ)− f∗∥n is a n−0.5-Lipschitz function.

To prove this claim, observe that f̂n(ξ) is the projection of Y = f∗ + ξ onto the convex set

Fn := {(f(x1), . . . , f(xn)) : f ∈ F} ⊂ Rn.

Therefore, we obtain

|h(ξ1)− h(ξ2)| = |∥f̂n(ξ1)− f∗∥n − ∥f̂n(ξ2)− f∗∥n| ≤ ∥f̂n(ξ1)− f̂n(ξ2)∥n
≤ ∥ξ1 − ξ2∥n = n−1/2∥ξ1 − ξ2∥2,

where we have used the fact that the projection to a convex set is a contracting operator. This
concludes the proof of (22).

Next, fix ϵ > 0 (to be chosen later), let N (ϵ) := N (ϵ,F ,P(n)), and let A = {f1, . . . , fN (ϵ)} be a
minimal ϵ-net of F . By the pigeonhole principle, there exists at least one element fϵ ∈ A such that

Pr(∥f̂n − fϵ∥n ≤ ϵ) ≥ 1/N (ϵ). (23)
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Also, setting f = fϵ in (22) we have

Pr
(
|∥f̂n − fϵ∥n − Eξ∥f̂n − fϵ∥n)| ≥ t

)
≤ 2 exp(−cLnt

2). (24)

Taking t = log(4)
√

logN (ϵ)
cLn in (24) yields

Pr

∣∣∥f̂n − fϵ∥n − Eξ∥f̂n − fϵ∥n
∣∣ ≥ log(4)

√
logN (ϵ)

cLn

 ≤ 1

2N (ϵ)
. (25)

Combining (23) and (25) via the union bound we obtain

Pr

∥f̂n − fϵ∥n ≤ ϵ,
∣∣∣∥f̂n − fϵ∥n − Eξ∥f̂n − fϵ∥n

∣∣∣ ≤ log(4)

√
logN (ϵ)

cLn

 ≥ 1

2|N (ϵ)|
> 0

Since the event of the last equation holds with positive probability, we must have

Eξ∥f̂n − fϵ∥n ≤ ϵ+ log(4)

√
logN (ϵ)

cLn
.

To optimize the RHS over ϵ, we take ϵ such that ϵ =
√
logN (ϵ)/(cLn) — i.e., ϵ = ϵ∗ — and get

Eξ∥f̂n − fϵ∥n ≤ Cϵ∗/
√
cL.

Substituting in (24) and taking t = ϵ∗, we obtain

Pr(|∥f̂n − fϵ∥n ≥ Cϵ∗/
√
cL) ≤ 2 exp(−cnϵ2∗).

This easily implies that E[∥f̂n − fϵ∥2n] ≤ C1ϵ
2
∗/cL, and therefore also

E[∥f̂n − Ef̂n∥n] ≤ (E[∥f̂n − Ef̂n∥2n])1/2 ≤ (E[∥f̂n − fϵ∥2n])1/2 ≤ C2ϵ∗/
√
cL.

Applying (22) once again, now with f = Ef̂n, we obtain

Pr(∥f̂n − Ef̂n∥2n ≥ C2ϵ
2
∗/cL) ≤ 2 exp(−cnϵ2∗). (26)

6.1.2 Full proof of Theorem 1
First note that for any class H, we have M(H,P(n)) ≤ diamP(n)(H)2 (consider a constant esti-
mator),and applying this to H∗ yields M(H∗,P(n)) ≤ 4VD(f̂n). Thus we need only prove the
nontrivial inequality M(H∗,P(n)) ≳ VD(f̂n).

We will consider two cases: First, when M(H,P(n)) ≤ Sn−1 for sufficiently large S ≥ 0 (i.e. the
parametric case), the result follows from classical theory. The remaining case will be handled in
similar fashion as in §6.1.1 above, but with a more careful analysis.

Case I: V (f̂n) ≤ Sn−1. Certainly, there exists g ∈ F such that ∥g − Ef̂n∥2n ≥ VD(f̂n), which

implies, by the convexity of F that there exists h ∈ H∗ with
√
V (f̂n) ≤ ∥h − Ef̂n∥n ≤ 2

√
S/n.

Applying the two-point method to h and Ef̂n (see e.g., (Wainwright, 2019, Example 15.4)), one sees
easily that the minimax rate of H∗ is Ω(V (f̂n)).

Case II: V (f̂n) ≥ Sn−1. To treat this case we the following characterization of the minimax rate
in the fixed design setting (Neykov, 2022; Yang and Barron, 1999):

Lemma 1 (Theorem 2.11 in Neykov (2022)). Under Assumptions 1,2, M(H,P(n)) ≍ ϵ2∗, where ϵ∗
solves the equation

logN loc(ϵ,H,P(n)) ≍ nϵ2, (27)

where N loc(ϵ,F ,P(n)) = supf∈F N (ϵ/4, {h ∈ H : ∥h− f∥n ≤ ϵ},P(n)).
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By the lemma, it suffices to show that

logN loc(2

√
V (f̂n),H∗,P(n)) ≳ nV (f̂n),

as this will imply that 2
√
V (f̂n) ≤ ϵ∗ and hence V (f̂n) ≲ M(H∗,P(n)). Noting that

{h ∈ H∗ : ∥h− Ef̂n∥n ≤ 2

√
V (f̂n)} = H∗

we have N loc(

√
V (f̂n)/2,F ,P(n)) ≥ N (

√
V (f̂n)/2,H∗,P(n)) and hence it suffices to show that

logN (

√
V (f̂n)/2,H∗,P(n)) ≥ c1n · V (f̂n) (28)

for an appropriate c1 > 0 to be chosen later.

Suppose to the contrary that logN ≤ c1n · V (f̂n), where N = N (

√
V (f̂n)/2,H∗,P(n)).

We consider the distribution of f̂n when the true function is f∗. First, note that as E∥f̂n − Ef̂n∥2 =

V (f̂n), we have that

Pr(f̂n ∈ H∗) = Pr(f̂n ∈ Bn(EDf̂n, 2

√
V (f̂n))) = 1− Pr(∥f̂n − EDf̂n∥2n ≥ 4V (f̂n)) ≥ 3/4

by Chebyshev’s inequality. Let A = {f1, . . . , fN } be a minimal
√

V (f̂n)/2-net in H∗; by the
pigeonhole principle, there exists at least one element g ∈ A such that

Pr(∥f̂n − g∥n ≤
√
V (f̂n)/2) ≥

3

4N
≥ 3 exp(−c1nV (f̂n))/4. (29)

Next, we apply (22) with f = g and t =

√
V (f̂n)/6, to obtain

Pr
ξ

(
|∥f̂n − g∥n − Eξ∥f̂n − g∥n| ≤

√
V (f̂n)/6

)
≥ 1− 2 exp(−nV (f̂n)/18). (30)

Recalling that we are in the case V (f̂n) ≥ Sn−1, by choosing c1 > 0 small enough and S > 0 large
enough we can ensure that exp(nV (f̂n)(1/18− c1)) > 8/3, or equivalently

3

4
exp(−c1nV (f̂n))− 2 exp(−nV (f̂n)/18) > 0. (31)

Combining (29), (30), and (31) yields

Pr(∥f̂n − g∥n ≤
√
V (f̂n)/2) + Pr

(∣∣∣∥f̂n − g∥n − Eξ∥f̂n − g∥n
∣∣∣ <√V (f̂n)/6

)
> 1,

so the two events{∣∣∣∥f̂n − g∥n − Eξ∥f̂n − g∥n
∣∣∣ <√V (f̂n)/6

}
, {∥f̂n − g∥n ≤

√
V (f̂n)/2}

have nonempty intersection, which implies that ED∥f̂n − g∥n < 2

√
V (f̂n)/3.

Let h(ξ) = ∥f̂n − g∥n. We have Eh2 = (Eh)2 + E(h− Eh)2 < 4V (f̂n)/9. As h is 1√
n

-Lipschitz,
the LCP implies that h is 1√

n
-subgaussian. Thus h − Eh is a centered 1√

n
-subgaussian random

variable, so E(h− Eh)2 ≤ 2
n (Vershynin, 2018, Proposition 2.5.2), and hence

ED∥f̂n − g∥2n <
4

9
V (f̂n) +

2

n
.

Again recalling that V (f̂n) > Sn−1, by taking S large enough we can ensure that Eξ∥f̂n−Ef̂n∥2n <

V (f̂n), which contradicts the definition of V (f̂n).
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It remains to prove the last statement of the theorem, namely that supf∈Oδn
∥f − Ef̂n∥2n ≍

M(H∗,P(n))) with high probability. We have seen that E∥f̂n − Ef̂n∥2n ≲ M(H∗,P(n)), so
E∥f̂n − Ef̂n∥n ≤ C

√
M(H∗,P(n)). Applying (22) once again with t =

√
M(H∗,P(n)), we

have
P(∥f̂n − Ef̂n∥2n ≥ CM(H∗,P(n))) ≤ 2 exp(−cnM(H∗,P(n))). (32)

Condition on the high-probability event of (32) above, and consider some f ∈ Oδn . Since

∥f − Ef̂n∥2n ≤ 2(∥f − f̂n∥2n + ∥f̂n − Ef̂n∥2n),

to obtain the theorem it suffices to show that for any f ∈ Oδn , we have

∥f − f̂n∥2n ≤ δ2n

deterministically.

This is a matter of elementary convex geometry: we know that f̂n is the closest point in the convex set
Fn to the point Y, which implies that the ball B = B(Y, ∥f̂n −Y∥n) is tangent to Fn at f̂n. This
implies that Fn is contained within the positive half-space H+ defined by the supporting hyperplane
of B at f̂n, i.e.,

Fn ⊂ H+ = {f : ⟨f̂n −Y, f −Y⟩ ≥ ∥f̂n −Y∥2}. (33)

We now compute:

∥f −Y∥2n = ∥f − f̂n∥2n + ∥f̂n −Y∥2n + 2⟨f̂n −Y, f − f̂n⟩n.

Since f ∈ Fn, (33) implies that ⟨f − Y, f̂n − Y⟩n ≥ ⟨f̂n − Y, f̂n − Y⟩n, or equivalently,
⟨f − f̂n, f̂n −Y⟩n ≥ 0. Hence we obtain

∥f − f̂n∥2n ≤ ∥f −Y∥2n − ∥f̂n −Y∥2n,

but the RHS is at most δn by the definition of Oδn . This concludes the proof.

6.2 Proof of Theorem 2
By the definition of the minimax risk, there exists some f∗ ∈ F with risk at least δ2 := M(F ,P(n)).
By translating F , we may assume f∗ = 0 without loss of generality, so that Eξ[∥f̂n∥2n] ≳ δ2.

Write f̂n(ξ) for the ERM computed when the target function is f∗ = 0 and the noise is ξ, namely,
the projection of ξ onto F . We wish to show that Eξ[∥f̂n − Ef̂n∥2n] ≳ δ4.

The fact that f̂n(ξ) is the projection of the observation vector ξ on the convex set F implies, by
convexity, that ⟨f − f̂n, f̂n − ξ⟩n ≥ 0 for any f ∈ F (see §6.1 for the easy argument). Substituting
f = f∗ = 0 and rearranging immediately yields that for any ξ,

⟨f̂n(ξ), ξ⟩n ≥ ∥f̂n(ξ)∥2n.

Write fe = Eξf̂n(ξ). Since Eξξ = 0, we may take expectations and insert f̂e to obtain

Eξ⟨f̂n(ξ)− fe, ξ⟩n ≥ Eξ∥f̂n(ξ)∥2n ≥ δ2.

Applying Cauchy-Schwarz, we obtain

Eξ∥f̂n(ξ)− fe∥2n · Eξ∥ξ∥2n ≥ δ4,

and because the noise is isotropic we immediately obtain

V (f̂n) = Eξ[∥f̂n(ξ)− fe∥2n] ≥ δ4,

as desired.
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6.3 Proof of Corollary 2
Here, we prove this result when F is compact with respect to L2(P(n)). For completeness, we provide
a proof without this assumption in §7.1 below.

Consider the map F : Fn → Rn defined via

f∗ → Eξf̂n,

i.e., f∗ maps to the expectation of the ERM f̂n when the underlying function is f∗ ∈ Fn. One
verifies easily that F is continuous, since projection to a convex set is a 1-Lipschitz function; in
addition, the convexity of Fn implies that F (f∗) ∈ Fn for all f∗ ∈ Fn. Thus F is a continuous map
from the compact convex set Fn to itself, so by the Brouwer fixed point theorem, there exists an
f∗ ∈ Fn such that

f∗ = Eξf̂n.

Let E2
f∗ = Eξ∥f̂n − f∗∥2n = V (f̂n), and let P denote the projection to F , which is is 1-Lipschitz.

For any f ∈ G∗ = B(f∗, 2Ef∗) ∩ F and any ξ we have

∥P (f + ξ)− f∥2n ≤ 3(∥P (f + ξ)− P (f∗ + ξ)∥2n + ∥P (f∗ + ξ)− f∗∥2n + ∥f∗ − f∥2n)

≤ 3(∥P (f∗ + ξ)− f∗)∥2n + 8E2
f∗) = 3(∥f̂n − f∗)∥2n + 8E2

f∗),

and taking the expectation over ξ we see that Eξ∥P (f + ξ) − f∥2n, the squared error of the ERM
when the underlying function is f , is at most 27E2

f∗ .

Now let ĥ : Rn → F be any estimator. By Theorem 1, we have

E2
f∗ ≲ max

f∈G∗
∥ĥ(f + ξ)− f∥2n.

Picking f ∈ G∗ which maximizes the error of ĥ, we have that the squared error of f̂n on f is
upper-bounded by c · E2

f∗ and the squared error of ĥ on f is lower-bounded by c1 · E2
f∗ , which is

precisely what we want.

Remark 16. The Brouwer fixed point theorem, which we use in the first step of the proof to obtain the
existence of f∗ ∈ F for which Eξf̂n = f∗, is a deep result, and one may ask whether it is essential
to the proof. Another commonly used fixed-point theorem is that due to Banach; the Banach fixed
point theorem is elementary, but requires a bound ∥F (f) − F (g)∥n ≤ c∥f − g∥n for some c < 1
and all f, g ∈ F .

One has
∥F (f)− F (g)∥n ≤ Eξ∥P (f + ξ)− P (g + ξ)∥n, (34)

where P denotes the projection to F . Note that ∥P (f + ξ)− P (g + ξ)∥n ≤ ∥f − g∥n because P
is 1-Lipschitz. Also, it’s easy to see that there exists some ξ for which ∥P (f + ξ)− P (g + ξ)∥n is
strictly smaller than ∥f − g∥n, and continuity of P ensures that the same holds for all ξ′ sufficiently
close to ξ, implying ∥F (f)− F (g)∥n < ∥f − g∥n. But this is not yet sufficient to apply the Banach
fixed point theorem.

Via more delicate convex-geometric arguments, though, one can show that if ∥ξ∥n is sufficiently
large compared to the diameter of F (say, ∥ξ∥n > C · diam(F)) and ⟨f − g, ξ⟩n ≥ ϵ∥f − g∥n∥ξ∥n
(i.e., the angle between f − g and ξ is bounded away from 90 degrees) then

∥P (f + ξ)− P (g + ξ)∥n ≤ (1− δ)∥f − g∥n
for some δ depending on ϵ and C, which allows one to conclude, using (34), that ∥F (f)−F (g)∥n ≤
c∥f − g∥n for some c < 1 and all f, g ∈ F . Hence, the Banach fixed point theorem can be used in
the proof instead of the Brouwer fixed point theorem, rendering it elementary but more technical.

6.4 Proof of Theorem 3
Preliminaries The main tool we use from the theory of empirical processes is Talagrand’s inequality
(Koltchinskii, 2011, Theorem 2.6):
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Lemma 2. Let H be a class of functions on a domain Z all of which are uniformly bounded by M .
Let Z1, . . . , Zn ∼

i.i.d.
P. Then, there exist universal constants C, c > 0 such that

Pr(|∥H∥n − E∥H∥n| ≥ t) ≤ C exp

(
−cnt

M
log

(
1 +

t

E∥H2∥n

))
,

where ∥H∥n := suph∈H n−1
∑n

i=1 h(Zi), and ∥H2∥n = suph∈H n−1
∑n

i=1 h(Zi)
2.

Lemma 3. Under Assumptions 1,3,4, the following holds:
ϵ2∗ ≳ log(n)/n,

where ϵ2∗ is defined in (10) above.

Proof of Lemma 3. Note that by Assumptions 1,3, we have that
logN (ϵ,F ,P) ≳ log(ϵ−1),

Therefore, we obtain that ϵ∗ is greater or equal to the stationary point of the following equation:
log(ϵ−1)/n ≍ ϵ2,

so ϵ∗ ≳
√
log n/n.

Proof of Theorem 3: We abbreviate IL := IL(n), IU := IU (n) and note that by the last lemma,
we may assume that ϵ2∗ > C log(n)/n for sufficiently large C ≥ 0. For every fixed X, ξ, the function
L̂ : F → R defined by

L̂(f) := ∥Y − f∥2n − ∥ξ∥2n = −2Gf−f∗ + ∥f − f∗∥2n, (35)

satisfies f̂n = argminf∈F L̂(f). (Of course, L̂(f) is just the empirical loss of f , up to subtracting a
constant.) Note that L̂(f∗) = 0, so L̂(f̂n) must be non-positive.

Let {f1, . . . , fN} be an ϵU -net of F with respect to P of cardinality N = N (ϵU ,F ,P); for each
i ∈ [N ], let B(fi) := B(fi, ϵU ) denote the ball of radius ϵU around fi, so that the B(fi) cover F .
For each i, let Li denote the minimal loss on the ball B(fi):

Li := min
f∈B(fi)

L̂(f) (36)

The main technical result is the following lemma:

Lemma 4. Fix i∗ ∈ [N ]. For any absolute constant A > 0, there exist absolute constants C1, C,> 0,
such that the following holds with probability of at least 1− 2 exp(−Anϵ4U/max{IU , ϵ2∗}):

∀i ∈ [N ], |(Li − Li∗)− E(Li − Li∗)| ≤ C1ϵ
2
U +

1

4
∥fi − fi∗∥2. (37)

We defer the proof of Lemma 4 to the end of the section, and show how it implies the theorem.

Proof of Theorem 3 (assuming Lemma 4). We apply Lemma 4 with i∗ = argmini∈[N ] ELi. Let E
denote the event of Lemma 4 (the constant A > 0 in the lemma will be chosen shortly), and let E ′ be
the event that

∥f − g∥2n ≥ 1

2
∥f − g∥2 − IL (38)

for all f, g ∈ F . By the definition of IL, E ′ holds with probability 1 − n−1; in addition, a
mildly tedious computation, which we defer to Lemma 6, shows that A can be chosen such that
Pr(E) ≥ 1− n−1 as well. In the remainder of the proof, we work on E ∩ E ′.

Let f̂i∗ = argminf∈B(fi∗ )
L̂(f), so that Li∗ = L̂(f̂i∗). Consider the function h = f̂i∗+f̂n

2 , which
lies in F as F is convex. We have

L̂(h) = −2Gh−f∗ + ∥h− f∗∥2n

=
L̂(f̂i∗) + L̂(f̂n)

2
+

(
∥h− f∗∥2n − ∥f̂i∗ − f∗∥2n + ∥f̂n − f∗∥2n

2

)
. (39)
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Applying the parallelogram law

∥a+ b∥2n + ∥a− b∥2n = 2∥a∥2n + 2∥b∥2n

with a = f̂i∗−f∗

2 , b = f̂n−f∗

2 yields

∥h− f∗∥2n − ∥f̂i∗ − f∗∥2n + ∥f̂n − f∗∥2n
2

= −

∥∥∥∥∥ f̂i∗ − f̂n
2

∥∥∥∥∥
2

n

.

Combining this equation with (39) yields

L̂(h) ≤ L̂(f̂i∗) + L̂(f̂n)
2

−

∥∥∥∥∥ f̂i∗ − f̂n
2

∥∥∥∥∥
2

n

.

But we also know that L̂(h) ≥ L̂(f̂n) by the definition of f̂n, so rearranging we obtain

L̂(f̂n) ≤ L̂(f̂i∗)−
1

2
∥f̂i∗ − f̂n∥2n. (40)

Now let i ∈ N such that f̂n ∈ B(fi) and substitute Li = L̂(f̂n), giving

Li ≤ Li∗ − 1

2
∥f̂i∗ − f̂n∥2n.

Since we are on E , we may apply (37) and obtain

ELi ≤ ELi∗ + C3ϵ
2
U − 1

4
∥f̂i∗ − f̂n∥2n ≤ ELi∗ + C4ϵ

2
U + IL − 1

8
∥f̂i∗ − f̂n∥2.

But ELi∗ ≤ ELi by our choice of i∗, which implies finally that ∥f̂i∗ − f̂n∥2n ≲ max{ϵ2U , IL} = ϵ2V .

Recall that we are also interested in f ∈ Oδn for δn = O(ϵ2V ). By the geometric argument in the
proof of Theorem 1, for such f , we have ∥f − f̂n∥n = O(δn).

Applying the lower isometry property (38), we obtain

∥f̂n − f̂i∗∥, ∥f − f̂n∥ ≤ CϵV

for any f ∈ Oδn on E ∩ E ′. Since ∥f̂i∗ − fi∗∥ ≤ ϵV (as f̂i∗ ∈ B(fi∗) by definition), we also have

∥f̂n − fi∗∥, ∥f − fi∗∥ ≤ CϵV .

In sum, thus far we have shown that under E ∩ E ′, an event of probability at least 1 − 2n−1 any
f ∈ Oδn satisfies ∥f − fi∗∥ ≲ ϵV . It remains to show that this implies that ∥f − Ef̂n∥ ≲ ϵV , for
which it suffices to show that ∥Ef̂n − fi∗∥ ≲ ϵV . But

Ef̂n − fi∗ = (E[f̂n|E ∩ E ′]− fi∗) Pr(E ∩ E ′) + (E[f̂n|(E ∩ E ′)c]− fi∗) Pr((E ∩ E ′)c).

By what we have shown, ∥E[f̂n|E ∩ E ′]− fi∗∥ ≤ CϵV , while ∥E[f̂n|(E ∩ E ′)c]− fi∗∥ = O(1) by
Assumption 4 and so the norm of the second term is asymptotically bounded by O(n−1) ≪ ϵ∗ ≤ ϵV

because ϵ∗ ≳
√

logn
n by Lemma 3. This concludes the proof.

It remains to prove the deferred lemmas. We begin with the most substantial one, Lemma 4.

Proof of Lemma 4. Recall that

−Li = sup
f∈B(fi)

(2Gf−f∗ − ∥f − f∗∥2n).

We write f−f∗ = (f−fi)+(fi−f∗), expand, and decompose this expression into terms depending
on f − fi and terms depending only on fi − f∗:
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−Li = Ai +A′
i, (41)

where

Ai := sup
f∈B(fi)

(
2Gf−fi − ∥f − fi∥2n − 2⟨f − fi, fi − f∗⟩n

)
,

A′
i := 2Gfi−f∗ − ∥fi − f∗∥2n.

We also write

Bi := A′
i −A′

i∗ = 2Gfi−f∗ − ∥fi − f∗∥2n − (2Gfi∗−f∗ − ∥fi∗ − f∗∥2n)
= 2Gfi−fi∗

− ∥fi∥2n + ∥fi∗∥2n + 2⟨fi − fi∗ , f
∗⟩

= 2Gfi−fi∗ + ∥fi − fi∗∥2n − 2∥fi∥2n + 2⟨fi, fi∗⟩+ 2⟨fi − fi∗ , f
∗⟩

= 2Gfi−fi∗
+ ∥fi − fi∗∥2n + 2⟨fi − fi∗ , f

∗ − fi⟩

We claim that with probability 1− C exp(−cnϵ4U/max{ϵ2∗, IU}) the following holds:

∀i ∈ [N ], |Ai − EAi| ≤ C1ϵ
2
U , (42)

∀i ∈ [N ], |Bi − EBi| ≤ C2ϵ
2
U +

1

4
∥fi − fi∗∥2. (43)

Since Li − Li∗ = Ai∗ −Ai −Bi, combining (42) and (43) yields the lemma.

We first prove (42). For each i ∈ [N ], we control fluctuations of Ai by applying Talagrand’s inequality.
To this end, write

Ai = sup
f∈B(fi)

1

n

n∑
j=1

af (Xj , ξj)

where

af (x, ξ) = 2ξ(f(x)− fi(x))− 2(f(x)− fi(x))(fi(x)− f∗(x))− (f(x)− fi(x))
2.

To apply Talagrand’s inequality, we need to bound E supf∈B(fi) n
−1
∑n

j=1 af (Xj , ξj)
2.

Using the identity (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we see that

EX,ξ sup
f∈B(fi)

∫
af (Xj , ξj)

2dPn

≤ 3·EX,ξ sup
f∈B(fi)

∫ (
2ξ2(f(x)− fi(x))

2 + 2(f(x)− fi(x))
2(fi(x)− f∗(x))2 + (f(x)− fi(x))

4
)
dPn.

Using the assumptions |ξi| ≤ Γ1, ∥f∥∞ ≤ Γ2, where Γ1,Γ2 > 0 are some absolute constants, one
can obtain that

EX,ξ sup
f∈B(fi)

∫
af (Xj , ξj)

2dPn ≤ C · EX sup
f∈B(fi)

∫
(f − fi)

2dPn

for C ≤ 12max{Γ2
1,Γ

2
2}. Using the definition of the upper isometry constant IU and the stationary

point ϵU , we obtain

EX,ξ sup
f∈B(fi)

∫
af (Xj , ξj)

2dPn ≲ max{IU , ϵ2U} ≍ max{IU , ϵ2∗},

where the last step uses Lemma 5 below.

Thus we may apply Talagrand’s inequality to Ai with E∥H2∥n ≲ max{ϵ2∗, ϵ2U}, giving

Pr
X,ξ

{|Ai − EAi| ≥ t} ≤ C exp(−cnt log(1 + t/max{ϵ2∗, IU})). (44)
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Taking a union bound over i ∈ [N ], we obtain

Pr
ξ
{∃i ∈ [N ] : |Ai − EAi| ≥ t} ≤ C exp(−cnt2/max{ϵ2∗, IU}+ logN).

Choosing t = C1ϵ
2
U for C1 sufficiently large and recalling that logN = logN (ϵ,F ,P) ≤

nϵ4U/max(IU , ϵ2∗) by (11), we obtain that

∀i ∈ [N ], |Ai − EAi| ≤ C1ϵ
2
U

with probability at least 1− 2 exp(−c1nϵ
4
U/max{ϵ2∗, IU}), which is (42).

Next, we handle Bi for every i ∈ [N ]. As in the case of Ai, we may write Bi = n−1
∑n

j=1 bi(Xi, ξi)
where

bi(x, ξ) = 2ξ(fi(x)− fi∗(x)) + (fi(x)− fi∗(x))
2 + 2(fi(x)− fi∗(x))(f

∗(x)− fi(x)).

We have |bi(x, ξ)| ≤ C|fi(x)− fi∗(x)|, so as before,

1

n

n∑
j=1

E[bi(Xj , ξj)
2] ≤ CE[∥fi − fi∗∥2n] = C∥fi − fi∗∥2,

and hence by Bernstein’s inequality,

Pr(|Bi − EBi| ≥ t) ≤ exp

(
− cnt2

C3t+ ∥fi − fi∗∥2

)
.

Substituting t = ti := Cϵ2U + ∥fi − fi∗∥2/4, we obtain

Pr

(
|Bi − EBi| ≥ C2ϵ

2
U +

∥fi − fi∗∥2

4

)
≤ 2 exp

(
−c1nt

2
i

C3ti + ∥fi − fi∗∥2

)
≤ 2 exp

(
−c2nmax

{
Cϵ2U ,

∥fi − fi∗∥2

4

})
≤ 2 exp(−c3n · Cϵ2U ).

(45)

By the same exact argument as in the case of Ai, we may choose C > 0 sufficiently large such that
with probability 1− C exp(−cnϵ4U/max(IU , ϵ2∗)),

|Bi − EBi| ≤ C2ϵ
2
U + ∥fi − fi∗∥2/4

for every i ∈ [N ], which is (43). This concludes the proof of Lemma 4.

Lemma 5. The following holds:

max{ϵ2U , IU} ≍ max{ϵ2∗, IU}. (46)

Proof. If IU ≲ ϵ2∗, then ϵ2∗ ≍ ϵ2U by definition. If IU ≳ ϵ2∗, assume to the contrary IU ≪ ϵU ; as we
have nϵ4U ≍ IU logN (ϵU ,F ,P), this implies

logN (ϵU ,F ,P)/n ≫ ϵ2U .

But this implies, by definition of ϵ∗, that ϵ∗ ≥ ϵU , contradicting the definition of ϵU (Definition 3).

Lemma 6. For a sufficiently large absolute constant A > 0, one has exp(−Anϵ4U/max(ϵ2U , IU )) ≤
n−1.

Proof. First, we show that N = N (F , ϵU ,P) ≳ n1/4/ log n. Suppose to the contrary that N ≪
n1/4/ log n. Then

nϵ4U ≍ IU · logN ≲ log n,

since IU is at most the squared diameter of Fn, which is Θ(1). This yields ϵU ≲ (log n/n)1/4.
But N (ϵ,F ,P) ≥ 1

ϵ because diamP(F) = Θ(1) and Fn is convex, so we obtain N (ϵU ,F ,P) ≳
n1/4/ log n, contradiction.
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To upper-bound exp(−Anϵ4U/max(ϵ2U , IU )), we split into cases. If IU ≲ ϵ2U then ϵU ≍ ϵ∗ and
we have nϵ2∗ ≳ log n by Lemma 3, so exp(−Anϵ4U/max{ϵ2U , IU}) ≤ exp(−Anϵ2∗) ≤ n−1 for
sufficiently large A > 0.

Otherwise, if IU ≫ ϵ2U we have nϵ4U/IU ≳ logN by the definition of ϵU , and since N ≳ n1/5,
we have logN ≫ log n. Hence, by choosing A > 0 large enough we can ensure that
exp(−Anϵ4U/IU ) ≤ n−1 in this case as well.

6.5 Proof of Theorem 4
Assume for simplicity that cL = 1. We say ξ has a Gaussian Isoperimetric Profile (GIP) with respect
to ∥ · ∥n, if for any measurable set A ⊂ Rn such that Prξ(A) ≥ 1/2, we have that

Pr
ξ
(At) ≥ 1− 2 exp(−nt2/2). (47)

where At = {ξ ∈ Rn : infx∈A ∥x − ξ∥n ≤ t}. It is not hard to verify that the GIP and LCP are
equivalent (cf. (Artstein-Avidan et al., 2015, Thm 3.1.30)).

The main observation is the following simple and useful lemma which leverages the power of
isoperimetry:

Lemma 7. For any measurable A ⊂ Rn such that Prξ(A) ≥ 2 exp(−nt2/2), Prξ(A2t) ≥ 1 −
2 exp(−nt2/2).

Proof. Since A2t = (At)t, (47) implies that it’s sufficient to show that Pr(At) ≥ 1/2, and indeed
it suffices to show that Pr(At+ϵ) ≥ 1/2 for any ϵ > 0. Fix ϵ > 0, and assume to the contrary that
Pr(B) > 1/2, where B = Rn\At+ϵ. It’s easy to see that A ⊂ Rn\Bt+ϵ. Hence, using (47), we
obtain

Pr(Rn\A) ≥ Pr(Bt+ϵ) ≥ 1− 2 exp(−n(t+ ϵ)2/2),

i.e., Pr(A) ≤ 2 exp(−n(t+ ϵ)2/2) < 2 exp(−nt2/2), contradiction.

Denote the event of Definition 5 by E , and recall the definition of ϵ2∗ via nϵ2∗ ≍ logN (ϵ∗,F ,P).
Letting S be an ϵ∗-net of F of cardinality N (ϵ∗,F ,P), the pigeonhole principle implies the existence
of fc ∈ S such that

Pr
ξ
({f̂n ∈ B(fc, ϵ∗)} ∩ E︸ ︷︷ ︸

A

|X) ≥ Prξ(E)
N (ϵ∗,F ,P)

≥ exp(−c2nϵ
2
∗)

N (ϵ∗,F ,P)
≥ exp(−c3nϵ

2
∗).

By isoperimetry, Prξ(A2t) ≥ 1 − 2 exp(−nt2/2), where t = Mϵ∗/2 and M is chosen such that
(M/2)2 ≥ 2C3; this fixes the value of the absolute constant M used in (13).

Applying (13) yields that if ξ ∈ A ⊂ E and ∥ξ′ − ξ∥ ≤ Mϵ∗ = 2t, ∥f̂n(ξ)− f̂n(ξ
′)∥2 ≤ ρS(X, f∗)

and so ∥f̂n(ξ′)− fc∥ ≤ ϵ∗ +
√
ρS(X, f∗). This implies

Pr
ξ
({f̂n ∈ B(fc, ϵ∗ +

√
ρS(X, f∗))}|X) ≥ Pr

ξ
(A2t|X) ≥ 1− 2 exp(−nt2/2).

To bound the variance of f̂n, we use conditional expectation as in Theorem 3. We have

V (f̂n|X) ≤ E∥f̂n − fc∥2 ≤ (1− 2 exp(−nt2/2)) · (ϵ∗ +
√

ρS(X, f∗)))2 + 2C exp(−nt2/2),

where we have used the fact that diamP(F) = Θ(1). Recalling that ϵ2∗ ≳ log(n)/n, and t = Θ(ϵ∗),
we have exp(−nt2) = O(ϵ2∗) and hence the RHS is bounded by Cmax{ϵ2∗, ρS(X, f∗)}, as desired.

6.6 Proof of Theorem 5
For simplicity, we assume that cX = cL = cI = O(1), We abbreviate ρO := ρO(n,P, f∗).

We shall use the joint metric on Xn × Rn given by

∆n((X1, ξ1), (X2, ξ2)) := n−1/2 · dn(X1,X2) + ∥ξ1 − ξ2∥n.
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As (X, dn) and (ξ, ∥ · ∥2) both satisfy Lipschitz concentration inequalities with parameter Θ(1), so
does the product space Xn × Rn with the usual product metric

((X1, ξ1), (X2, ξ2)) 7→ dn(X1,X2) + ∥ξ1 − ξ2∥2,
and since ∆n is obtained by scaling this metric by n−1/2, we obtain that (Xn × Rn,∆) satisfies an
LCP condition with parameter Θ(n).

Let E1 be the event of Assumption 7, namely, the event that the ERM is almost interpolating, and
let E2 be the event that diamP(OM ′ϵ2∗

) ≤ ρO. Since Pr(E1) + Pr(E2) > 1 + exp(−cInϵ
2
∗), we have

Pr(E1 ∩ E2) > exp(−cInϵ
2
∗).

Set E3 = E1 ∩ E2. Since Pr(E3) ≥ exp(−cInϵ
2
∗), the same pigeonhole principle argument used in

the proofs of Theorems 1 and 4 shows that there exists an absolute constant c1 ∈ (0, cI) and fc ∈ F
such that

Pr
X,ξ

(E3 ∩ {f̂n ∈ B(fc, ϵ∗)}) ≥ exp(−c1nϵ
2
∗).

Denote this event by E (in this case, it is better to think about it as a subset of Xn × Rn). By the
same argument as in Theorem 4, Ẽ := EC1ϵ∗ will be an event of probability 1− exp(−c1nϵ

2
∗), where

Ar = {(X, ξ) ∈ Xn×Rn : ∆n((X, ξ), A) ≤ r} as above, and C1 is an absolute constant depending
on c1 and the LCP parameter of ∆.

Thus, we would like to show that any (X, ξ) ∈ Ẽ is not too far from fc. More precisely, we claim
that for any (X, ξ) at distance at most C1ϵ∗ from E , the corresponding f̂n is at distance at most
C2 ·max{ϵ∗,

√
ρO} from fc.

For f ∈ F , let fX denote (f(X1), . . . , f(Xn)) ∈ Rn. We claim that it suffices to prove the following:
for every (X1, ξ1) ∈ E and such that ∆n((X2, ξ2), (X1, ξ1)) ≤ C1ϵ∗, we have

∥f̂n(X2, ξ2)X1 − f̂n(X1, ξ1)X1∥n ≲ ϵ∗, (48)

where f̂n(Xi, ξi) is the ERM for the input points Xi and noise ξi,. Indeed, assuming (48) we have

∥f̂n(X2, ξ2)X1
−Y1∥2n ≤ 2∥f̂n(X1, ξ1)X1

−Y1∥2n + 2∥f̂n(X2, ξ2)X1
− f̂n(X1, ξ1)X1

∥2n ≲ ϵ2∗,
(49)

as the first term on the RHS is bounded by 2ϵ∗ because (X1, ξ1) ∈ E , and the second term is bounded
by 4ϵ2∗ by construction. We now specify the constant M ′ in the definition of ρO (Definition 6) to be
any upper bound for the implicit absolute constant in (49). Under this definition, (49) implies that
f̂n(X2, ξ2)X1

∈ OM ′ϵ2∗
and hence ∥f̂n(X2, ξ2)− f̂n(X1, ξ1)∥2 ≤ ρO. Since f̂n(X1, ξ1) ∈ E , this

implies that

∥f̂n(X2, ξ2)− fc∥2 ≤ 2(∥f̂n(X2, ξ2)− f̂n(X1, ξ1)∥2 + ∥f̂n(X2, ξ2)− fc∥2 ≲ max{ϵ2∗, ρO}
as desired.

Thus, on the high-probability event Ẽ , f̂n ∈ B(fc, Cmax{ϵ2∗, ρO}). As in the proof of Theorem 3,
one concludes by conditional expectation that V (f̂n) ≤ Cmax{ϵ2∗, ρO}.

Proof of (48): For convenience, denote fi,j = f̂n(Xi, ξi)Xj
, and similarly f∗

j = (f∗)Xj
. As

d((X2, ξ2), (X1, ξ1)) ≤ 2ϵ∗, we have by the Lipschitz property that ∥fi,1 − fi,2∥n ≤ 2ϵ∗ and also
∥f∗

1 − f∗
2 ∥n ≤ 2ϵ∗. In addition, letting Yi = f∗

i + ξi be the observation vector, the Lipschitz
property of f∗ and the bound on ∥ξ1 − ξ2∥n together imply that ∥Y1 −Y2∥n ≤ 4ϵ∗. The definition
of fi,i as the ERM with data points Xi and observations Yi implies that for i = 1, 2,

∥fi,i −Yi∥n ≤ ∥fXi −Yi∥n (50)

for any f ∈ F . Finally, the almost interpolating assumption (Assumption 7) yields ∥Y1 − f1,1∥n ≤
Cϵ∗.

We obtain (48) by putting these bounds all together. Indeed, we have

∥f1,1 − f2,1∥n ≤ ∥f1,1 −Y1∥n + ∥Y1 −Y2∥n + ∥Y2 − f2,2∥n + ∥f2,2 − f2,1∥n
≤ (C + 6)ϵ∗ + ∥f2,2 −Y2∥n,
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and substituting i = 2, f = f1 into (50) yields

∥f2,2 −Y2∥n ≤ ∥f1,2 −Y2∥n
≤ ∥f1,2 − f1,1∥n + ∥f1,1 −Y1∥n + ∥Y1 +Y2∥n
≤ (C + 6)ϵ∗,

so we finally obtain
∥f1,1 − f2,1∥n ≤ 2(C + 6)ϵ∗ ≲ ϵ∗,

as desired.

6.7 Proof of Theorem 6
The proof strategy is identical to that of Corollary 2: use a fixed-point theorem to find a function
f∗ for which f∗ = EX,ξf̂n, for which we have E∥f̂n − f∗∥2 ≤ supf∗∈F V (f̂n). However, the
infinite-dimensional random-design setting makes things a bit trickier.

For given f∗,X, ξ, let FX,ξ(f
∗) denote the corresponding ERM (which we have previously denoted

f̂n). Recall that while the ERM is uniquely defined as a vector in Fn, its lift to F is in general
far from unique. We will make two temporary assumptions to streamline the proof, and explain
at the end of the proof how to remove them, at the cost of some additional technical complexity.
First, we assume that FX,ξ(f

∗) is the (unique) element of F of minimal L2(P)-norm mapping to the
finite-dimensional ERM; second, we assume that for each X, the minimal-norm lifting map, defined
by

LX(v) = argmin{∥f∥ : f ∈ F | v = (f(x1), . . . , f(xn))},
is continuous.

The map FX,ξ is the composition of the following maps:

F Fn Fn FPn v 7→PFn (v+ξ) LX

where Pn(f) = (f(x1), . . . , f(xn)), PFn
is the projection from L2(P(n)) onto the convex set Fn,

which is the LSE in fixed design, and LX is the lifting map defined above. The linear map Pn is
continuous by Assumption 8, and the map v 7→ PFn

(v + ξ) is continuous because projection onto a
convex set is continuous. As we have assumed (for now) that LX is continuous, this proves that for
every X, ξ, f 7→ FX,ξ(f) is a continuous map of the compact set F to itself.

We claim that the expectation of this map, f 7→ EX,ξ[FX,ξ(f)], is also continuous: indeed, if fk → f
then

∥FX,ξ(fk)− FX,ξ(f)∥ → 0

for each X, ξ and is bounded by the diameter DP(F), so Jensen’s inequality and dominated conver-
gence imply

∥E[FX,ξ(fk)]− E[FX,ξ(f)]∥ ≤ E[∥FX,ξ(fk)− FX,ξ(f)∥] → 0

which is continuity.

We can thus apply the Schauder fixed point theorem (Aliprantis and Border, 2006, Theorem 17.56):

Theorem 8. Let K be a nonempty compact convex subset of a Banach space, and let f : K → K be
a continuous function. Then the set of fixed points of f is compact and nonempty.

The fixed point we obtain is a function f∗ ∈ F for which f∗ = E[FX,ξ(f)] = Ef̂n and hence,

E∥f̂n − f∗∥2 = E∥f̂n − Ef̂n∥2 ≲ V(f̂n,F ,P).

This concludes the proof in the case that the lifting maps LX are continuous.

Unfortunately, the assumption that the LX are continuous turns out to be unjustified in general.
Indeed, it is not difficult to construct an example of a convex set K ⊂ R3 for which the minimal-norm
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lift PR2(K) → K is not continuous; in fact, one can construct K ⊂ R3 with no continuous section
PR2(K) → K. So we need to explain how to proceed without this assumption.

Fortunately, each LX is always continuous on the relative interior of Fn (we sketch the proof of this
at the end of the section), so the following modification of FX,ξ does turn out to be continuous:

F Fn Fn Fn F ,
Pn v 7→PFn (v+ξ) φδ LX (51)

where
φδ(v) = (1− δ)(v − v0) + v0

is simply a contraction of Fn into a (1− δ)-scale copy of itself (v0 is some arbitrarily chosen point
in the interior of Fn).

Let F̃X,ξ denote the composition of the maps in (51). By the argument above, F̃X,ξ is continuous
and E[F̃X,ξ] has a fixed point f∗.

Of course, f∗ is not a fixed point of E[FX,ξ] as we would like. However, note that ∥φδ(v)−v∥n ≤ 2δ
for any v ∈ Fn (as the diameter of Fn is at most 2). Hence, we have for any v ∈ Fn that

∥LX(φδ(v))− LX(v)∥2 ≤ 2∥φδ(v)− v∥2n + CIL(n) ≤ 8δ2 + IL(n)
on an event E of high probability; in particular this holds for v = PFn

(Pn(f
∗) + ξ), which means

that on E ,
∥F̃X,ξ(f

∗)− FX,ξ(f
∗)∥ ≤ 8δ2 + CIL(n).

Choosing δ ≲ IL(n) and applying conditional expectation (using the fact that Ec is neg-
ligible) and Jensen’s inequality, we get that the f∗ thus obtained satisfies ∥f∗ − Ef̂n∥ ≲
max{supf∗∈F V (f̂n), IL(n)}, which shows that the ERM is admissible for this f∗.

By the same argument, we may discard the assumption that the ERM is computed by finding the
element of F of minimal norm mapping to the finite-dimensional ERM f̂

(fd)
n : indeed, under the

event E , the set of functions in F mapping to f̂
(fd)
n has diameter C · IL(n), so changing the selection

rule for the ERM will shift its expectation by a perturbation of norm at most C · IL(n).

It remains to explain why the lifting map L = LX : Fn → F is continuous on the relative interior
of Fn. Replacing the ambient space with the affine hull of Fn, we may assume Fn has nonempty
interior.

Suppose vk → v in Fn and v ∈ intFn; we wish to show that L(vk) → f = L(v). As Fn is
compact, by passing to a subsequence we may assume L(vk) converges to some g ∈ F . Since Pn is
continuous, we have v = Pn(L(vk)) → Pn(g), i.e., g is a lift of v. Hence, by definition, ∥g∥ ≥ ∥f∥,
and we wish to show that equality holds.

Suppose not. Then ∥g∥ > ∥f∥ and hence ∥L(vk)∥ ≥ ∥f∥+ ϵ for all k and some ϵ > 0; that is, there
exist vk arbitrarily close to v whose minimal-norm lift has much larger norm than that of v. It suffices
to show this is impossible (i.e., that u 7→ ∥L(u)∥ is upper semicontinuous at v). This follows from
the fact that u 7→ ∥L(u)∥ is convex, as is easily verified, and a convex function is continuous on the
interior of its domain (Schneider, 2014, Theorem 1.5.3); for completeness, we give a direct proof.

Since v ∈ intFn, there exists r > 0 such that B(v, r) ⊂ Fn. This implies that for any δ > 0, one
has

B(v, δ) ⊂ v +
δ

r
(Fn − v).

Let D be the diameter of F in L2(P). We have F ⊂ B(f,D) and hence Fn ⊂ Pn(B(f,D) ∩ F).
By linearity, this implies that

v + a(Fn − v) ⊂ Pn(B(f, aD) ∩ F)

for any a > 0; choosing a = δ
r we obtain

B(v, δ) ∩ Fn ⊂ Pn

(
B

(
f,

Dδ

r

)
∩ F

)
.
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In other words, if ∥u − v∥n < δ and u ∈ Fn, there exists an element of F in B(f, Dδ
r ) mapping

to u, which in particular implies that ∥L(u)∥ ≤ ∥f∥+ Dδ
r . This means that u 7→ ∥L(u)∥ is upper

semicontinuous at v, which was precisely what we needed in order to conclude that L is continuous
at v.

6.8 Proof of Theorem 7
Preliminaries The following classical and standard results appear for example in Vershynin (2018).

Lemma 8. [Maximal inequality] Let Z1, . . . , Zk be zero mean σ-sub-Gaussian random variables
with bounded variance. Then, we have that

E max
1≤i≤k

Zi ≲ σ
√

log k.

Lemma 9 (Dudley’s lemma). The following holds for all ϵ ∈ (0, 1):

E sup
fi∈Nϵ

Gfi−f∗ ≤ C4√
n

∫ DiamP(n) (F)

ϵ

√
logN (u,F ,P(n))du, (52)

where Nϵ denotes the minimal ϵ-net of F in terms of L2(P(n)).

Lemma 10 (Sudakov’s minoration lemma). The following holds for all ϵ ∈ (0, 1):

Eξ sup
f∈F

Gf ≳ sup
ϵ≥0

ϵ

√
logN (ϵ,F ,P(n))

n
. (53)

Proof of Theorem 7. Throughout this proof, we fix a realization in P(n) = Pn that satisfies
IL(n) = o(ϵ2∗) and IU (n) = O(ϵ2∗). For such P(n), note that

logN (ϵ,F ,P) ≍ logN (ϵ,F ,P(n)) ∀ϵ ∈ (ϵ∗,Γ),

we will use the last equation in various places in this proof.

We start by finding a weakly admissible f∗ by a more constructive method than that used in the proof
of Corollary 3 (the method here is closer to the original proof of Chatterjee (2014)). Then, we prove
(19) for this choice of f∗.

Let N := {f1, . . . , fN (ϵ,F,P(n))} be a minimal ϵ∗ := ϵ∗(n)-net of F in terms of L2(P(n)), and
denote B(fi) := Bn(fi, ϵ∗), i = 1, . . . , |N |. Our weakly-admissible f∗ ∈ F is defined as

f∗ := argmax
fi∈N

E sup
f∈B(fi)

Gf−fi . (54)

Lemma 11. The following event holds with probability (over ξ) of at least 1− 2 exp(−cnϵ2∗)

∀i ∈ [|N |]

∣∣∣∣∣ sup
f∈B(fi)

Gf−fi − E sup
f∈B(fi)

Gf−fi

∣∣∣∣∣ ≤ C1ϵ
2
∗. (55)

In addition, for a fixed j ∈ 1, . . . , ⌈ϵ−1
∗ ⌉, the event

sup
fi∈N∩B(f∗,jϵ∗)

Gfi−f∗ ≤ C2jϵ
2
∗. (56)

holds with probability of at least 1− 2 exp(−c3nϵ
2
∗).

The proof of this lemma appears below. We denote the event of (55) by E , and by E(j) the event of
(56). Following Chatterjee (2014), we define

Ψξ(t) = sup
f∈Bn(f∗,t)

2Gf−f∗ − t2.

One easily verifies (see (Chatterjee, 2014, Proof of Theorem 1.1)) that Ψξ(t) is strictly concave and
that argmaxt≥0 Ψξ(t) = ∥f∗ − f̂n∥2n.
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This implies that if, for any particular ξ, we identify t1, t2 such that Ψξ(t1) > Ψξ(t2), the unique
maximum of Ψξ occurs for some t smaller than t2, i.e., ∥f∗ − f̂n∥n ≤ t2. We will take t1 = ϵ∗ and
t2 = Dϵ∗ for a sufficiently large constant D and show that Ψξ(t1) > Ψξ(t2) on E ∩ E(D). This
implies that ∥f∗ − f̂n∥n ≤ Dϵ∗ on E ∩ E(D), which precisely means that f̂n is admissible for f∗.

On the one hand, conditioned on E we have

Ψξ(ϵ∗) = sup
f∈B(f∗)

2Gf−f∗ − ϵ2∗

≥ max
fi∈N

E sup
f∈B(fi)

2Gf−f∗ − C1ϵ
2
∗,

(57)

where we used the definition of f∗ and Eq. (55) above. On the other hand, for D ≥ 2 we have under
E(D) ∩ E that

sup
f∈Bn(f∗,Dϵ∗)

Gf−f∗ ≤ max
fi∈N∩B(f∗,Dϵ∗)

sup
f∈B(fi)

Gf−fi + sup
fi∈N∩B(f∗,Dϵ∗)

Gfi−f∗

≤ sup
f∈B(f∗,ϵ∗)

Gf−f∗ + C2Dϵ2∗,

where we used the definition of f∗ and (56). Substituting in the definition of Ψ, we obtain

Ψξ(Dϵ∗) = sup
f∈Bn(f∗,Dϵ∗)

2Gf−f∗ −D2ϵ2∗

≤ 2

(
sup

f∈B(f∗)

Gf−f∗ + C2Dϵ2∗

)
−D2ϵ2∗

≤ Ψξ(ϵ∗) + (2C2 + 1)Dϵ2∗ −D2ϵ2∗.

Comparing with (57) we see that for D ≥ 2C2 + C1 + 1 (say) we have Ψξ(Dϵ∗) < Ψξ(ϵ∗) on
E ∩ E(D). Since IL(n) = o(ϵ2∗),we obtain that

∥f̂n − f∗∥2 ≤ 4∥f̂n − f∗∥2n + o(ϵ2∗) ≲ ϵ2∗,

where we used that ,and therefore weakly admissible in L2(P).

Now, we are ready to prove (19). First, we apply Sudakov’s inequality, and note that

Eξ sup
f∈F

Gf−f∗ ≳ sup
ϵ≥0

ϵ

√
logN (ϵ,F ,P(n))

n
≳ sup

ϵ≳
√

IL(n)

ϵ

√
logN (ϵ,F ,P)

n
≫ ϵ2∗, (58)

where we used that IL(n) = o(ϵ2∗) and that ϵ2

log(1/ϵ) · logN (ϵ,F ,P) is decreasing in ϵ ∈ (0,Γ). We
first claim that with probability 1− 2 exp(−cnϵ2∗),

sup
f∈B(f∗)−f∗

Gf = ω(ϵ2∗), (59)

where f∗ is our admissible function. To see this, by Lemma 9 and (54)

ω(ϵ2∗) = E sup
f∈F

Gf−f∗ ≤ max
fi∈N∩Bn(f∗,Ef∗ )

E sup
f∈B(fi)

Gf−fi + Emax
fi∈N

Gfi−f∗

≤ E sup
f∈B(f∗)

Gf−f∗ +
C1√
n

∫ Γ

ϵ∗

√
logN (t,F ,P)dt

≤ E sup
f∈B(f∗)

Gf−f∗ +
C2√
n

∫ Γ

ϵ∗

√
logN (t,F ,P(n))dt

≤ E sup
f∈B(f∗)

Gf−f∗ +O(ϵ2∗),

where we used (58) and Lemma 9 and that IL(n) = o(ϵ2∗) and IU (n) = Θ(ϵ2∗). Hence,

E sup
f∈B(f∗)

Gf−f∗ = ω(ϵ2∗)−O(ϵ2∗) = ω(ϵ2∗). (60)
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This gives us a lower bound for supf∈B(f∗) Gf−f∗ in expectation, and high-probability bound
follows from the proof of Lemma 11 below; so we only sketch it: supf∈B(f∗) Gf−f∗ is convex and
O(ϵ∗n

−1/2)-Lipschitz, which means that it deviates from its expectation by ϵ2∗ with probability at
most 2 exp(−cnϵ2∗). Combining this with (60) proves (59).

Let V denote the set of noise vectors for which ∥f̂n − f∗∥n ≤ Cϵ∗ and supf∈B(f∗) Gf−f∗ = ω(ϵ2∗);
by what we have already proven, we have

Pr(ξ ∈ V) ≥ 1− C exp(−cnϵ2∗).

Let V ′ = V ∩ (−V) = {ξ : ξ,−ξ ∈ V}. By the union bound,

Pr(ξ ∈ V ′) ≥ 1− 2C exp(−cnϵ2∗).

Fix any ξ ∈ V ′, and denote by f̂−
n the ERM with the flipped noise vector −ξ:

f̂−
n := argmin

f∈F

(∑
i

(−ξi + f∗(xi)− f(xi))
2

)
.

Since ξ,−ξ ∈ V ′ ⊂ V , we have

∥f̂n − f̂−
n ∥n ≤ ∥f̂n − f∗∥n + ∥f̂−

n − f∗∥n ≤ Cϵ∗.

In other words, f̂−
n ∈ Bn(f̂n, Cϵ∗), so to prove (19), it thus suffices to show that f̂−

n is not a
δ-approximate minimizer for δ = ω(ϵ2∗) with respect to the noise ξ, i.e.,

1

n

n∑
i=1

(f∗(xi) + ξi − f̂−
n (xi))

2 ≥ 1

n

n∑
i=1

(f∗(xi) + ξi − f̂n(xi))
2 + ω(ϵ2∗).

Equivalently, (by subtracting ∥ξ∥2n from both sides as in (35)), we wish to prove that

−2Gf̂−
n −f∗ + ∥f̂−

n − f∗∥2n ≥ −2Gf̂n−f∗ + ∥f̂n − f∗∥2n + ω(ϵ2∗).

Since ∥f̂−
n − f∗∥2n, ∥f̂−

n − f∗∥2n = O(ϵ2∗) as ξ,−ξ ∈ V , this reduces to showing that

−2Gf̂−
n −f∗ ≥ −2Gf̂n−f∗ + ω(ϵ2∗). (61)

On the one hand, by using Eqs. (57) and (59) above it is easy to see that on V ′ ⊂ V , we have
Gf̂n−f∗ ≥ ω(ϵ2∗). On the other hand,

Gf̂−
n −f∗ =

1

n
⟨f̂n − f∗, ξ⟩ = − 1

n
⟨f̂−

n − f∗,−ξ⟩. (62)

But note that 1
n ⟨f̂

−
n − f∗,−ξ⟩ is the process for the noise vector −ξ evaluated at the corresponding

ERM, namely f̂−
n , and we have −ξ ∈ V ′, which implies that

1

n
⟨f̂−

n − f∗,−ξ⟩ ≥ ω(ϵ2∗).

Combining these last two inequalities we see that (61) indeed holds over all V ′, which implies that
(19) holds on V ′, as desired.

It remains to prove Lemma 11.

Proof of Lemma 11. First, define

Fi(ξ) := 2n−1 sup
f∈B(fi)

n∑
k=1

(f − fi)(xk) · ξk.
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Since ∥f−fi∥n ≤ 2∥f−fi∥+O(ϵ∗) = O(ϵ∗) for all f ∈ B(fi), we see that Fi(·) is a O(ϵ∗n
−1/2)-

Lipschitz and also convex function (with respect to the usual Euclidean norm on Rn). Hence, we
apply (12) and obtain

Pr
ξ

{∣∣∣∣∣ sup
f∈B(fi)

Gf−fi − E sup
f∈Bn(fi)

Gf−fi

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−cnt2/ϵ2∗). (63)

Therefore, by taking a union bound over 1 ≤ i ≤ |N |

Pr
ξ

{
∀i ∈ [|N |] :

∣∣∣∣∣ sup
f∈Bn(fi)

Gf−fi − E sup
f∈Bn(fi)

Gf−fi

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−cnt2/ϵ2∗ + log |N |).

Now, recall that N := N (ϵ∗,F ,P(n)) and that by the definition of the minimax rate,

log |N (ϵ, |/n ∼ ϵ2∗.

This allows us to choose t = Cϵ2∗ (for large enough C > 0) such that with probability of at least
1− 2 exp(−cnϵ2∗), the following holds:

∀i ∈ [|N |] :

∣∣∣∣∣ sup
f∈Bn(fi)

Gf−fi − E sup
f∈Bn(fi)

Gf−fi

∣∣∣∣∣ ≤ Cϵ∗
√
log |N |/n ≤ C1ϵ

2
∗, (64)

which proves (55).

For the second part of the lemma, fix j ≥ 1, and define

Fj(ξ) = sup
f∈N∩Bn(f∗,jϵ∗)

2Gfj−f∗ .

Again, it is easy to verify that Fj(·) is convex and 2jϵ∗n
−1/2-Lipschitz. Using (12) once again, we

obtain that

Pr

{∣∣∣∣∣ sup
f∈N∩Bn(f∗,jϵ∗)

Gf−f∗ − E sup
f∈N∩Bn(f∗,jϵ∗)

Gf−f∗

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−cn(t/j)2/ϵ2∗).

Choosing t ∼ jϵ∗/
√
n ≲ jϵ2∗, we obtain

Pr

{∣∣∣∣∣ sup
f∈N∩Bn(f∗,jϵ∗)

Gf−f∗ − E sup
f∈N∩Bn(f∗,jϵ∗)

Gf−f∗

∣∣∣∣∣ ≥ jϵ2∗

}
≤ 2 exp(−cϵ2∗). (65)

Next, by applying the maximal inequality (Lemma 8) over |N | random variables, and the definition
of the minimax rate,

E sup
f∈N∩Bn(f∗,jϵ∗)

Gf−f∗ ≤ Cjϵ∗
√

log |N |/n ≤ C1jϵ
2
∗. (66)

Combining (65) and (66) yields (56), concluding the proof.

7 Loose Ends
Lemma 12. Under Assumption 1 the following holds: ρS(X) ≲ max{IL(X), ϵ2∗} for any realization
X.

Proof. It is always the case that ρS(X) ≤ max{IL(X), ϵ2∗} for any X. Indeed, if (13) holds, then
for any estimator f̄n such that ξ 7→ f̄n(ξ) is 1-Lipschitz, ∥ξ − ξ′∥n ≲ ϵ∗ implies that

∥f̄n(ξ′)− f̄n(ξ)∥2 ≤ 2(∥f̄n(ξ′)− f̄n(ξ)∥2n+IL(X)) ≤ 2(∥ξ′−ξ∥2n+IL(X)) ≲ max{ϵ2∗, IL(X)}

deterministically, not just with non-negligible probability.
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Lemma 13. Under Assumptions 1, 6, 7, we have that

ρS(X, f∗) ≤ ρO(n,P, f) ≲ max{IL(n,P), ϵ2∗}.

Proof. Let E ⊂ Xn ×Rn be the event that diamP(OM ′ϵ2∗
) ≤ ρO(n,P, f∗) and ∥f̂n(X, ξ)−Y∥2n ≤

CIϵ
2
∗. For any X ∈ Xn, let EX = {ξ ∈ Rn | (X, ξ) ∈ E}.

Since Pr(E) ≥ exp(−cInϵ
2
∗) by definition, the set

E ′ = {X ∈ Xn | Pr
ξ
(EX) ≤ ρO(n,P, f∗)) ≥ exp(−cInϵ

2
∗) ∈ E}

satisfies PrXn(E ′) ≥ exp(−(cI/2)nϵ
2
∗) by Fubini’s theorem.

Fix X ∈ E ′, ξ ∈ EX, and let Y = f∗ + ξ|X as usual. If ∥ξ′ − ξ∥ ≤
√
M ′−CI

2 ϵ∗ then

∥f̂n(X, ξ′)−Y∥2n ≤ 2(∥f̂n(X, ξ′)− f̂n(X, ξ)∥2n + ∥f̂n(X, ξ)−Y∥2n)
≤ 2((M ′ − CI)ϵ

2
∗ + CI)ϵ

2
∗ = M ′ϵ2∗

where we have used ∥f̂n(X, ξ′)− f̂n(ξ)∥n ≤ ∥ξ−ξ′∥n as f̂n is 1-Lipschitz in the noise. In particular
f̂n(X, ξ′) ∈ OM ′ϵ2∗

and so ∥f̂n(X, ξ′)− f̂n(X, ξ)∥ ≤ ρO(n,P, f∗), as (X, ξ) ∈ E . Thus, if M ′ is

chosen large enough so that M ≤
√
M ′−CI

2 ϵ∗, one obtains (13) is satisfied with δ(n) = ρO(n,P, f)
and c2 = cI/2, implying that ρS(X, f∗) ≤ ρO(n,P, f).

To see that ρO(n,P, f∗) ≲ max{IL(n,P), ϵ2∗} is even easier: it’s easy to see that
diamPn(OM ′ϵ2∗

) ≲ ϵ∗ (see the end of the proof of Theorem 1 for details), and the defini-
tion of the lower isometry remainder implies that diamP(OM ′ϵ2∗

) ≲ diamP(OM ′ϵ2∗
)+
√
IL(n,P) on

the high-probability event IL(X) ≤ IL(n,P). This yields that for an appropriate choice of C > 0,
δ(n) = Cmax{IL(n,P), ϵ2∗} satisfies (14) and hence ρO(n,P, f∗) ≤ max{IL(n,P), ϵ2∗}.

7.1 Full proof of Corollary 2
Note that when the convex set

Fn := {(f(X1), . . . , f(Xn)) : f ∈ F}

is not compact, we cannot apply the fixed point theorem directly. However, if we find f∗ ∈ F such
that

B2(f̂n) ≤ max{C1 · V (f̂n), C2/n}, (67)

where C > 0 is some absolute constant, then the proof follows from the argument of §6.3, since the
fixed point theorem was only used to find a f∗ ∈ F satisfying the last equation.

First let us provide some intuition to our proof. The idea is to find f∗ ∈ F with low bias by an
iterative argument similar to the proof of Banach’s fixed point theorem. If f̂n has a “high” bias on
some underlying f0 ∈ F , then, f̂n should have a lower or equal bias when the underlying function is
f1 = E0f̂n, where E0 means taking expectation when f∗ = f0. If f1 has a “low” bias, then we are
done. Otherwise, consider the underlying f2 = E1f̂n, and repeat this process for n times. We will
show that some m ≤ n, f∗ = fm will be our “admissible” function.

This idea is captured in the following lemma (that we will prove below):

Lemma 14. Let f0 ∈ F and for any i ≥ 1 denote by fi = Ei−1f̂n. Then, there exists m = O(n)
such that

B2(f̂ (m)
n ) ≤ 3 · V (f̂ (m)

n ) + C/n, (68)

where f̂
(m)
n is the ERM when f∗ = fm.

This certainly implies that B2(f̂n) ≤ max{C1 · V (f̂n), C2/n}, so this lemma is all we need to
complete the proof of Corollary 2.
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Proof of Lemma 14. First, recall that

f̂n = argmax
f∈F

(2⟨ξ, f − f∗⟩n − ∥f − f∗∥2n) = argmax
f∈F

∥f − (f∗ + ξ)∥2n − ∥ξ∥2n. (69)

For each (ξ, f∗) ∈ R2n define the score function Lξ,f∗ : Rn → R+

Lξ,f∗(f) = (2⟨ξ, f − f∗⟩n − ∥f − f∗∥2n.

and let Lf∗(f̂n) = ELξ(f̂n). Note that as ξ is isotropic Gaussian then

1−O(1/
√
n) ≤ Lf∗(f̂n) ≤ 2 +O(1/

√
n).

Claim. For every f∗ ∈ F , either

B2(f̂n) ≤ 3V (f̂n) + C/n (70)
or

LEf̂n(f̂n)− ELf∗(f̂n) ≥
B2(f̂n)

3
. (71)

The lemma follows from the claim by an iterative argument. Indeed, let f0 = f∗ ∈ F be some
function. If f0 satisfies (70), we are done. Otherwise, f1 = Ef̂n satisfies Lf1(f̂n)−Lf0(f̂n) ≥ C′

n . if
f1 satisfies (68), then we stop. Otherwise, repeat the same argument with f1 and f2 = Ef̂n(f1), and
so on. Since the score Lf (f̂n) is bounded above by a constant, eventually some fm with m ≤ n/C
will have to satisfy (68). It thus remains to prove the claim.

Proof of the claim Suppose that (70) does not hold, i.e., B2(f̂n) ≤ 3V (f̂n)+C/n. Write f0 = f∗,
f1 = Ef̂n, set Ṽ (f̂n) := max{3V (f̂n), C/n} and let f̃n be the restricted LS on

G := Bn(f1,

√
Ṽ (f̂n)) = {f ∈ F : ∥f − f1∥2n ≤ Ṽ (f̂n)},

namely, f̃n := argminf∈G ∥Y − f∥2n.

Using (69), we have that

Lξ,f1(f̂n) ≥ Lξ,f1(f̃n) = sup
f∈G

2⟨ξ, f − f1⟩n − ∥f − f1∥2n ≥ sup
f∈G

2⟨ξ, f − f1⟩n − Ṽ 2(f̂n),

where the first inequality follows from G ⊆ F , and the second equality follows from the fact that
Diam(G)2 ≤ Ṽ (f̂n).

By Chebyshev’s inequality, with probability at least 2/3, we have that f̂n ∈ G; we denote this event
by E . Under this event, we have that

sup
f∈G

⟨ξ, f⟩n ≥ ⟨ξ, f̂n⟩n.

Hence, using the last two equations, the following holds on the event E :

Lξ,f1(f̂n)− Lξ,f0(f̂n) ≥ L̃ξ,f1(f̃n)− Lξ,f0(f̂n)

≥ ∥f̂n − f0∥2n − ⟨ξ, f1 − f0⟩n − Ṽ (f̂n).

Next , note that ⟨ξ, f1 − f0⟩n ∼ N(0, ∥f1 − f0∥2n) = N(0, B2(f̂n)). Hence, there exists an event
E1 ⊂ E that holds with probability of at least 0.6 such that

Lξ,f1(f̂n)− Lξ,f0(f̂n) ≥ ∥f̂n − f0∥2n − Ṽ0(f̂n)− C ·
√
B2

0(f̂n)/n. (72)

Next, using the fact that ∥f̂n − f0∥n is 1/
√
n Lipschitz and the LCP inequality (12), we know that

∥f̂n − f0∥n − E∥f̂n − f0∥n is zero mean and 1/
√
n sub-Gaussian, so by a standard tail integration,

one has
E0∥f̂n − f0∥2n = E0∥f̂n − f0∥2n +O(max{E0∥f̂n − f0∥n/

√
n, 1/n}).
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Finally, we take a median over (72), and use the last equation and obtain:

Lf1(f̂n)− Lf0(f̂n) ≥ E0∥f̂n − f0∥2n − 3V 2
0 (f̂n)−O(max{

√
B2

0(f̂n)/n,E0∥f̂n − f0∥n/
√
n, 1/n})

= B2
0(f̂n) + V 2

0 (f̂n)− 3V 2
0 (f̂n)−O(max{E0∥f̂n − f0∥n/

√
n, 1/n})

= B2
0(f̂n)− 2V 2

0 (f̂n)−O(max{E0∥f̂n − f0∥n/
√
n, 1/n})

≥ B2(f̂n)/3,

where we used the assumption B2
0(f̂n) ≥ 3V0(f̂n) + C/n, for C that is large enough; the claim

follows.

7.2 Addendum to §5.1

Example 1. Let X = Sn, the Euclidean unit sphere of dimension n contained in Rn+1, let P be the
uniform measure on X , and for each hyperplane H passing through the origin, let PH be the uniform
measure on X ∩H ∼= Sn−1. The set of such hyperplanes is the real (n+1, n) Grassmanian, denoted
Grn+1,n.

For each H , let 1H denote the characteristic function of H , and let F = conv{1H , 1 − 1H : H ∈
Grn+1,n}. Note that in L2(P), F reduces to the class of constant functions between 0 and 1 because
for any H , 1− 1H ≡ 0 and 1− 1H ≡ 1 almost everywhere on X . Similarly, in L2(PH), 1H ≡ 1 and
1− 1H ≡ 0, while for any H ′ ̸= H , 1′H ≡ 1 and 1− 1H ≡ 0 because H ∩H ′ has n-dimensional
Hausdorff measure 0. In particular, regressing F on L2(P) or L2(PH) reduces to estimating an
element of [0, 1] given n noisy observations, for which the minimax rate is 1

n .

On the other hand, let P = {P} ∪ {PH : H ∈ Grn+1,n}, and consider the distribution-unaware
minimax risk M(du)

n (F ,P). We claim that M(du)
n (F ,P) = ω(1) even when there is no noise. The

intuition behind this is that when the estimator f̄n observes (X1, Y1), . . . , (Xn, Yn), it does not
“know” whether the distribution is P or PH where H = Span(X1, . . . , Xn), and thus it does not
know whether to generalize the observations in a way which is consistent with the L2(P) norm or the
L2(PH) norm.

To see this formally, let f̄n : D → F be some estimator. For any X ∈ Xn, let span(X) :=
span(X1, . . . , Xn), which is an element of Grn+1,n with probability 1. In the noiseless setting, any
sample X,Y such that span(X) ∈ Grn+1,n will have Y a multiple of (1, . . . , 1) with probability
1, so we may as well consider Y to be a constant function. To get a lower bound on the minimax
rate, it is also sufficient to consider only the extreme points of F , namely the functions in F ′ =
{1H , 1− 1H : H ∈ Grn+1,n}, which are {0, 1}-functions, so we think of our estimators as functions
f̄n : Xn × {0, 1} → F . We also assume for simplicity that f̄n always returns a function in F ′; if f̄n
is allowed to take values in the full convex hull F , one obtains the same lower bound on the risk of
f̄n by a more complicated version of the argument below.

Suppose, for example, that the estimator is given the sample (X, 1). In the noiseless setting, there
is no point in returning a function inconsistent with the observations, so f̄n must return either 1H
for H = span(X) or 1 − 1H′ for some H ′ ̸= H (not containing any of the Xi). Similarly, on the
sample (X, 0) an optimal estimator f̄n will return either 1− 1H or 1H′ for some H ′ ̸= H . Let

pH,0 = Pr
Xi∼PH

{f̄n(X, 0) = 1− 1H}

pH,1 = Pr
Xi∼PH

{f̄n(X, 1) = 1H}

p0 = Pr
Xi∼P

{f̄n(X, 1) = 1− 1span(X)}

p1 = Pr
Xi∼P

{f̄n(X, 1) = 1span(X)}.

The Grassmannian Grn+1,n, which is itself isomorphic to Sn, has a uniform (i.e., rotationally
invariant) probability measure, and one has pi = EH∼U(Grn+1,n)[pH,i]: choosing n points from
the unit sphere in Rn+1 is the same as choosing a uniform hyperplane and then choosing n points
uniformly from that hyperplane, by rotational invariance.
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One computes that pH,i and pi determine the error of f̄n on F ′ as follows:

ε2f∗,PH := E
∫
(f̄n − f∗)2 dPH =

{
pH,0 f∗ ∈ {1− 1H} ∪ {1′H}H′ ̸=H

pH,1 f∗ ∈ {1H} ∪ {1− 1′H}H′ ̸=H
,

ε2f∗,P := E
∫
(f̄n − f∗)2 dP =

{
1− p0 f∗ ∈ {1H}H∈Grn+1,n

1− p1 f∗ ∈ {1− 1H}H∈Grn+1,n

.

To lower-bound the distribution-unaware minimax risk, we consider the expected error of f̄n under
two different scenarios: when we choose a hyperplane H uniformly at random and measure the
error of f̄n on the function 1H when the input distribution is PH , and when we fix f∗ = 1 − 1H0

and measure the expected error of f̄n when the distribution is P. By the above, the error in the
first scenario is EH∼U(Grn+1,n)[pH,1] = p1, while the error in the second scenario is 1 − p1. As

max{1− p1, p1} ≥ 1
2 , this shows that M(du)

n (F ,P) = ω(1), as desired.

Remark 17. Example 1 may seem unnatural, as the measures P and PH are all mutually singular,
which leads to the “collapse” of the function class in different ways in L2(P) and each L2(PH). To
exclude such pathology, one might wish to consider only families of distributions all of which are
absolutely continuous with respect to some reference measure P(0). It is not difficult, though, to
modify Example 1 in such a way which avoids any measurability issues: for given n, let F = Fq be
the finite field of cardinality q for some q > n, let X = Fn+1\{0}, let P be the uniform probability
measure on X , and for each H in the set Grn+1,n(F ) of n-dimensional linear subspaces of Fn+1,
let PH be the uniform probability measure on H\{0} ⊂ X , let F = conv{1H , 1 − 1H : H ∈
Grn+1,n(F )}, and let P = {P} ∪ {PH}H∈Grn+1,n(F ) as above. (Note that all measures in P are
absolutely continuous with respect to P.) As q > n, each hyperplane H has P-measure O(n−1) in X
and for any H ′ ̸= H , H ∩H ′ has PH -measure O(n−1), so one easily verifies all the computations
in the example are still valid, up to errors of order O(n−1).

38


	All remaining results
	On the admissibility of ERM
	Fixed design setting
	Random Design Setting

	On The Landscape of ERM in the non-Donsker regime

	Discussion and Additional Remarks
	On the optimality of the variance error term in random design setting
	Additional Remarks
	Remarks on §2.2
	Remarks on §2.3
	Remarks on §4.1


	Proofs
	Proof of Theorem 1
	Proof of Theorem 1 under (15)
	Full proof of Theorem 1

	Proof of Theorem 2
	Proof of Corollary 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Loose Ends
	Full proof of Corollary 2 
	Addendum to §5.1 


