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A Demo Videos1

For convincing results, we have created a webpage that contains the rendering videos of multiple2

scenes. We highly recommend readers visit this webpage (the “index.html” file in the folder).3

Please note that the webpage may not be fully supported on Safari browser; therefore, we recommend4

using Google Chrome for optimal viewing experience.5

B Architectures6

A-NeRF. A-NeRF consists of two Multilayer Perceptrons (MLPs), each comprising four linear layers7

with an additional residual connection. The width of each linear layer, denoted as c, is set to 128 for8

the RWAVS dataset and 256 for the SoundSpaces dataset. In A-NeRF, all linear layers are followed9

by ReLU activation layers, except for the last layer, where the ReLU activation is replaced with the10

Sigmoid function. The first MLP takes the listener’s position (x, y) and the frequency f ∈ [0, F ] as11

input, where F represents the number of frequency bins. It predicts a mixture mask mm ∈ R for12

the given frequency f and generates a feature vector with c channels. Prior to feeding them into the13

MLP, we apply positional encoding to the listener’s position (x, y) and the frequency f . We set the14

maximum frequency used for positional encoding as 10.15

Then, we adopt relative transformation (Sec. 4.4) to project the listener’s direction θ into a high-16

frequency space. We concatenate the transformed listener’s direction and the feature vector, and17

feed it into the second MLP. The second MLP is appended with a Sigmoid layer and a scaling layer,18

ensuring that the difference mask md estimated by the second MLP falls within the range of [−1, 1].19

For each frequency query f , A-NeRF estimates two masks: mm and md, both of which are scalars.20

We iterate over all frequencies f ∈ [0, F ] to obtain the complete masks mm and md. After computing21

the masks, we synthesize the target audio at according to the procedure discussed in Sec. 4.2.22

V-NeRF. We utilize the nerfacto model provided by nerf-studio [1] as the V-NeRF. This model23

combines several well-established and successful methods, including camera pose refinement [2, 3],24

image appearance conditioning [4], hash encoding, and proposal sampling [5]. Due to its robust and25

effective performance on real-world data, we utilize the default settings of the nerfacto model without26

making any architectural modifications. For more detailed information regarding the architecture of27

V-NeRF, please refer to the documentation provided by nerf-studio.28

AV-Mapper. For each camera pose, we render both RGB and depth images using V-NeRF. We resize29

images to 256 × 256 and center-crop to 224 × 224 prior to feeding them into a frozen ResNet-1830

[6] image encoder pre-trained on ImageNet-1K dataset [7]. ResNet-18 embeds the input image as a31

512-dimension feature vector. We concatenate the RGB and the depth feature vectors, and input them32

into the AV-Mapper to learn environmental knowledge of the sound acoustics. AV-Mapper projects33

the input feature vectors to a latent embedding of c channels. We implement the AV-Mapper as a34

3-layer MLP, with each intermediate linear layer followed by a ReLU activation function.35
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C Implementation Details36

RWAVS Dataset. We implement our method using the PyTorch framework [8]. We employ Adam37

optimizer [9] with β1 = 0.9 and β2 = 0.999 for model optimization. The initial learning rate is set38

to 5e−4 and exponentially decreased to 5e−6. We train the model for 100 epochs with a batch size39

of 32.40

Before feeding the camera position (x, y) to A-NeRF, we normalize it within the range [−1, 1] ×41

[−1, 1] and apply positional encoding [10]. Additionally, we resample all audios to a frequency of42

22050 Hz and utilize the Short-Time Fourier Transform (STFT) to convert waveform audios into the43

time-frequency domain. For this transformation, we set the number of ffts as 512, the window length44

as 512, and the hop length as 128. A Hanning window is applied during the process. Finally, we45

compute both the magnitude and the phase from the spectrogram.46

We use magnitude distance (MAG) [11] and envelope distance (ENV) [12] as evaluation metrics for47

audio quality. The MAG metric quantifies audio quality in the time-frequency domain and is defined48

as follows:49

MAG(mprd,mgt) = ||mprd −mgt||2 , (1)
where mprd is the predicted magnitude, and mgt is the ground-truth magnitude. ENV metric that50

measures the audio quality in the time domain is formatted as:51

ENV(aprd, agt) = ||hilbert(aprd)− hilbert(agt)||2 , (2)
where aprd is the predicted audio, agt is the ground-truth audio, and hilbert is the Hilbert transfor-52

mation function [13].53

SoundSpaces Dataset. Our model is trained on the SoundSpaces dataset using the same training54

settings as RWAVS dataset. We resample the impulse responses to 22050 Hz following INRAS [14].55

The 2D position is normalized to [−1, 1]× [−1, 1] prior to positional encoding.56

We tailor A-NeRF for impulse response prediction with some minor modifications: (1) The input57

frequency query f is replaced by a time query t ∈ [0, T ], where T represents the length of an impulse58

response signal; (2) the first MLP only generates a feature vector while discarding the mixture mask59

mm; (3) the second MLP predicts impulse response signals instead of difference mask md.60

Since the generated impulse responses are in the time domain, we employ STFT to convert them into61

the time-frequency domain and calculate their magnitudes. We utilize an STFT configuration with62

512 FFTs, a sliding window width of 512, a hop stride of 128, and a Hanning window. We supervise63

the model training using the L2 distance between the ground-truth magnitudes and the predicted64

magnitudes.65

For performance evaluation, we choose three metrics: T60, C50, and EDT [14]. T60 characterizes66

the reverberation effects in an audio signal by measuring the time it takes for the audio’s energy to67

attenuate by 60 dB. The T60 distance is calculated as follows:68

T60(aprd, agt) =
|T60(aprd)− T60(agt)|

T60(agt)
, (3)

where aprd and agt are the predicted and ground-truth impulse responses, respectively. C50 quantifies69

the energy ratio between early reflections and late reverberation, allowing it to represent the clarity70

and loudness of the audio. We format the C50 distance as:71

C50(aprd, agt) = |C50(aprd)− C50(agt)| . (4)
The EDT metric shares similarities with T60 but places greater emphasis on capturing the early72

reflections of impulse responses. The EDT distance is defined as follows:73

EDT(aprd, agt) = |EDT(aprd)− EDT(agt)| . (5)
With these three metrics, we can evaluate the generation quality of impulse responses from different74

aspects, including clarity, energy, and reverberation.75

D Setup of RWAVS Dataset76

Recording Devices. We have assembled a recording system, as depicted in Fig. 7, to cap-77

ture high-quality audio-visual scenes in real-world environments. Our system comprises a78

3Dio Free Space XLR binaural microphone for capturing stereo audio, a TASCAM DR-79

60DMKII for recording and storing audio, and a GoPro Max for capturing accompanying videos.80
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Figure 7: Recording system. It comprises a profes-
sional binaural microphone, a sports camera, and a
recorder.

This system is portable, allowing us to posi-81

tion it flexibly and capture scenes from different82

camera poses. In addition, we utilized an LG83

XBOOM 360 omnidirectional speaker to serve84

as a sound source, which plays music repeatedly.85

Figure 5 in the main paper illustrates the setup86

used to record data in four distinct environments:87

office, house, apartment, and outdoors. Within88

each environment, we positioned the speaker at89

multiple locations to capture diverse acoustic90

effects. Each combination of environment and91

sound source represents an audio-visual scene.92

We collected data ranging from 10 to 25 min-93

utes for each scene, resulting in a total collection94

of 232 minutes (3.8 hours) of diverse data, en-95

compassing various environments and source96

positions.97
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Figure 8: Example scenes. We present several example scenes along with their corresponding camera
pose distributions. We display the position density heatmap and the direction distribution map.
RWAVS dataset is composed of diverse environments with various camera poses.

Example Scenes. In Fig.8, we present four example scenes from RWAVS dataset along with the98

corresponding camera pose distributions. The first column showcases images of the example scenes.99

The second column displays the camera poses used for video recording: the black dot represents the100

sound source, and each blue triangle represents a camera pose. We normalize all camera poses to the101

range of [−1, 1] and visualize them in an x-y plane from a top-down view. The third column contains102
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2D density heatmaps, which illustrate the distribution of camera poses in each unit area: each pixel103

represents a unit area and its color shows the number of camera poses in this area. As shown in the104

figure, RWAVS dataset encompasses densely covered camera poses for each environment. We also105

analyze the distribution of camera directions (shown in the last column of Fig.8). We present the106

direction distribution in a polar coordinate system with the angle representing the viewing direction107

and the radius meaning the number of camera poses in this region. RWAVS dataset consists of various108

viewpoints that approximately cover a 360◦range of viewing directions. In summary, the RWAVS109

dataset comprises diverse environments with a wide range of camera poses.110
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