
Supplementary Material: Continuous-Time Functional Diffusion Processes560

A Reverse Functional Diffusion Processes561

In this Section, we review the mathematical details to obtain the backward FDP discussed in Theo-562

rem 1. Depending on the considered class of noise, different approaches are needed. First, we present563

in Appendix A.1 the conditions to ensure existence of the backward process , which we use if the C564

operator is an identity matrix, C = I . Then we move to a different approach in Appendix A.2 for the565

case C 6= I .566

A.1 Follmer Formulation567

The work in Föllmer (1986) is based on a finite entropy condition, which we report here as Condition 1.568

One simple way to ensure that the condition is satisfied is to assume:569

Condition 1. For a given k, define Q(k) to be the path measure corresponding to the (infinite) system570

⇢
dXi

t
= bi(Xt, t)dt+ dW i

t
, i 6= k

dXi

t
= dW k

t
, i = k.

(22)

We say that Q satisfies the finite local entropy condition if KL
⇥
Q k Q(k)

⇤
< 1, 8k.571

Define F (i)
t

= �(Xi

0, X
j

s
, 0  s  t, j 6= i).572

Assumption 1.

Z
T

0
bi(Xt, t)

2dt+
X

j 6=i

E[
Z

T

0

⇣
bj(Xt, t)� E

h
bj(Xt, t) | F (i)

t

i⌘2
dt] < 1,Q(i)a.s. (23)

Notice that if Assumption 1 is true, then Condition 1 holds (Föllmer (1986), Thm. 2.23)573

Theorem 3. If KL
⇥
Q k Q(k)

⇤
< 1, then KL

h
Q̂ k Q̂(k)

i
< 1.574

Proof. The proof can be obtained by adapting the result of Lemma 3.6 of Föllmer & Wakolbinger575

(1986).576

This Theorem states that if the forward FDP path measure Q satisfies the finite local entropy condition,577

then also the reverse FDP path measure Q̂ satisfies the finite local entropy condition.578

Theorem 4. Let Q be a finite entropy measure. Then:579
(
dXk

t
= bk(Xt, t)dt+ dW k

t
, under Q

dX̂k

t
= b̂k(X̂t, t)dt+ dŴ k

t
, under Q̂ (24)

where:580

@ log
⇣
⇢(d)
t

(xk |xj , j 6= k)
⌘

@xk
= b̂k(x, T � t) + bk(x, t) (25)

Proof. For the proof, we refer to Theorem 3.14 of Föllmer & Wakolbinger (1986).581

A.2 Millet Formulation582

Let L2(R) = {x 2 H :
P

ri(xi)2 < 1}. For simplicity, we overload the notation of the letter K,583

and use it for generic constants, that might be different on a case by case basis.584

Assumption 2.

8x 2 L2(R), sup
t

{
X

ri(bi(x, t))2}+
X

(ri)2  K(1 +
X

ri(xi)2)

8x, y 2 L2(R), sup
t

{
X

ri(bi(x, t)� bi(y, t))2}  K
X

ri(xi � yi)2
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This assumption is simply the translation of H1 from Millet et al. (1989) to our notation.585

Assumption 3. There exists an increasing sequence of finite subsets J(n), n 2 N,[nJ(n) = N such586

that 8n 2 N,M > 0 there exists a constant K(M,n) such that the following holds:587

sup
t

0

@ sup
i2J(n)

0

@
 
sup
x

|bi(x, t)| : sup
j2J(n)

|xj |  M

!
+
X

j

rj

1

A

1

A  K(M,n).

Again, this assumption is simply the translation of H5 from Millet et al. (1989) to our notation.588

Assumption 4. Either i):589

8x, y 2 L2(R), sup
t

{
X

ri(bi(x, t)� bi(y, t))2}  K
X

(ri)2(xi � yi)2,

or ii): 8i, bi(x) is a function of x for at most M coordinates and590

8x, y 2 L2(R), sup
t

{
X

(ri)2(bi(x, t)� bi(y, t))2}  K
X

(ri)2(xi � yi)2.

This corresponds to satisfying either H3 or jointly H2 and H4 of Millet et al. (1989). For simplicity,591

we can combine together the different assumptions into592

Assumption 5. Let Assumption 2, Assumption 3, and Assumption 4 hold.593

Finally, we state required assumptions about the density:594

Assumption 6. Suppose that the initial condition is X0 2 L2(R).595

• Assume that the conditional law of xi given xj , j 6= i has density ⇢(d)
t

(xi |xj , j 6= i) w.r.t596

Lebesgue measure on R.597

• Assume that
R 1
t0

R
DJ

|ri d
dxi (⇢

(d)
t

(xi |xj , j 6= i))|dxi⇢t(dxj 6=i)dt < 1, for fixed subset598

J ⇢ N,t0 > 0 and DJ = {(
Q

j2J
Kj)⇥ (

Q
j /2J

R),Kj compact in R} \ L2(R).599

We reported in our notation the content of Theorem 4.3 of Millet et al. (1989). This can be used to600

prove the existence of the backward process.601

A.3 Proof of Theorem 1602

If R = I , then we assume Assumption 1. Consequently, Q is a finite entropy measure. Then603

Theorem 4 holds, from which the desired result. If, instead R 6= I , then we require Assumption 5,As-604

sumption 6. Application of Thm 4.3 of Millet et al. (1989) allows to prove the validity of Theorem 1605

also in this case.606

A.3.1 Proof of Corollary 1607

Assumption 5 is required directly. We need to show that with the considered restrictions Assumption 6608

is valid.609

Since
P

i
ri < 1, then

P
i
(ri)2 = Ka < 1. Moreover, (bi(xi, t))2 < K2

b
(xi)2. Then,610

8x 2 L2(R), the following holds sup
t
{
P

ri(bi(x, t))2} +
P

(ri)2 
P

riK2
b
(xi)2 + Ka 611

max(Ka,K2
b
)
�
1 +

P
ri(xi)2

�
. Similarly, 8x, y 2 L2(R) we have sup

t
{
P

ri(bi(x, t) �612

bi(y, t))2} 
P

riK2
b
(xi � yi)2. Thus Assumption 2 is satisfied.613

Since bi(x, t) is bounded and independent on t, Assumption 3 is satisfied, as explicitly discussed in614

Millet et al. (1989).615

Finally, since bi(x) is a function of x for M = 1 coordinate, and sup
t
{
P

(ri)2(bi(x, t) �616

bi(y, t))2} 
P

(ri)2K2
b
(xi � yi)2, Assumption 4 is satisfied.617

Then, combined toghether Assumption 5 holds.618
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A.4 Girsanov Regularity619

Condition 2. Assume that �✓(x, t) is an F̂ measurable process and that either:620

EQ̂

2

4exp

0

@1

2

TZ

0

����✓(X̂t, t)
���
2

R
1
2 H

dt

1

A

3

5 = EQ

2

4exp

0

@1

2

TZ

0

k�✓(Xt, t)k2
R

1
2 H

dt

1

A

3

5 < 1, (26)

or621

9� > 0 : EQ̂


exp

✓
1

2

����✓(X̂�, �)
���
R

1
2 H

dt

◆�
< 1. (27)

This is equivalent to the regularity condition in eq. 10.23 of Da Prato & Zabczyk (2014) or Proposition622

10.17 in Da Prato & Zabczyk (2014).623

A.5 Proof of KL divergence expression624

We leverage Equation (7) to express the Kullback-Leibler divergence as:625

KL
h
Q̂ k P̂�T

i
= EQ̂

"
log

dQ̂0

dP̂0

+ log
d⇢T
d�T

#
= EQ̂

"
log

dQ̂0

dP̂0

#
+ KL [⇢T k �T ] =

EQ̂

2

4�
TZ

0

h�✓(X̂t, t), dŴti
R

1
2 H

+
1

2

TZ

0

����✓(X̂t, t)
���
2

R
1
2 H

dt

3

5+ KL [⇢T k �T ] =

1

2
EQ̂

2

4
TZ

0

����✓(X̂t, t)
���
2

R
1
2 H

dt

3

5+ KL [⇢T k �T ] =
1

2
EQ

2

4
TZ

0

k�✓(Xt, t)k2
R

1
2 H

dt

3

5+ KL [⇢T k �T ] .

Moreover, since626

KL
h
Q̂ k P̂�T

i
= EQ

"
log

dQ̂T

dP̂�T

T

+ log
d⇢0
d�0

#
� KL [⇢0 k �0] ,

we can combine the two results and obtain Equation (8)627

A.6 Conditional score matching628

In this subsection we prove the equality in Equation (13):629

EQ

2

4
TZ

0

k�✓(Xt, t)k2
R

1
2 H

dt

3

5 =

TZ

0

Z

H

k�✓(x, t)k2
R

1
2 H

dtd⇢t(x) =

TZ

0

Z

H

���Dx log ⇢
(d)
T�t

(x)� s✓(x, T � t)
���
2
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1
2 H
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TZ

0

Z

H⇥H

���Dx log ⇢
(d)
t

(x)� s✓(x, t)
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2
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1
2 H
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H⇥H
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(d)
t

(x)�Dx log ⇢
(d)
t

(x |x0)
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2

R
1
2 H

+
���Dx log ⇢

(d)
t

(x |x0)� s✓(x, t)
���
2

R
1
2 H

+

2
D
Dx log ⇢

(d)
t

(x)�Dx log ⇢
(d)
t

(x |x0), Dx log ⇢
(d)
t

(x |x0)� s✓(x, t)
E
dtd⇢t(x, x0).
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To simplify the equality, we need to notice that:630

⇢(d)
t

(xi|xj 6=i)dxi = d⇢t(x
i|xj 6=i) =

Z

x0

d⇢t(x0|x)d⇢t(xi|xj 6=i) =

Z

x0

d⇢t(x
i, x0|xj 6=i) =

Z

x0

d⇢t(x
i|x0, x

j 6=i)d⇢t(x0|xj 6=i) = dxi

Z

x0

⇢(d)
t

(xi|x0, x
j 6=i)d⇢t(x0|xj 6=i).

Then, computing631

Z

x0

d

dxi
log ⇢(d)(xi|xj 6=i, x0)d⇢t(x, x0) =

Z

x0

d
dxi ⇢(d)(xi|xj 6=i, x0)

⇢(d)(xi|xj 6=i, x0)
d⇢t(x, x0) =

Z

x0

d
dxi ⇢(d)(xi|xj 6=i, x0)

⇢(d)(xi|xj 6=i, x0)
d⇢t(x

i|xj 6=i, x0)d⇢t(x0, x
j 6=i) =

Z

x0

d

dxi
⇢(d)(xi|xj 6=i, x0)dx

id⇢t(x0, x
j 6=i) =

Z

x0

d

dxi
⇢(d)(xi|xj 6=i, x0)dx

id⇢t(x0|xj 6=i)d⇢t(x
j 6=i) =

d

dxi

✓Z

x0

⇢(d)(xi|xj 6=i, x0)d⇢t(x0|xj 6=i)

◆
dxid⇢t(x

j 6=i) =

d

dxi
⇢(d)
t

(xi|xj 6=i)dxid⇢t(x
j 6=i) =

d log ⇢(d)
t

(xi|xj 6=i)

dxi
⇢(d)
t

(xi|xj 6=i)dxid⇢t(x
j 6=i) =

d log ⇢(d)
t

(xi|xj 6=i)

dxi
d⇢t(x)

Consequently:632

Z

H⇥H

D
Dx log ⇢

(d)
t

(x)�Dx log ⇢
(d)
t

(x |x0), s✓(x, t)
E
d⇢t(x, x0) = 0.

Combining together and rearranging the terms, we get the desired Equation (13).633

A.7 Explicit expression of score function634

As mentioned in the text, we consider the case f = 0. In this case, there exists a weak solution to635

Equation (1) as:636

Xt = exp(tA)X0 +

tZ

0

exp((t� s)A)dWs. (28)

Consequently, the true score function has expression:637
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t
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d
dxi ⇢

(d)
t

(xi|xj 6=i)

⇢(d)
t
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0⇢
(d)
t

(xi|x0, xj 6=i)d⇢t(x0|xj 6=i)
⌘
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�
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R
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t
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⌘
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⇣
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�
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0⇢
(d)
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0
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⇢(d)
t

(xi|xj 6=i))

⇢(d)
t
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Z

x
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�
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0⇢
(d)
t

(xi

0|x)dxi

0

!

where si = ri
exp(2bit)�1

2bi . This is exactly the desired Equation (11). Similar calculations allow to638

prove Dx log ⇢
(d)
t

(x |x0) = �S(t)�1 (x� exp(tA)x0).639

B Fokker Planck equation640

In this Section we discuss the infinite dimensional generalization of the classical Fokker Planck641

equation. We can associate to Eq. (1) the differential operator:642

L0u(x, t) = Dtu(x, t) +
1

2
Tr
�
RD2

x
u(x, t)

 
+ hAx+ f(x, t), Dxu(x, t)i

| {z }
Lu(x,t)

, x 2 H, t 2 [0, T ],

(29)
where Dt is the time derivative, Dx, D2

x
are first and second order Fréchet derivatives in space.643

The domain of the operator L0 is D(L0), the linear span of real parts of functions u�,h =644

�(t) exp(ihx, h(t)i), x 2 H, t 2 [0, T ] where � 2 C1([0, T ]),�(T ) = 0, h 2 C1([0, T ];D(A†)),645

where † indicates adjoint. Provided appropriate conditions are satisfied, see for example Bogachev646

et al. (2009, 2011), the time varying measure ⇢t(dx)dt exists, is unique, and solves the Fokker-Planck647

equation L†
0⇢t = 0.648

C Uncertainty principle649

We here clarify that Hilbert spaces of square integrable functions that are not, in general, simultane-650

ously homogeneous and separable. For example, while R is homogeneous, the set of square integrable651

functions over R is not separable, since the basis is the uncountable set cos(2⇡⌫p), sin(2⇡⌫p), ⌫ 2 R.652

Then, FDP requirements are not met, as we need a countable basis. Moreover, we would need in653
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general an infinite number of samples (grid over the whole R) to reconstruct the functions. Conversely,654

a set like the interval I = [0, 1] ⇢ R has countable basis cos(2⇡tp), sin(2⇡tp), t 2 Z (and thus655

is separable) and, considering x to be band-limited, a sampling grid with finite cardinality would656

allow to reconstruct of the function. However, I is not homogeneous as no isometry group exists.657

Consequently, Theorem 2 is not applicable. To fix the issue, one could naively think of extending any658

function defined over I to the whole R by considering x̄[p] = x[p], p 2 I and x̄[p] = 0, p /2 I . Obvi-659

ously, if x 2 L2(I) then x̄ 2 L2(R). However, since x̄ has finite support, it cannot be bandlimited,660

making such an approach not a viable solution. In classical signal processing literature, the problem661

is usually referred to as the uncertainty principle (Slepian, 1983).662

D A complete example663

We present an example in which we cast Equation (20) for square integrable functions over the664

interval I = [0, 1], L2(I). In this case, one natural selection for the basis is the Fourier basis2665

ek = {. . . , exp(�j2⇡2p), exp(�j2⇡p), 1, exp(j2⇡p), exp(j2⇡2p), . . . }. Assume the operator A666

to be a pseudo-differantial operator, such that hAx, eki = bkxk. Also, assume that bk, rk are selected667

such that conditions of Corollary 1 are met, and consequently the backward process exists. Since668

we are working with samples collected on the grid x [i/N] we first map the samples to the frequency669

domain, and then build a Fourier-like representation with a finite set of sinusoids. We then define the670

mapping F(zi)k
def
=
P

N�1
i=0 zi exp

�
�j2⇡k i

N

�
and its inverse I(zi)k def

= N�1
P

N�1
i=0 zi exp

�
j2⇡k i

N

�
.671

This suggests to consider th following expression for the interpolating functions:672

⇠i =
1

N

N�1X

k=0

ek exp

✓
�j2⇡k

i

N

◆
=

1

N

N�1X

k=0

exp

✓
j2⇡k(p� i

N
)

◆
.

Those functions are indeed nothing but a frequency truncated version of the sinc function, which is673

the classical reconstruction function of the sampling theorem on 1-D signals. Moreover h⇠i, ⇣ki =674

�(i� k). We are now ready to show i) the expression of the forward process, ii) the expression of the675

parametric score function s✓ and �✓ , iii) the computation of the ELBO and finally iv) the expression676

for the backward process. We defer all detailed derivations to the Appendix.677

The forward process defined in Equation (20) has expression:678

dXt [k/N] = I
�
blF(Xt[i/N])

l
�k

dt+ dW t [k/N] , k = 1, . . . , |Z|, (30)
where dW t [k/N] ' F(dW i

t
)k. Simple calculations show that Xt [k/N] is equivalent in distribution to679

Xt [k/N] = I
⇣
exp

�
blt
�
F(X0[i/N])

l +
p
cl✏l

⌘k

, (31)

where sl =
⌦
S(t), el

↵
= rl

exp(2blt)�1

2bl and ✏l ⇠ N (0, 1), allowing simulation of the forward process680

in a single step.681

The parametric score function can be approximated as:682

s✓

 
X

i

Xt [i/N] ⇠
i, t

!
[i/N] = (32)

� I

 
F (Xt [i/N])

k � exp
�
bkt

�
F (n(g(Xt [l/N]), t,✓) [l/N])

sk

!i

.

Similarly:683

�̃✓

 
X

i

Xt [i/N] ⇠
i,
X

i

X0 [i/N] ⇠
i, t

!
[i/N] = (33)

� I

 
exp

�
bkt

�

sk

⇣
F (n(g(Xt [l/N]), t,✓) [l/N]�X0[l/N])

k

⌘!i

.

2We stress that although we should consider a real Hilbert space, we select the complex exponential to avoid
cluttering the notation. It is possible to select {cos(2⇡p), sin(2⇡p), cos(2⇡2p), sin(2⇡2p), . . . } as a basis, and
redoing the calculations in this Section we can obtain a functionally equivalent scheme as the one with the real
basis.
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Combining Equation (31) and Equation (33) we can fully characterize the training objective defined in684

Equation (19). Then, it is possible to optimize the value of the parameters ✓ with any gradient-based685

optimizer.686

Finally, the backward process approximation is expressed as:687

dX̂t [k/N] = �I
⇣
blF(X̂t[i/N])

l

⌘k

+ I

0

@rlF

 
s✓(

X

i

X̂t [i/N] ⇠
i, T � t) [i/N]

!l
1

A dt+ dW t [k/N]

(34)
k = 1, . . . , |Z|,

from which new samples can be generated.688

D.1 Proofs689

We start by proving Equation (30). Starting from the drift term of Equation (20), we have the690

following chain of equalities:691
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l
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The noise term dW t [k/N] is approximated as:692
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where the approximation is due to the substitution of explicit scalar product with the discretized694

version trough F. When evaluated on the grid of interest:695
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The value of �̃✓, Equation (33) and the expression of the backward process, Equation (34), are696

obtained similarly, considering the above results.697

E Implementation Details and Additional Experiments698

In all experiments we use the the complex Fourier basis for the Hilbert spaces, indexed by k. This699

extends to the 2-dimensional case what we described in Appendix D.1. AS stated in the main paper,700

our practical implementation sets f = 0: then, we only need to specify the value for the parameters701

bk, rk. In our implementation we consider an extended class of SDEs that include time-varying702

multiplying coefficients in front of the drift and diffusion terms, as done for example in the Variance703

Preserving SDE originally described by Song & Ermon (2020). This can be simply interpreted as the704

time-rescaled version of autonomous SDEs.705

E.1 Architectural details706

In our implementation, we use the original INR architecture (Sitzmann et al., 2020). For the specific707

denoising task we consider in our model, we extend the input of the network architecture to include708

the corrupted version of the input sample and the diffusion time t, in addition to the spatial coordinates.709

We emphasize that our architectural is simple, and does not require self-attention mechanisms (Song710

& Ermon, 2020). The non-linearity we use in our network is a Gabor wavelet activation function711

(Saragadam et al., 2023). Furthermore, we found beneficial the inclusion of skip connections.712

As stated in the main paper, we consider the modulation approach to INRs. In particular, we713

implement the meta-learning scheme described by Dupont et al. (2022b); Finn et al. (2017). The outer714

loop is dedicated to learning the base parameters of the model, while the inner loop focuses on refining715

the base parameters for each input sample. In the outer loop, the optimization algorithm is AdaBelief716

(Zhuang et al., 2020), sweeping the learning rate over 1e-4, 1e-5, 1e-6. We found the use of a cosine717

warm-up schedule to be beneficial for avoiding training instabilities and convergence to sub-optimal718

solutions. The inner loop is implemented by using three steps of stochastic gradient descent (SGD),719

where the per-parameter learning rate are found using the Meta-SGD scheme described by Dupont720

et al. (2022b).721

E.2 Additional results722

E.2.1 A Toy example.723

We here present some qualitative examples on a synthetic data-set of functions 2 L([�1, 1]), and724

therefore consider the settings described in Appendix D. The Quadratic data is generated as in725

(Phillips et al., 2022), i.e. X0[p] = qp2 + ✏, where ✏ ⇠ N (0, 0.1) and q is a binary random variable726

that take values {�1, 1} with equal probability. Concerning the design of the forward SDE, we727

select bk = min(
p
k, 10) and rk = k�2 (thus satisfying Corollary 1). The real data is generated728

considering a grid of 100 equally spaced points. We can see in Figure 2 some qualitative results. On729

the left real (red) and generated through FDP (blue) samples show good agreement. Center and right730

plots depict some example of diffused samples for times 0.2 and 1.0 respectively.731
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Figure 2: Left: real (red) and generated samples (blue). Center and Right: Samples diffused for times 0.2 and
1.0 respectively.

E.2.2 MNIST data-set732

We evaluate our approach on a simple data-set, using MNIST 32⇥ 32 (LeCun et al., 2010). In this733

experiment, we compare our method against the baseline score-based diffusion models from Song734

et al. (2021), which we take from the official code repository https://github.com/yang-song/735

score_sde. The baseline implements the score network using a U-NET with self-attention and skip736

connections, as indicated by current best practices, which amounts to O(108) parameters.737

Instead, our method uses a score-network/INR implemented as a simple MLP with 8 layers and 128738

neurons in each layer. The activation function is a sinusoidal non-linearity (Sitzmann et al., 2020).739

Our model counts O(105) parameters. We consider an SDE with parameters rk,m = 176
k2+m2+2 , 3 and740

bk,m = min((k2 +m2 + 0.3)�1 +
⇣

r
k,m

33

⌘ 1
4
, 3.6). These values have been determined empirically741

by observing the power spectral density of the data-set, to ensure a well-behaved Signal to Noise742

ratio evolution throughout the diffusion process for all frequency components.743

Figure 3: MNIST samples generated according to
our proposed FDPs.

Figure 4: Top right: MNIST real samples. Top Left:
Each sample is diffused for a given random time. Bot-
tom: output of INR for corresponding input noisy im-
age.

744

In Figure 3 we report un-curated samples generated according to our FDP. In Figure 4 we present745

instead various “intermediate” noisy versions of the training data, to illustrate the kind of noise we746

use to train the score network, and the output of the denoising INR. We also report the Fréchet747

Inception Distance (FID) score computed using 16k samples (lower is better). For the baseline we748

obtain FID=0.05, whereas for the proposed method we obtain FID=0.43. Although the FID score is in749

3Strictly speaking, the sum of the series rk,m is not convergent. We experimented changing the decay to
ensure convergence, but we observed no numerical difference with the settings we the setting we used. It is an
interesting avenue for future work to study if this approximation has an impact for higher-resolution data-sets.
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Figure 5: Uncurated CELEBA samples

favor of the baseline, we believe that our results – obtained with a simple MLP – are very promising,750

as further corroborated by experiments on a more complex dataset, which we show next.751

E.2.3 CELEBA data-set752

For the CELEBA data-set we considered the same SDE as for the MNIST experiment. Results753

reported in the main paper have been obtained using a numerical integration scheme with 300 steps754

of a variant of the predictor-corrector scheme of (Song & Ermon, 2020), which we adapted to the755

SDEs we consider in our work. In Figure 5 we report additional un-curated samples obtained with the756

configuration described above. We proceed to describe further experiments in the following section.757

Conditional generation. In the following, we consider three use-cases for conditional generation:758

in-painting, de-blurring, and colorization, which we describe next. All these additional experiments759

were completed using the same architecture and configuration of the unconditional generation760

described above.761

In-painting. We perform in-painting experiments by adopting the same approach described by Song762

& Ermon (2020), and report results in Figure 6. Original images (left-column of Figure 6) are masked763

(center-column of Figure 6), where we set the value corresponding to the missing pixels to 0. The764

right column of Figure 6 shows the results of the in-painting scheme where, qualitatively, it is possible765

to observe that the conditional generation is able to fill the missing portion of the images while766

maintaining good semantic coherence.767

De-blurring. Our FDPs are naturally suited for the de-blurring use-case, as shown in Figure 8. In768

this experiment, we take the original images (left column of Figure 8) and filter them with a low769

pass filter (center column of Figure 8). The de-blurring scheme is implemented as the in-painting770
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Figure 6: In-painting experiment. Left: real samples, Center: Masked samples, Right: Reconstructed samples

approach described by Song & Ermon (2020), where the only difference is that the masking at each771

update is applied in the frequency domain. The right column of Figure 8 shows that our technique772

gracefully recovers missing details and is capable of producing high quality images conditioned on773

the distorted inputs.774

Colorization. In this use-case, we adapt the approach from (Song & Ermon, 2020) to our setting.775

Figure 7 depicts qualitative results of the colorization experiment, confirming the flexibility of the776

proposed scheme.777
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Figure 7: Colorization experiment. Left: real samples, Center: Gray-scale samples, Right: Reconstructed
samples
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Figure 8: De-blurring experiment. Left: real samples, Center: blurred samples, Right: Reconstructed samples
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