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In Appendix A, we provide a detailed literature review. In Appendix B, we provide deferred proofs
for the results of the zero-sum NMG formulation in Section 3. In Section C, we provide deferred
proofs for the PPAD-hardness of computing Markov stationary CCE in zero-sum NMGs, in Section 4.
In Section D, we provide deferred proofs for the fictitious-play property results, in Section 5. In
Section E, we provide a brief background on stochastic approximation. In Section F, we provide
deferred proofs for the results regarding Markov non-stationary NE computation in Section 6. Finally,
in Section G, we provide numerical experiments to validate our algorithms.

A Related Work

Tabular Markov game. Markov games (MG), which are also referred to as stochastic games, were
initially introduced by [13] and have since garnered significant attention within the multi-agent RL
literature [56, 57]. Early research, such as [58, 59, 60, 61], established asymptotic convergence of
various Q-learning-based dynamics in solving MGs. In contrast, recent studies have mainly focused
on developing more sample-efficient methods for learning equilibria in two-player zero-sum Markov
games, as demonstrated by [62, 63, 64, 65, 66, 37, 67, 68].

Substantial work has also been conducted on learning correlated equilibrium and coarse correlated
equilibrium in Markov games, including model-based [66, 69] and model-free approaches [70,
71, 72, 73]. A recently developed algorithm by [30] is able to learn Markov non-stationary CCE
while overcoming the curse of multi-agents, whose sample complexity has recently been improved
in [74, 75]. Other studies within the full-information feedback setting have focused on proving
convergence to CE/CCE and sublinear individual regret [76].

Complexity of equilibrium computation. Computational challenges can occur for Nash
equilibrium-finding in even matrix/normal-form games in general. Computing such equilibria has
been proven to be PPAD-complete even for three/two-player general-sum normal-form games [20, 21],
which is believed to be computationally hard [32, 77]. Nevertheless, linear programming enables the
computation of Nash equilibria in two-player zero-sum games and zero-sum polymatrix games [24].
Alternative solution concepts including (coarse) correlated equilibria are also more favorable than NE
when it comes to computational complexity, as they can also be efficiently computed [22, 3]. More
recently, [30, 29] have shown that for infinite-horizon discounted Markov games, computing even the
coarse correlated equilibrium that is Markov stationary can be PPAD-hard, which is in stark contrast
to the stateless normal-form game case. For a recent overview of the computational complexity for
equilibrium computation, we refer to [78].

Games with network structure. Network Games [79] and Graphical Games [80] have been
extensively studied in the literature to model the networked interactions among agents. [80] introduced
treeNash, an algorithm for computing NE in tree-structured graphical games. The algorithm by [81]
can find correlated equilibrium in graphical games. Polymatrix games, wherein edges represent two-
player games, constitute a particularly intriguing type of network games. [28] introduced the concept
of separable zero-sum games, where a player’s payoff is the sum of their payoffs from pairwise
interactions with other players, and provided equilibrium-finding algorithms. [82] demonstrated that
graphical games with edges representing zero-sum games (also called pairwise zero-sum polymatrix
games) can be reduced to two-person zero-sum games, streamlining the NE computation for this
case. [23] established that separable zero-sum multiplayer games can be transformed into pairwise
constant-sum polymatrix games. [24] revealed properties of NE in separable zero-sum games, such as
non-unique NE payoffs and the reduction of NE computation to CCE computation by marginalizing
the equilibria.

More recently, researchers have proposed several NE-finding methods that do not depend on linear
programming (LP). [83] employed a continuous-time version of Q-learning to approximate NE in
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weighted zero-sum polymatrix games, [54] utilized optimistic mirror descent to find NE in constant-
sum polymatrix games, and [51] applied optimistic multiplicative weight updates to find NE in
zero-sum polymatrix games.

In the setting with state transitions, the networked structure has also been exploited recently in
multi-agent RL [84, 85, 86, 87, 88, 89], where either the communication or interaction, in terms of
reward or transition, were assumed to have some networked structure. However, most of these results
were focused on the cooperative setting (or more generally the potential game setting). We instead
focus on a multi-player while non-cooperative, specifically, zero-sum, setting.

In the extensive form games literature, [90] proved that optimistic gradient ascent provides O(1/T )
convergence rate to NE in the network zero-sum extensive form games.

Entropy regularization. Entropy regularization is a common approach used in reinforcement
learning to foster exploration and enable faster convergence. Recently, both empirical evidence
and provable convergence rate guarantees for entropy-regularized MDPs have been established
[91, 92, 93, 94, 95, 96]. In addition to its applications in single-agent RL, entropy regularization
has been investigated in game-theoretic settings, including two-player zero-sum matrix games [42],
multi-player zero-sum games [83, 51], potential games [50], and extensive-form games [97, 98].

Fictitious play. Fictitious play is a classical learning dynamics in game theory introduced by [5],
in which players develop a belief in their opponent’s policy and use a greedy approach to the belief
they hold about the opponent’s policy. (Stochastic) fictitious-play property ((S-)FPP) is a property
of a game that ensures the convergence of (stochastic) fictitious play to a Nash equilibrium of the
game. In the case of static games, (S-)FPP holds for two-player zero-sum games [6], 2xn games
[9, 10], n-player potential games [8], zero-sum polymatrix games [12]. However, FPP normally does
not hold for 3x3 games [99]. For stochastic games [13], (S-)FPP holds for zero-sum and identical
payoff games [16, 14, 17, 15, 100]. Recently, [100] proved that any stochastic game with turn-based
controllers on state transitions has S-FPP, as long as the stage payoffs have S-FPP. For a more detailed
overview of fictitious play in stochastic/Markov games, we refer to [101].

Comparison with independent work [102]. While preparing our work, we noticed an independent
preprint [102], which also studied the polymatrix zero-sum structure in Markov games. Encouragingly,
they also showed the collapse of Markov CCE to Markov NE and thus their computational tractability.
However, there are several key differences that may be summarized as follows. First, the model in
[102] is defined as a combination of zero-sum polymatrix reward functions and switching-controller
dynamics, under which the desired property of equilibria collapse holds; in contrast, we define the
model based on the payoffs of the auxiliary games at each state, which, by our Proposition 1, is
equivalent to the reward being zero-sum polymatrix and the dynamics being ensemble (c.f. Remark 3).
Our ensemble dynamics covers the switching controller case, and our model is more general in this
sense. Second, our proof for equilibria collapse is different from that in [102], which is based on
characterizing the solution to some nonlinear program. We instead directly exploit the property
of ensemble transition dynamics in marginalizing the joint policies, and its effect on dynamic
programming in finding the equilibria. Third, in terms of equilibrium computation, we investigate a
series of value-iteration-based algorithms, based on both existing and our new algorithms for solving
zero-sum polymatrix games, with finite-iteration last-iterate convergence guarantees, including
an Õ(1/ϵ) rate result. In comparison, [102] uses existing algorithms for learning Markov CCE
due to equilibria collapse, i.e., [30]. Finally, we have additionally provided hardness results for
stationary equilibria computation in infinite-horizon discounted settings, fictitious-play dynamics
with convergence guarantees, as well as several examples of our model.

B Omitted Details in Section 3

B.1 Omitted proof for Proposition 1 and Proposition 2

Proposition 1. For a given graph G = (N , EQ), an MG (N ,S,A,P, (ri)i∈N , γ) with more than
two players is an NMG with respect to G if and only if: (1) ri(s, ai, ·) is decomposable with respect
to EQ,i for each i ∈ N , s ∈ S, ai ∈ Ai, i.e., ri(s,a) =

∑
j∈EQ,i

ri,j(s, ai, aj) for a set of functions
{ri,j(s, ai, ·)}j∈EQ,i

, and (2) the transition dynamics P(s′ | s, ·) is decomposable with respect to
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the setNC of this G, i.e., P(s′ | s,a) =
∑

i∈NC
Fi(s

′ | s, ai) for a set of functions {Fi(s
′ | s, ·)}i∈NC

if NC ̸= ∅, or P(s′ | s,a) = Fo(s
′ | s) for some constant function (of a) Fo(s

′ | s) if NC = ∅.
Moreover, an MG qualifies as a zero-sum NMG if and only if it satisfies an additional condition: the
NG, characterized by (G,A, (ri,j(s))(i,j)∈EQ

), is a zero-sum NG for all s ∈ S. In the case of two
players, every (zero-sum) Markov game becomes a (zero-sum) NMG.

Proof. Firstly, in the case with NC ̸= ∅, we prove that if an MG satisfies the decomposability of the
reward function ri(s, ai, ·) and the transition dynamics P(s′ | s, ·), then QV

i,j can be decomposed as
follows:

QV
i (s,a) = ri(s,a) + γEs′∼P(·|s,a)V (s′) =

∑
j∈EQ,i

ri,j(s, ai, aj) + γ
∑

j∈NC

∑
s′∈S

Fj(s
′ | s, aj)V (s′)

=
∑

j∈EQ,i

(
ri,j(s, ai, aj) + γ

∑
s′∈S

(λi,j(s)111(i ∈ NC)Fi(s
′ | s, ai) + 111(j ∈ NC)Fj(s

′ | s, aj))V (s′)

)
=:

∑
j∈EQ,i

QV
i,j(s, ai, aj),

for any non-negative (λi,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λi,j(s) = 1, since by definitionNC ⊆ EQ,i

for every i ∈ N .

In the case when NC = ∅, we prove that if the MG satisfies decomposability of ri(s, ai, ·) and
P(·|s,a) = Fo(·|s), then QV

i,j can be decomposed as follows:

QV
i (s,a) = ri(s,a) + γEs′∼P(·|s,a)V (s′) =

∑
j∈EQ,i

(
ri,j(s, ai, aj) + γ

∑
s′∈S

λi,j(s)Fo(s
′ | s)V (s′)

)
=:

∑
j∈EQ,i

QV
i,j(s, ai, aj),

for any non-negative (λi,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λi,j(s) = 1.

Next, we prove the necessary conditions for an MG to be an NMG. By definition, we have

QV
i (s,a) =

∑
j∈EQ,i

QV
i,j(s, ai, aj) = ri(s,a) + γ⟨P(· | s,a), V (·)⟩

for any V , which indicates that∑
j∈EQ,i

(QV
i,j(s, ai, aj)−QV ′

i,j(s, ai, aj)) = γ⟨P(· | s,a), V (·)− V ′(·)⟩, (2)

for any V, V ′ and any (s,a).

For every s ∈ S , define Bs : S → R such that Bs(s
′) = 111(s = s′). We define Gi,j(s

′ | s, ai, aj) :=
1/γ

∑
j∈EQ,i

(Q
Bs′
i,j (s, ai, aj)−Q000

i,j(s, ai, aj)), then by plugging in V = Bs′ and V ′ = 000, we can
derive P(· | s,a) =

∑
j∈EQ,i

Gi,j(· | s, ai, aj) for every i from Equation (2). Alternatively, we
can take a functional derivative of Equation (2) with respect to V − V ′, which means that there
exist some functions {Gi,j}j∈EQ,i

such that P(· | s,a) =
∑

j∈EQ,i
Gi,j(· | s, ai, aj) for every i.

Note that the decomposability of P with respect to EQ,i above has to hold for all i ∈ N . Therefore,
when NC ̸= ∅, if j /∈ NC , then there exists some i ∈ N such that (i, j) /∈ EQ. In this case, P
is not dependent on this j. So P should be a function of the players in NC , which indicates that
P(· | s,a) =

∑
j∈NC ,j ̸=i Fi,j(· | s, ai, aj) for every i unless NC = ∅. If NC = ∅, then it directly

concludes that P(· | s,a) = Fo(· | s) for some Fo, since by the argument above, it should not depend
on any player j. Next, we focus on the case when NC ̸= ∅, and there are more than two players.

Specifically, in this case, if there exist some k1 ̸= k2 and k1 /∈ NC , such that

P(·|s,a) =
∑

i∈NC ,i̸=k1

Fk1,i(·|s, ak1
, ai) =

∑
i∈NC ,i̸=k2

Fk2,i(·|s, ak2
, ai),
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then we choose a fixed ak1 but changing ak2 arbitrarily. This preserves the equality, indicating that∑
i∈NC ,i̸=k1

Fk1,i(·|s, ak1,fix, ai) =
∑

i∈NC ,i̸=k2

Fk2,i(·|s, ak2 , ai) (3)

for any ak2
. Since k1 /∈ NC , we can have the left-hand side of (3) written as

∑
i∈NC

Fi(·|s, ai) by
setting Fi(·|s, ai) := Fk1,i(·|s, ak1,fix, ai). Meanwhile, the right-hand side of (3) is also P(·|s,a) by
definition, which concludes that P(·|s,a) =

∑
i∈NC

Fi(·|s, ai), and proves the theorem. In other
words, as long as at least one k1 does not belong to NC , we can conclude the theorem.

If no such a k1 /∈ NC exists, then it means that all players are in NC . In this case, for any k1 ̸= k2,
for a fixed ak1,fix, we have∑

i∈NC/{k1}

Fk1,i(·|s, ak1,fix, ai) =
∑

i∈NC/{k1,k2}

Fk2,i(·|s, ak2
, ai) + Fk2,k1

(·|s, ak2
, ak1,fix). (4)

Therefore, if we define Gi(·|s, ai) := Fk1,i(·|s, ak1,fix, ai) for i ∈ NC/{k1, k2}, and
Gk2

(·|s, ak2
) := Fk1,k2

(·|s, ak1,fix, ak2
)− Fk2,k1

(·|s, ak2
, ak1,fix), then we have∑

i∈NC/{k1,k2}

Fk2,i(·|s, ak2 , ai) =
∑

i∈NC/{k1}

Gi(·|s, ai). (5)

Let k3 ∈ NC such that k3 ̸= k1, k2. By definition of Fi,j , we have

P(·|s,a) =
∑

i∈NC/{k3}

Fk3,i(·|s, ak3 , ai) =
∑

i∈NC/{k2}

Fk2,i(·|s, ak2 , ai).

Plugging (5), we have

P(·|s,a) =
∑

i∈NC/{k3}

Fk3,i(·|s, ak3
, ai) =

∑
i∈NC/{k1}

Gi(·|s, ai) + Fk2,k1
(·|s, ak2

, ak1
) (6)

for any a ∈ A. If we now fix ak3 as ak3,fix, then from (6) we know that∑
i∈NC/{k3}

Fk3,i(·|s, ak3,fix, ai) =
∑

i∈NC/{k1,k3}

Gi(·|s, ai) +Gk3(·|s, ak3,fix) + Fk2,k1(·|s, ak2 , ak1).

(7)

Plugging (7) to (6), we have

P(·|s,a) =
∑

i∈NC/{k1,k3}

Gi(·|s, ai) + Fk2,k1
(·|s, ak2

, ak1
) +Gk3

(·|s, ak3
)

=
∑

i∈NC/{k3}

Fk3,i(·|s, ak3,fix, ai)−Gk3
(·|s, ak3,fix) +Gk3

(·|s, ak3
) =:

∑
i∈NC

Fi(·|s, ai)

where Fi(·|s, ai) := Fk3,i(·|s, ak3,fix, ai) for i ∈ NC/{k3} and Fk3
(·|s, ak3

) := −Gk3
(·|s, ak3,fix) +

Gk3
(·|s, ak3

), which concludes the decomposability of the transition dynamics. Finally, note that we
can ensure the non-negativity of Fi, since we can iterate the following procedure:

Algorithm 1 Procedure for constructing non-negative {Fi}i∈NC

while there exists s, s′ ∈ S and i ∈ NC such that minai∈Ai
Fi(s

′ | s, ai) < 0 do
Set s, s′ ∈ S and i ∈ NC that satisfying minai∈Ai

Fi(s
′ | s, ai) < 0

Sort NC according to the descending order of bk := minak∈Ak
Fk(s

′ | s, ak), and denote it as
{j1, j2, . . . , j|NC |}
Define tmp1 = 0, t = 1
while tmp1 < −minai∈Ai Fi(s

′ | s, ai) do
Define tmp2 = −minai∈Ai Fi(s

′ | s, ai)− tmp1 > 0
Define tmp3 = min(minajt∈Ajt

Fjt(s
′ | s, ajt), tmp2) > 0;

Update Fjt(s
′|s, ajt)← Fjt(s

′ | s, ajt)− tmp3 for all ajt ∈ Ajt
Update Fi(s

′ | s, ai)← Fi(s
′ | s, ai) + tmp3 for all ai ∈ Ai

Update tmp1← tmp1 + tmp3 and t← t+ 1
end while

end while
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In this context, the third and fourth lines of the inner-while loop ensure that P(s′|s,a) =∑
j∈NC

Fj(s
′ | s, aj) always holds for s, s′ ∈ S, a ∈ A. Furthermore, tmp3 remains greater

than 0 within the inner-while loop. This is because if minajt∈Ajt
Fjt(s

′ | s, ajt) ≤ 0, then
it implies that minajk

∈Ajk
Fjk(s

′ | s, ajk) = 0 for all k ∈ [t]. Also, minajk
∈Ajk

Fjk(s
′ |

s, ajk) ≤ minajt∈Ajt
Fjt(s

′ | s, ajt) ≤ 0 for every k ∈ [|NC |]. Meanwhile, since we assumed
minai∈Ai

Fi(s
′ | s, ai) < 0, we can define a vector ã with elements ãj ∈ argminaj∈Aj

Fj(s
′ | s, aj).

This implies that P(s′ | s, ã) =
∑

i∈NC
minai∈Ai

Fi(s
′ | s, ai) < 0, which contradicts the condition

P(s′ | s, ã) ≥ 0.

Therefore, our procedure ensures that the number of pairs (s, s′) ∈ S × S and indexes i ∈ NC for
which minai∈Ai Fi(s

′ | s, ai) < 0 is consistently reduced.

If there are only two players, then both of them belong to NC . However, one cannot decompose
the transition dynamics as above, as there is no such a k3 ̸= k1, k2 to construct the aforementioned
formula. Indeed, any two-player (zero-sum) MG satisfies our definition of zero-sum NMGs in
Definition 1.

For the reward decomposition, if NC ̸= ∅, we have

ri(s,a) =
∑

j∈EQ,i

(
QV

i,j(s, ai, aj)− γ⟨111(j ∈ NC)Fj(· | s, aj), V (·)⟩
)

and if NC = ∅, we have

ri(s,a) =
∑

j∈EQ,i

(
QV

i,j(s, ai, aj)− γ⟨ 1

|EQ,i|
Fo(· | s), V (·)⟩

)
.

Hence, ri(s, ai, ·) can be represented as ri(s,a) =
∑

j∈EQ,i
ri,j(s, ai, aj) for some functions

(ri,j)(i,j)∈EQ
. The same procedure as Algorithm 1 provides that we can ensure the non-negativity

of ri,j , so that ri(s, ai, ·) is decomposable with respect to EQ,i. In fact, adding any large-enough
constant to ri,j does not change the solution to the problem, while ensuring the non-negativity of
ri,j .

Proposition 1 - Finite-horizon version. For a given graph G = (N , EQ), an MG
(N ,S,A, (Ph)h∈[H], (rh,i)i∈N ,h∈[H]) with more than two players is an NMG with G if and only if:
(1) rh,i(s, ai, ·) is decomposable with respect to EQ,i for each i ∈ N , s ∈ S , ai ∈ Ai, h ∈ [H],
i.e., rh,i(s,a) =

∑
j∈EQ,i

rh,i,j(s, ai, aj) for a set of functions {rh,i,j(s, ai, ·)}j∈EQ,i
and (2) the

transition dynamics Ph(s
′ | s, ·) is decomposable with respect toNC corresponding to this G for

all h ∈ [H], i.e., Ph(s
′ | s,a) =

∑
i∈NC

Fh,i(s
′ | s, ai) for a set of functions {Fh,i(s

′ | s, ·)}i∈NC

if NC ̸= ∅, or Ph(s
′ | s,a) = Fh,o(s

′ | s) for some constant function (of a) Fh,o(s
′ | s) if NC = ∅.

Moreover, an MG qualifies as a zero-sum NMG if and only if it satisfies an additional condition: the
NG, characterized by (G,A, (rh,i,j(s))(i,j)∈EQ

), must be a zero-sum NG for all s ∈ S, h ∈ [H]. In
the case of two players, every (zero-sum) Markov game becomes a (zero-sum) NMG.

Proposition 2 (Decomposition of (QV
i )i∈N ). For an infinite-horizon γ-discounted NMG with

G = (N , EQ) such that NC ̸= ∅, if we know that P(s′ | s,a) =
∑

i∈NC
Fi(s

′ | s, ai), and
ri(s,a) =

∑
j∈EQ,i

ri,j(s, ai, aj) for some {Fi}i∈NC
and {ri,j}(i,j)∈EQ

, then the QV
i,j given in

Definition 1 can be represented as

QV
i,j(s, ai, aj) = ri,j(s, ai, aj) +

∑
s′∈S

γ
(
111(j ∈ NC)Fj(s

′ | s, aj) + 111(i ∈ NC)λi,j(s)Fi(s
′ | s, ai)

)
V (s′)

for any non-negative (λi,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λi,j(s) = 1 for all i ∈ N and s ∈ S.
For an infinite-horizon γ-discounted NMG with G = (N , EQ) such that NC = ∅, if we know that
P(s′ | s,a) = Fo(s

′ | s), and ri(s,a) =
∑

j∈EQ,i
ri,j(s, ai, aj) for some Fo and {ri,j}(i,j)∈EQ

,
then the QV

i,j given in Definition 1 can be represented as

QV
i,j(s, ai, aj) = ri,j(s, ai, aj) +

∑
s′∈S

γ (λi,j(s)Fo(s
′ | s))V (s′)
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for any non-negative (λi,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λi,j(s) = 1 for all i ∈ N and s ∈ S.
We call it the canonical decomposition of {QV

i }i∈N when QV
i,j can be represented as above with

λi,j(s) = 1/|EQ,i| for j ∈ EQ,i.

Proposition 2 naturally follows from the proof of Proposition 1 (a).

Proposition 2 - Finite-horizon version (Decomposition of (QV
h,i)i∈N ). For a finite-horizon NMG

with G = (N , EQ) with NC ̸= ∅, we know Ph(s
′ | s,a) =

∑
i∈NC

Fh,i(s
′ | s, ai), and

rh,i(s,a) =
∑

j∈EQ,i
rh,i,j(s, ai, aj) for some {Fh,i}i∈NC

and {rh,i,j}(i,j)∈EQ
, then the QV

h,i,j

given in Definition 1 can be represented as

QV
h,i,j(s, ai, aj) = rh,i,j(s, ai, aj)

+
∑
s′∈S

(111(j ∈ NC)Fh,j(s
′ | s, aj) + 111(i ∈ NC)λh,i,j(s)Fh,i(s

′ | s, ai))Vh+1(s
′)

for any non-negative (λh,i,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λh,i,j(s) = 1 for all i ∈ N , s ∈ S, and
h ∈ [H]. For a finite-horizon NMG with G = (N , EQ) such that NC = ∅, Ph(s

′ | s,a) = Fh,o(s
′ |

s), and rh,i(s,a) =
∑

j∈EQ,i
rh,i,j(s, ai, aj) for some Fh,o and {rh,i,j}(i,j)∈EQ

, the QV
h,i,j given in

Definition 1 can be represented as

QV
h,i,j(s, ai, aj) = rh,i,j(s, ai, aj) +

∑
s′∈S

(λh,i,j(s)Fh,o(s
′ | s))Vh+1(s

′)

for any non-negative (λh,i,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λh,i,j(s) = 1 for all i ∈ N , s ∈ S, and
h ∈ [H]. We call it the canonical decomposition of Q-value functions when QV

h,i,j can be represented
as above with λh,i,j(s) = 1/|EQ,i| for j ∈ EQ,i.

B.2 An alternative definition of NMGs

Definition 3 (An alternative definition of NMGs). An infinite-horizon γ-discounted MG is called a
Multi-player MG with Networked separable interactions (NMG) characterized by a tuple

(G = (N , EQ),S,A,P, (ri)i∈N , γ)

if for any policy π, there exist a set of functions (Qπ
i,j)(i,j)∈EQ

and an undirected connected graph
G = (N , EQ) such that Qπ

i (s,a) =
∑

j∈EQ,i
Qπ

i,j(s, ai, aj) holds for every i ∈ N , s ∈ S,
a ∈ A. A finite-horizon MG is called a Multi-player MG with Networked separable interactions
if for any policy π, there exist a set of functions (Qπ

h,i,j)(i,j)∈EQ,h∈[H] such that Qπ
h,i(s,a) =∑

j∈EQ,i
Qπ

h,i,j(s, ai, aj) holds for every i ∈ N , s ∈ S, a ∈ A, and h ∈ [H].

The “if” condition of Proposition 1 also holds for this definition. However, the proof for the “only
if” condition of Proposition 1 uses the functional derivative argument. We cannot use the functional
derivative here directly, since V π := (V π(s))s∈S cannot represent all vectors in [0, R/(1− γ)]|S|.
To be specific, we have

Qπ
i (s,a) =

∑
j∈EQ,i

Qπ
i,j(s, ai, aj) = ri(s,a) + γ⟨P(· | s,a), V π

i (·)⟩

for any policies π, π′, which indicates∑
j∈EQ,i

(Qπ
i,j(s, ai, aj)−Qπ′

i,j(s, ai, aj)) = γ⟨P(· | s,a), V π
i (·)− V π′

i (·)⟩. (8)

If we can find a set of policies (π(k))k∈[|S|] such that the vectors in {V π(k)

i − V π′

i }k∈[|S|] are
independent for some fixed π′, then we can concatenate the vectors {V π(k)

i − V π′

i }k∈[|S|] together
as a matrix of size |S| × |S| that is full-rank, and solve for P(· | s,a) by solving the linear equations
(8), for some fixed (s,a). This way, we can show that P(· | s,a) =

∑
j∈EQ,i

Fi,j(· | s, ai, aj), and
the rest of the proof follows from that of Proposition 1. However, such a set of policies (π(k))k∈[|S|]
(and π′) may not exist in some degenerate cases, as to be detailed below.
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Definition 4 (Degenerate MG with respect to player i). We call an MG degenerate with respect
to player i ∈ N if there exists some s ∈ S such that for any π, Qπ

i (s,a) is a constant function of
a ∈ A.
Definition 5 (Non-degenerate MG). We call an MG non-degenerate if an MG is not degenerate with
respect to any player i ∈ N .

Now, we are ready to state the counterpart of Proposition 1 in these non-degenerate cases. The proof
for the “if” direction is exactly the same as that of Proposition 1. We focus on the proof of the “only
if” statement.

Proposition 1 - An alternative definition version. For a given graph G = (N , EQ), a non-degenerate
MG (N ,S,A,P, (ri)i∈N , γ) (in the sense of Definition 5) with more than two players is an NMG
with G if and only if: (1) ri(s, ai, ·) is decomposable with respect to EQ,i for each i ∈ N , s ∈
S, ai ∈ Ai, i.e., ri(s,a) =

∑
j∈EQ,i

ri,j(s, ai, aj) for a set of functions {ri,j(s, ai, ·)}j∈EQ,i
, and

(2) the transition dynamics P(s′ | s, ·) is decomposable with respect to the NC corresponding to
this G, i.e., P(s′ | s,a) =

∑
i∈NC

Fi(s
′ | s, ai) for a set of functions {Fi(s

′ | s, ·)}i∈NC
if NC ̸= ∅,

or P(s′ | s,a) = Fo(s
′ | s) for some constant function (of a) Fo(s

′ | s) if NC = ∅.

Proof. Proofs of the claims are deferred to Section B.3 to preserve the flow of the argument.
Claim 1. For player i ∈ N , if there exists a policy π such that for every s ∈ S , there exist as,1,as,2

that make Qπ
i (s,as,1) ̸= Qπ

i (s,as,2), then we can construct |S| number of policies (π(k))k∈[|S|]

such that {V π(k)

i − V π
i }k∈[|S|] are independent for any fixed π.

Therefore, for player i ∈ N , if the condition of Claim 1 holds, then we can guarantee that there exist
some functions {Gi,j}j∈EQ,i

such that P(·|s,a) =
∑

j∈EQ,i
Gi,j(·|s, ai, aj), by the argument after

Equation (8). If we assume that the condition of Claim 1 holds for every player i ∈ N , then there
exist some functions {Gi,j}(i,j)∈EQ

such that P(·|s,a) =
∑

j∈EQ,i
Gi,j(·|s, ai, aj) for every i ∈ N .

Then, we can prove the decomposability of P(s′ | s, ·) with respect to NC with the same steps as
Equations (3) - (7).

Hence, by Claim 1, we only need to prove that if an MG is non-degenerate with respect to player i,
then there exists a policy π such that there exist as,1,as,2 that make Qπ

i (s,as,1) ̸= Qπ
i (s,as,2) for

every s ∈ S . If |A| = 1, then the transition dynamics are already decomposed, so we do not need to
consider this case.
Claim 2. Assume |A| ≥ 2. For player i ∈ N , assume that for any policy π, there exists a state
sπ ∈ S such that Qπ

i (sπ,a) is a constant function of a. Then, there exists a state s ∈ S such that
uniformly for any policy π, Qπ

i (s,a) is a constant function of a.

Claim 2 shows that if the assumption of Claim 1 does not hold for player i ∈ N , then

Sconst,i := {s | For any π,Qπ
i (s,a) is a constant function of a}

is not an empty set. By Definition 4, if an MG is not degenerate with respect to player i, then Sconst,i
is empty, and thus the conditions of Claim 1 always hold for player i. Therefore, if we assume
the non-degeneracy of MG (Definition 5), by Claim 1 and the arguments immediately following it,
P(s′ | s, ·) is decomposable with respect to NC .

Remark 5 (Degenerate MG with respect to player i). The degeneracy of MGs as defined above
can indeed be rare. To illustrate, consider a seemingly degenerate scenario where for all s ∈ S,
ri(s,a) remains a constant function with respect to a; even under such circumstances, it is possible
for the MG to be non-degenerate with respect to player i. For example, assume that N = [2], γ = 1

2 ,
S = {−1, 1} Ai = {−1, 1}, P(s′ | s, a1, a2) = 111(s′ = sa1a2), r1(s,a) = r2(s,a) = (1 + s).
Let π satisfy π(a | 1) = 111(a1 = 1, a2 = −1), π(a | − 1) = 111(a1 = −1, a2 = −1). Then, we
have V π

1 (1) = 2 + 1
2V

π
1 (−1) and V π

1 (−1) = 1
2V

π
1 (−1), which further means V π

1 (−1) = 0 and
V π
1 (1) = 2, i.e., V π

1 (s) = 1+ s always holds. As a result, Qπ
1 (1,a) = 1+ s+ 1

2 (sa1a2 + 1), which
is not a constant function, and the game is thus non-degenerate with respect to agent i. Moreover,
suppose that the policy, transition dynamics, and reward functions are randomly chosen. The measure
of the event that the existence of s ∈ S such that Qπ

i (s,a) is constant for all possible actions a under
this randomly chosen policy, transition dynamics, and reward function is 0. This is primarily because
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Qπ
i (s, ·) : A → R must lie on a particular hyperplane in the overall value function space, which takes

measure 0. Oftentimes, different actions will transition to different states and yield different rewards,
thereby generating almost unique Qπ

i (s,a) values.
Remark 6. If we have more than two players that satisfy the condition of Claim 1, i.e., the MG is
non-degenerate with respect to more than two players (instead of being non-degenerate with respect
to all players), then we can still guarantee the decomposability of P(s′ | s, ·) with respect to a set
that is not necessarily the same as NC . As a byproduct of the decomposability of P(s′ | s, ·), we can
guarantee the decomposability of ri(s, ai, ·), too.

B.3 Deferred proof of the claims in Appendix B.2

We define Π :=


π(s1) 0 · · · 0

0 π(s2) · · · 0

...
...

. . . 0

0 0 · · · π(s|S|)

 ∈ R|S||A|×|S|, where π(s) is a column vector

for the policy at state s, P := (P(s′ | s,a))((s,a),s′), R :=


r(s1)

⊺ 0 · · · 0

0 r(s2)
⊺ · · · 0

...
...

. . . 0

0 0 · · · r(s|S|)
⊺

 ∈
R|S|×|S||A|, then we have V π

i = (I − γΠ⊺P )−1RΠ111 ∈ R|S| where 111 ∈ R|S| is (1, . . . , 1)⊺.

Proof of Claim 1. If we differentiate V π
i with respect to π along the direction ∆(s,a1,a2) := ea1,s −

ea2,s∈ R|A||S| for some a1,a2 ∈ A, i.e., the direction that increases (or decreases) π(a1 | s) and
decreases (or increases) π(a2 | s), respectively, then by computation, we can have the following
directional derivative:
∇∆(s,a1,a2)

V π
i

= (I − γΠ⊺P )−1

(∑
s′∈S

(P(s′ | s,a1)V
π
i (s′)− P(s′ | s,a2)V

π
i (s′)) + ri(s,a1)− ri(s,a2)

)
es

= (Qπ
i (s,a1)−Qπ

i (s,a2)) (I − γΠ⊺P )−1es. (9)
Therefore, if there exists a policy π such that for every s, there exist as,1,as,2 that make
Qπ

i (s,as,1) ̸= Qπ
i (s,as,2), then deviating from π along the ∆(s,as,1,as,2) direction for every s

provides {V π(k)

i −V π
i }k∈[|S|] vectors that are independent of each other, since (I − γΠ⊺P )−1 is an

invertible matrix for any Π.

Proof of Claim 2. Note that π ∈ ∆(A)|S|. For all s ∈ S, define Πs as
Πs := {π |Qπ

i (s,a) is a constant function of a },
where we omit the dependence on i as we focus on the discussion on a specific i here.
For any π, there exists a state sπ such that Qπ

i (sπ,a) is a constant function of a, which
means that π ∈ Πsπ and thus Πsπ ̸= ∅, which further yields

∑
s∈S (measure of (Πs)) ≥(

measure of the whole space of (∆(A)|S|)
)
> 0. By the pigeonhole principle, we know that there

exists some s ∈ S such that (measure of (Πs)) > 0 since S is a finite set.

Note that for the above s such that (measure of (Πs)) > 0, for any pair of a1,a2 ∈ A, Qπ
i (s,a1)−

Qπ
i (s,a2) can be represented by the ratio of polynomials of π while it has a non-zero measure set of

solution, we can conclude that Qπ
i (s,a1)−Qπ

i (s,a2) = 0 for every π ∈ ∆(A)|S|, a1,a2 ∈ A for
s such that (measure of (Πs)) > 0. Therefore, for the s such that (measure of (Πs)) > 0, we have
that for every π, Qπ

i (s,a) is a constant function of a.

B.4 Counterexample for Alternative Definition 3

We now show via a counterexample that the alternative definition given in Definition 3 may not even
preserve the networked separable structure of the reward functions in general.
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Consider a Markov game with the following specifications: N = [3], γ = 1
2 , S = {s1, s2, s3},

Ai = {0, 1}, P(s3 | s3,a) = P(s2 | s2,a) = 1 for any a ∈ A, P(s2 | s1,a) = 1
2 + 1

2 · (−1)
a1a2a3 ,

P(s3 | s1,a) = 1
2 −

1
2 · (−1)

a1a2a3 , r1(s3,a) = 1 and r1(s2,a) = 2 for any a ∈ A, and r1(s1,a) =
1
2 −

1
2 · (−1)

a1a2a3 . Then, we have by definition that for any a ∈ A, Qπ
1 (s2,a) = V π

1 (s2) =
1

1−γ r1(s2,a) = 4, Qπ
1 (s3,a) = V π

1 (s3) =
1

1−γ r1(s3,a) = 2, and

Qπ
1 (s1,a) = r1(s1,a) + γP(s3 | s1,a)V π

1 (s3) + γP(s2 | s1,a)V π
1 (s2)

= r1(s1,a) +
1

2
· (1

2
− 1

2
· (−1)a1a2a3) · 2 + 1

2
· (1

2
+

1

2
· (−1)a1a2a3) · 4 = 2.

Hence, Qπ
1 (s, a1, ·) is decomposable with respect to {2, 3}, however, the reward r1(s, a1, ·) is not,

due to r1(s1,a). Note that this counterexample exactly exhibits the importance of the ergodicity of
the Markov chain in removing the degeneracy.

B.5 Examples of (zero-sum) NMGs

Example 2 (Markov security games). Security games as described in [103, 24] is a primary
example of zero-sum NGs/polymatrix games, which features two types of players: attackers who
work as a group (a), and users (u). Let U denote the set of all users. We construct a star-shaped
network (c.f. Figure 2) with the attacker group including na number of attackers sitting at the center,
connected to each user. There is an IP address set [C]. We define the action spaces for each user ui
and the attacker group as Aui = [C] and Aa = {T | T ⊆ [C], |T | = na}, respectively. Each user
selects one IP address, while the attacker group selects a subset I ⊆ [C]. For each user whose IP
address is attacked, the attacker group gains one unit of payoff, and the attacked user loses one unit.
Conversely, if a user’s IP address is not attacked, the user earns one unit of payoff, and the attacker
loses one unit.

We naturally extend the security games to Markov security games as follows: we define state
s ∈ S = RC by setting s0 = 000 and st+1 ∼ st + Unif((eaui,t

)ui∈U), representing the vector of
security level for the IP addresses. Specifically, a vaccine program can improve the security level
of each IP address if it has been attacked previously. We define X ∈ RC as a vector such that
each of its components, Xc, corresponds to a unique user’s IP address, indexed by c. Each Xc is
defined by the random variable as Xc ∼ 2Bern(1 − 1/(st,c + 1)) − 1, indicating the outcome of
a potential attack on IP address c ∈ [C]. Here, st,c denotes the security level of each IP address
c at a given time t, i.e., the c-th component of st. The success probability of an attack on an IP
address is inversely proportional to its security level, represented by 1/(st,c + 1). Therefore, higher
security levels make an attack less likely to succeed. The term 2Bern(1− 1/(st,c +1))− 1 describes
a Bernoulli distribution, typically taking values 0 or 1, that has been scaled and shifted to take values
−1 or 1 instead. Here, −1 represents an unsuccessful attack, while 1 denotes a successful attack
on the IP address c. Therefore, each Xc provides a probabilistic view of the failure of an attack
on each IP address, given its security level. For each (s,a), the reward functions for the users and
the attacker group are defined as rui(s,a, I) = rui,a(s, aui , I) = 111(aui ∈ I)Xaui

+ 111(aui /∈ I)

and ra(s,a, I) =
∑

ui∈U ra,ui
(s, aui

, I) − 111(aui
/∈ I) where ra,ui(s, aui , I) = −111(aui ∈ I)Xaui

.
The reward function of users can be interpreted as follows: if the user’s action aui

is in the set of
attacked IP addresses I and the attack failed (i.e., Xaui

= 1), then the user receives a reward equal to
1. Otherwise, if the user’s action is not in I , the user also receives a reward of 1, likely representing
a successful defense or evasion of an attack. Since the reward is always zero-sum, this game is a
zero-sum NMG with networked separable interactions.

Example 3 (Global economy) . Macroeconomic dynamics may also be modeled through either
zero-sum NMGs or NMGs. Trading between nations has been analyzed in game theory [104, 105].
We consider nations as players, each nation has an action space, Ai = R, and the actions decide
their expenditure levels. We define the state of the global economy, s ∈ R, such that s0 = 0 and
st+1 ∼ st + Unif((ac,t)c∈C) + Zt. Here, Zt is a random variable representing the unpredictable
nature of global events (e.g., COVID-19), and C represents the set of powerful nations, which models
the fact that powerful nations’ politics or military spending have a relatively significant impact on
global economy [106, 107]. The aggregated (or ensemble) effect of the powerful nations on the
economy is modeled by the term Unif((ac,t)c∈C).
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During the global financial crisis in 2008-2009, many nations implemented significant fiscal stimulus
measures to counteract the downturn [108, 109]. Conversely, in good economic conditions, the esti-
mated government spending multipliers were less than one, suggesting that the increased government
spending in such situations might not have the intended positive effects on the economy [110]. Such a
state-dependence on reward functions may be modeled as follows. First, we consider the reward being
decomposable with respect to nations, as it can be interpreted as (1) the expenditure of each nation
is related to the amount of payment spent on trading, and (2) we focus on the case with bilateral
trading, where the surplus from trading can be decomposed by the surplus from the pairwise trading
with other nations. Second, as mentioned above, the relationship between government spending and
the global economy can be seen as countercyclical [110], which we use the formula s(aj − ai) to
model explicitly, for nation i. Specifically, s > 0 denotes a good economic condition, in which all
the nations may choose to decrease the expenditure level (the −ai term). Hence, the reward function
for nation i can be written as ri(s,a) =

∑
j∈N ri,j(s, ai, aj) = Const+

∑
j∈N s(aj − ai), where

the positive constant Const represents the net benefit out of the tradings. Hence, the game shares
the characteristics of being a constant-sum NMG. Moreover, other alternative forms of the reward
functions may exist to reflect the countercyclical phenomenon, and may not necessarily satisfy the
zero-sum (constant-sum) property, but the game would still qualify as an NMG.

B.6 Reviewing existing results for zero-sum NGs

In a zero-sum NG, i.e., a zero-sum polymatrix game, for each player i ∈ N , the reward ri (ai, π−i)
of using a pure strategy ai ∈ Ai is a linear function of π−i. The following linear program, which
involves variables π ∈

∏
i∈N ∆(Ai) and v = (vi)i∈N , aims to minimize the sum of the variables vi:

minv,π
∑

i∈N vi
subject to vi ≥ ri (eai , π−i) , for all i ∈ N , a ∈ Ai,

π ∈
∏

i∈N ∆(Ai).

Reference [24] states that if (π⋆,v⋆) is an optimal solution to the above linear program, then π⋆ is an
NE of the zero-sum NG, and the optimal value of the above linear program is 0. Conversely if π⋆ is
an NE, then there exists a v⋆ such that (π⋆,v⋆) is an optimal solution to the above linear program
and v⋆ is the expected reward vector under π⋆. By observation, we additionally have the following
proposition as an extension:

Proposition 5. If (π⋆,v⋆) is an ϵ-optimal solution to the above linear program, then π⋆ is an ϵ-NE
and ri(π

⋆) ≤ v⋆i ≤ ri(π
⋆) + ϵ for all i ∈ N . Conversely, if π⋆ is an ϵ-NE, then there exists a v⋆

such that (π⋆,v⋆) is an nϵ-optimal solution to the above linear program.

Proof. If (π⋆,v⋆) is an ϵ-optimal solution to the above linear program (whose optimal solution is
exactly 0), we have

ϵ ≥
∑
i∈N

v⋆i =
(i)

∑
i∈N

(v⋆i − ri(π
⋆)) ≥

(ii)

∑
i∈N

(
max

µi∈∆(Ai)
ri
(
µi, π

⋆
−i

)
− ri (π

⋆)

)
which proves that π⋆ is an ϵ-NE: here (i) holds since the sum of reward over players is zero, and
(ii) holds due to the constraint of the given linear program. Moreover, we can also observe that
ri(π

⋆) ≤ v⋆i ≤ ri(π
⋆) + ϵ holds, since 0 ≤ maxµi∈∆(Ai) ri

(
µi, π

⋆
−i

)
− ri (π

⋆) ≤ v⋆i − ri(π
⋆) ≤ ϵ

for each i ∈ N .

Conversely, suppose that π⋆ is an ϵ-NE. Then, defining v⋆i := maxµi∈∆(Ai) ri
(
µi, π

⋆
−i

)
satisfies the

constraints of the given linear program. In addition, we have∑
i∈N

v⋆i =
∑
i∈N

(v⋆i − ri(π
⋆)) =

∑
i∈N

(
max

µi∈∆(Ai)
ri
(
µi, π

⋆
−i

)
− ri(π

⋆)

)
≤ nϵ,

which concludes the theorem.

Proposition 6. Suppose π⋆ is an ϵ-approximate CCE of the zero-sum NG. Then the product of
its marginalized policy π̂⋆ is an nϵ-approximate NE of the zero-sum NG. Moreover, it holds that
ri(π

⋆) ≥ ri(π̂
⋆) ≥ ri(π

⋆)− nϵ for every i ∈ N .
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Proof. A similar method with [24]’s Theorem 2 can provide proof of Proposition 6. To be specific,
define v⋆i := ri(π

⋆), then we have (π̂⋆,v⋆) is an nϵ-optimal solution. By Proposition 5, we can
conclude that π̂⋆ is an nϵ-approximate NE and ri(π

⋆) ≥ ri(π̂
⋆) ≥ ri(π

⋆)− nϵ for all i ∈ N .

We note that Proposition 5 and Proposition 6 are not in [24], but it plays an important role in proving
Proposition 3.

B.7 Omitted proof of Proposition 3

Before introducing the proof of Proposition 3, we provide the relationship between approximate
Markov stationary CCE and approximate auxiliary-game CCE in Markov games.

Claim 3. For an infinite-horizon γ-discounted MG, an ϵ-approximate Markov stationary CCE π of
this MG makes π(s) an ϵ-approximate CCE of the auxiliary game at each state s ∈ S, where the
auxiliary game payoff matrix at each s ∈ S is defined as (ri(s,a) + γ⟨P(·|s,a), V π

i (·)⟩)a∈A for
player i ∈ N .

Proof. By definition of ϵ-approximate Markov (perfect) CCE, we have for all s ∈ S and all i ∈ N
that

V π
i (s) ≤ max

µi∈∆(Ai)|S|
V

µi,π−i

i (s) ≤ V π
i (s) + ϵ. (10)

Then, by one-step of Bellman equation for maxµi∈∆(Ai)|S| V
µi,π−i

i (s), we also know that

max
µi∈∆(Ai)|S|

V
µi,π−i

i (s) = max
ν∈∆(Ai)

Eν,π−i(s)

[
ri(s,a) + γ⟨P(· | s,a), max

µi∈∆(Ai)|S|
V

µi,π−i

i (·)⟩
]
.

(11)

Moreover, we have by the left inequality of Equation (10) that

max
ν∈∆(Ai)

Eν,π−i(s)

[
ri(s,a) + γ⟨P(· | s,a), max

µi∈∆(Ai)|S|
V

µi,π−i

i (·)⟩
]

≥ max
ν∈∆(Ai)

Eν,π−i(s)

[
ri(s,a) + γ⟨P(· | s,a), V π

i (·)⟩
]
. (12)

Also, we have by one-step Bellman consistency equation for V π
i (s) that

V π
i (s) = Eπ(s)

[
ri(s,a) + γ⟨P(· | s,a), V π

i (·)⟩
]
. (13)

Combining Equations (10), (12) and (13), we have

max
ν∈∆(Ai)

Eν,π−i(s)

[
ri(s,a) + γ⟨P(· | s,a), V π

i (·)⟩
]
≤ Eπ(s)

[
ri(s,a) + γ⟨P(· | s,a), V π

i (·)⟩
]
+ ϵ,

for all i ∈ N and s ∈ S, which proves that π(s) is an ϵ-approximate CCE of the auxiliary game,
where the game payoff matrix at each state s ∈ S is (ri(s,a) + γ⟨P(·|s,a), V π

i (·)⟩)a∈A for player
i ∈ N .

Claim 4. For an H-horizon MG and h ∈ [H], an ϵ-approximate Markov CCE π = {πh}h∈[H] of this
MG makes πh(s) an ϵ-approximate CCE of the auxiliary game at each state s ∈ S and each h ∈ [H],
where the auxiliary game payoff matrix at (s, h) is defined as (rh,i(s,a)+⟨Ph(·|s,a), V π

h+1,i(·)⟩)a∈A

for player i ∈ N , where V π̃
H+1,i(s) = 0 for any policy π̃, and for all s ∈ S and i ∈ N .

Proof. By definition of ϵ-approximate Markov (perfect) CCE, we have that for all s ∈ S, h ∈ [H],
and i ∈ N

V π
h,i(s) ≤ max

µi∈∆(Ai)|S|×H
V

µi,π−i

h,i (s) ≤ V π
h,i(s) + ϵ. (14)
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Then, by one-step of Bellman equation for maxµi∈∆(Ai)|S|×H V
µi,π−i

h,i (s), we also know that

max
µi∈∆(Ai)|S|×H

V
µi,π−i

h,i (s)

= max
ν∈∆(Ai)

Eν,πh,−i(s)

[
rh,i(s,a) + ⟨Ph(· | s,a), max

µi∈∆(Ai)|S|×H
V

µi,π−i

h+1,i (·)⟩
]
. (15)

Moreover, we have by the left inequality of Equation (14) and V π̃
H+1,i(s) = 0 for any π̃ that

max
ν∈∆(Ai)

Eν,πh,−i(s)

[
rh,i(s,a) + ⟨Ph(· | s,a), max

µi∈∆(Ai)|S|×(H−1)
V

µi,π−i

h+1,i (·)⟩
]

(16)

≥ max
ν∈∆(Ai)

Eν,πh,−i(s)

[
rh,i(s,a) + ⟨Ph(· | s,a), V π

h+1,i(·)⟩
]
.

Also, we have by one-step Bellman equation for V π
h,i(s) that

V π
h,i(s) = Eπh(s)

[
rh,i(s,a) + ⟨Ph(· | s,a), V π

h+1,i(·)⟩
]
. (17)

Combining Equations (14), (15) and (17), we can conclude the theorem.

Proposition 3. Given an ϵ-approximate Markov CCE of an infinite-horizon γ-discounted zero-sum
NMG, marginalizing it at each state results in an (n+1)

(1−γ) ϵ-approximate Markov NE of the zero-sum
NMG. The same argument also holds for the finite-horizon episodic setting with (1− γ)−1 being
replaced by H .

Proof. For an arbitrary joint Markov policy µ, we define ds′,µ(s) := (1 −
γ)Es1=s′,µ[

∑∞
t=1 γ

t−1111(st = s)] which is the discounted visitation measure of states when
we follow policy µ and start from state s′. Here, st denotes the state at timestep t. We use π
to denote an ϵ-approximate Markov CCE, and π̂ to denote the product policy of the per-state
marginalized policies of π for all agents i ∈ N . We define πi as the per-state marginalized policy
for player i from π. With this notation, we have π̂ := π1 × · · · × πn. Note that for zero-sum
NMGs, by Proposition 1 we know that if NC ̸= ∅, then P(s′ | s,a) =

∑
i∈NC

Fi(s
′ | s, ai) or

Ph(s
′ | s,a) =

∑
i∈NC

Fh,i(s
′ | s, ai), for infinite- and finite-horizon cases, respectively; and if

NC = ∅, we have P(s′ | s,a) = Fo(s
′ | s) or Ph(s

′ | s,a) = Fh,o(s
′ | s) for the two cases.

In the infinite-horizon case, by Claim 3, we know that π(s) also serves as an ϵ-approximate CCE for
an auxiliary game with a payoff matrix (ri(s,a)+ γ⟨P(· | s,a), V π

i (·)⟩)a∈A for player i ∈ N . Since
this auxiliary game is a zero-sum NG by the definition of zero-sum NMG, Proposition 6 implies that
the policy π̂(s) is an nϵ-approximate NE of the auxiliary game with the same payoff matrix, and the
following inequality is valid for all i ∈ N and s ∈ S:

V π
i (s) = ri(s, π) + γ

∑
s′∈S

∑
a∈A

P(s′ | s,a)π(a | s)V π
i (s′)

≤ ri(s, π̂) + γ
∑
s′∈S

∑
a∈A

P(s′ | s,a)π̂(a | s)V π
i (s′) + nϵ. (18)

Applying the inequality V π
i (s′) ≤ ri(s

′, π̂) + γ
∑

s̃∈S
∑

a∈A P(s̃ | s′,a)π̂(a | s′)V π
i (s̃) + nϵ into

the final expression of Equation (18), and applying it recursively, we have that for every i ∈ N and
s ∈ S:

V π
i (s) ≤ V π̂

i (s) + nϵ/(1− γ). (19)

Moreover, we have that for any µ ∈ ∆(Ai)
|S|

V π̂
i (s) ≥ V π

i (s)− nϵ/(1− γ) ≥ V
µ,π−i

i (s)− (n+ 1)ϵ/(1− γ)

= Ea∼µ(s′)×π−i(s′),s′∼ds,µ,π−i
[ri(s

′,a)]− (n+ 1)ϵ/(1− γ)

=
(i)

Ea∼µ(s′)×π̂−i(s′),s′∼ds,µ,π−i
[ri(s

′,a)]− (n+ 1)ϵ/(1− γ)

=
(ii)

Ea∼µ(s′)×π̂−i(s′),s′∼ds,µ,π̂−i
[ri(s

′,a)]− (n+ 1)ϵ/(1− γ)

= V
µ,π̂−i

i (s)− (n+ 1)ϵ/(1− γ),
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where the second inequality follows from π being an ϵ-approximate Markov CCE, and (i) holds
since for arbitrary (νi, ν−i) ∈ ∆(Ai)

|S| ×∆(A−i)
|S| and for any νS ∈ ∆(S),

Ea∼νi(s′)×ν−i(s′),s′∼νS [ri(s
′,a)]

=
∑
a∈A

∑
s′∈S

νS(s
′)ri(s

′,a)νi(ai | s′)ν−i(a−i | s′)

=
∑

j∈EQ,i

∑
a∈A

∑
s′∈S

νS(s
′)ri,j(s

′, ai, aj)νi(ai | s′)ν−i(a−i | s′)

=
∑

j∈EQ,i

∑
ai∈Ai

∑
aj∈Aj

∑
s′∈S

νS(s
′)ri,j(s

′, ai, aj)νi(ai | s′)νj(aj | s′)

= Ea∼νi(s′)×ν̂−i(s′),s′∼νS [ri(s
′,a)],

where ν̂ := ν1 × · · · × νn is the product policy of the per-state marginalized policies of ν, and (ii)
holds due to the following fact: if NC ̸= ∅

Pπ(s
′ | s) :=

∑
a∈A

P(s′ | s,a)π(a | s) =
∑
a∈A

∑
i∈NC

Fi(s
′ | s, ai)π(a | s)

=
∑
i∈NC

∑
a∈A

Fi(s
′ | s, ai)π(a | s) =

∑
i∈NC

∑
ai∈Ai

Fi(s
′ | s, ai)πi(ai | s) =: Pπ̂(s

′ | s),

(20)
or if NC = ∅

Pπ(s
′ | s) = Fo(s

′ | s) = Pπ̂(s
′ | s). (21)

In other words, the marginalized policy’s state visitation measure ds,π̂ is the same as the original
policy’s state visitation measure ds,π . Therefore, marginalizing ϵ-approximate Markov CCE provides
(n+ 1)ϵ/(1− γ)-approximate Markov NE.

Moreover, a similar argument holds for the finite-horizon episodic setting. In the H-horizon case,
since π is an ϵ-approximate Markov CCE, by Claim 4 πh(s) also serves as an ϵ-approximate CCE
for an auxiliary game with a payoff matrix defined by (rh,i(s,a) + ⟨Ph(· | s,a), V π

h+1,i(·)⟩)a∈A for
player i ∈ N . Since this auxiliary game is a zero-sum NG by the definition of zero-sum NMG,
Proposition 6 implies that the policy π̂h(s) is an nϵ-approximate NE of the auxiliary-game with the
same payoff matrix, and the following inequality is valid for all i ∈ N and s ∈ S:

V π
h,i(s) = rh,i(s, π) +

∑
s′∈S

∑
a∈A

Ph(s
′ | s,a)πh(a | s)V π

h+1,i(s
′)

≤ rh,i(s, π̂) +
∑
s′∈S

∑
a∈A

Ph(s
′ | s,a)π̂h(a | s)V π

h+1,i(s
′) + nϵ. (22)

Applying the inequality

V π
h+1,i(s

′) ≤ rh+1,i(s
′, π̂) +

∑
s̃∈S

∑
a∈A

Ph+1(s̃ | s′,a)π̂h+1(a | s′)V π
h+2,i(s̃) + nϵ

into (22) continually, iterating this procedure from h+1 to H , yields that for every i ∈ N and s ∈ S:
V π
h,i(s) ≤ V π̂

h,i(s) + hnϵ.

Moreover, we have that for any µ ∈ ∆(Ai)
|S|×H

V π̂
h,i(s) ≥ V π

h,i(s)− nϵH ≥ V
µ,π−i

h,i (s)− (n+ 1)ϵH = V
µ,π̂−i

h,i (s)− (n+ 1)ϵh,

with a similar observation on the visitation measure under π and π̂, which concludes the proof.

C Omitted Details in Section 4

Theorem 1. There is a constant ϵ > 0 for which computing an ϵ-approximate Markov perfect
stationary CCE in infinite-horizon 1

2 -discounted zero-sum NMGs, whose underlying network structure
contains either a triangle or a 3-path subgraph, is PPAD-hard. Moreover, given the PCP for PPAD
conjecture [43], there is a constant ϵ > 0 such that computing even an ϵ-approximate Markov
non-perfect stationary CCE in such zero-sum NMGs is PPAD-hard.

Proof. We separate the proof for the two cases as follows.
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Case 1. EQ contains a triangle subgraph. We will show that for any general-sum two-player
turn-based MG (A), the problem of computing its Markov stationary CCE, which is inherently a
PPAD-hard problem [30], can be reduced to computing the Markov stationary CCE of a three-player
zero-sum MG with a triangle structure networked separable interactions (B). Consider an MG (A)
with two players, players 1 and 2, and a reward function r1(s, a1, a2) and r2(s, a2, a1), where ai is
the action of the i-th player and ri is the reward function of the i-th player. The transition dynamics
is given by P(s′ | s, a1, a2). In even rounds, player 2’s action space is limited to Noop2, and in odd
rounds, player 1’s action space is limited to Noop1, where Noop is an abbreviation of “no-operation”,
i.e., the player does not affect the transition dynamics nor reward functions in that round. We denote
player 1’s action space in even rounds as A1,even and player 2’s action space in odd rounds as A2,odd.

Now, we construct a three-player zero-sum NMG. We set the reward function as r̃i(s,a) =∑
j ̸=i r̃i,j(s, ai, aj) and r̃i,j(s, ai, aj) = −r̃j,i(s, aj , ai), where the reward functions are designed

so that r̃i,j = −r̃j,i for all i, j, r̃1,2 + r̃1,3 = r1, and r̃2,1 + r̃2,3 = r2, by introducing a dummy
player, player 3. Here r1, r2 are the reward functions in game (A). In even rounds, player 2’s action
space is limited to Noop2, and in odd rounds, player 1’s action space is limited to Noop1. Player
3’s action space is always limited to Noop3 in all rounds. The transition dynamics is defined as
P̃(s′ | s, a1, a2, a3) = P(s′ | s, a1, a2), since a3 is always Noop3. In other words, player 3’s action
does not affect the rewards of the other two players, nor the transition dynamics, and players 1 and
2 will receive the reward as in the two-player turn-based MG. Also, note that due to the turn-based
structure of the game (A), the transition dynamics satisfy the decomposable condition in our Propo-
sition 1, and it is thus a zero-sum NMG. In fact, every turn-based dynamics can be represented as
an ensemble of single-controller dynamics, as we have discussed in Section 3. We set the reward
function values as follows:

r̃1,3(s, a1,Noop3) = −r̃3,1(s,Noop3, a1) = r1(s, a1,Noop2) + r2(s,Noop2, a1)
r̃1,3(s,Noop1,Noop3) = −r̃3,1(s,Noop3,Noop1) = 0

r̃2,3(s, a2,Noop3) = −r̃3,2(s,Noop3, a2) = r1(s,Noop1, a2) + r2(s, a2,Noop1)
r̃2,3(s,Noop2,Noop3) = −r̃3,2(s,Noop3,Noop2) = 0

r̃1,2(s, a1,Noop2) = −r̃2,1(s,Noop2, a1) = −r2(s,Noop2, a1)
r̃1,2(s,Noop1, a2) = −r̃2,1(s, a2,Noop1) = r1(s,Noop1, a2).

Note that the new game (B) is still a turn-based game, and thus the Markov stationary CCE is the same
as the Markov stationary NE. Also, note that by construction, we know that the equilibrium policies
of players 1 and 2 at the Markov stationary CCE of the game (B) constitute a Markov stationary
CCE of the game (A). If the underlying network is more general and contains a triangle subgraph,
we can specify the reward and transition dynamics of these three players as above, and specify all
other players to be dummy players, whose reward functions are all zero, and do not affect the reward
functions of these three players, nor the transition dynamics.

Case 2. EQ contains a 3-path subgraph. We will show that for any general-sum two-player
turn-based MG (A), the problem of computing its Markov stationary CCE can also be reduced
to computing the Markov stationary CCE of a four-player zero-sum MG with 3-path networked
separable interactions (B). Consider an MG (A) with two players, players 1 and 2, and a reward
function r1(s, a1, a2) and r2(s, a2, a1), where ai is the action of the i-th player and ri is the reward
function of the i-th player. The transition dynamics is given by P(s′ | s, a1, a2). In even rounds,
player 2’s action space is limited to Noop2, and in odd rounds, player 1’s action space is limited
to Noop1, where Noop is an abbreviation of “no-operation”, i.e., the player does not affect the
transition dynamics nor the reward functions in that round. We denote player 1’s action space in even
rounds as A1,even and player 2’s action space in odd rounds as A2,odd.

Now, we construct a four-player zero-sum NMG with a 3-path network structure. We set the reward
function as r̃1(s,a) = r̃1,2(s, a1, a2)+ r̃1,3(s, a1, a3) and r̃2(s,a) = r̃2,1(s, a2, a1)+ r̃2,4(s, a2, a4)
and r̃i,j(s, ai, aj) = −r̃j,i(s, aj , ai). The reward functions are designed so that r̃1,2 + r̃1,3 = r1,
and r̃2,1 + r̃2,4 = r2, where r1, r2 are the reward functions in game (A), by introducing dummy
players, player 3 and player 4. In even rounds, player 2’s action space is limited to Noop2, and in
odd rounds, player 1’s action space is limited to Noop1. Player 3’s action space is always limited to
Noop3 in all rounds. Player 4’s action space is always limited to Noop4 in all rounds. The transition
dynamics is defined as P̃(s′ | s, a1, a2, a3, a4) = P(s′ | s, a1, a2), since a3 is always Noop3 and a4
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is always Noop4. In other words, player 3 and player 4’s actions do not affect the rewards of the
other two players, nor the transition dynamics, and players 1 and 2 will receive the reward as in
the two-player turn-based MG. Also, note that due to the turn-based structure of the game (A), the
transition dynamics satisfy the decomposable condition in our Proposition 1, and it is thus a zero-sum
NMG. In fact, every turn-based dynamics can be represented as an ensemble of single-controller
dynamics, as we have discussed in Section 3. We set the reward function values as follows:

r̃1,3(s, a1,Noop3) = −r̃3,1(s,Noop3, a1) = r1(s, a1,Noop2) + r2(s,Noop2, a1)
r̃1,3(s,Noop1,Noop3) = −r̃3,1(s,Noop3,Noop1) = 0

r̃2,4(s, a2,Noop4) = −r̃4,2(s,Noop4, a2) = r1(s,Noop1, a2) + r2(s, a2,Noop1)
r̃2,4(s,Noop2,Noop4) = −r̃4,2(s,Noop4,Noop2) = 0

r̃1,2(s, a1,Noop2) = −r̃2,1(s,Noop2, a1) = −r2(s,Noop2, a1)
r̃1,2(s,Noop1, a2) = −r̃2,1(s, a2,Noop1) = r1(s,Noop1, a2).

Note that the new game (B) is still a turn-based game, and thus the Markov stationary CCE is the same
as the Markov stationary NE. Also, note that by construction, we know that the equilibrium policies
of players 1 and 2 at the Markov stationary CCE of the game (B) constitute a Markov stationary CCE
of the game (A). If the underlying network is more general and contains a 3-path subgraph, we can
specify the reward and transition dynamics of these four players in the subgraph as above, and specify
all other players to be dummy players, whose reward functions are all zero, and do not affect the
reward functions of these three players, nor the transition dynamics. This completes the proof.

Proposition 7. A connected graph that does not contain a subgraph of a triangle or a 3-path must be
a star-shaped graph.

Proof. If the diameter of a connected graph is exactly 1, then there are only two nodes, which form
a star-shaped network. If the diameter of a connected graph is greater than 2, it contradicts the
non-existence of a 3-path subgraph. If the diameter of a connected graph is exactly 2, we denote
the middle node as c, and the leftmost and rightmost nodes as l and r. If either l or r has another
neighbor other than c, it implies the existence of a 3-path subgraph, which contradicts the assumption.
Therefore, the additional nodes other than l, c, r, if exist, have to be connected to c. If two neighbors
of c are directly connected, then it contradicts the non-existence of a triangle subgraph. Hence, all
nodes except c have to be connected to c while not being connected to each other, which leads to a
star-shaped graph.

D Omitted Details in Section 5

We refer to Section E for the existing relevant result regarding stochastic approximation. The proof
structure for Section D follows three steps: (1) find the continuous-time dynamics of the fictitious-play
learning dynamics, (2) identify a Lyapunov function for the continuous-time version of the fictitious
play (V (π) or L(π)), and (3) since the discrete version can be viewed as a perturbed version of the
continuous-time dynamics (Theorem 5), the limit point of fictitious play is contained in the level set
of a Lyapunov function (Theorem 6). Theorem 5 and Theorem 6 are stated in Section E, and these
theorems are restatements of [44]. In this section, with a slight abuse of notation, we interchangeably
use ai to refer to either an action in Ai, or a pure strategy πi ∈ ∆(Ai), where πi(ai) = 1 and
πi(a

′
i) = 0 for all a′i ̸= ai.

D.1 Matrix game case

D.1.1 Fictitious-play in zero-sum NGs

We first introduce the fictitious-play dynamics for zero-sum NGs with G = (N , E), i.e., zero-sum
polymatrix games [23, 24], the very same one as in [5, 6]: at iteration, k, each player i maintains a
belief of the opponents’ policies, (π̂(k)

−i ); she then takes action by best responding to the belief, and
then updates the belief as:

Take action: a
(k)
i ∈ argmax

ai∈Ai

ri(eai
, π̂

(k)
−i ), Update belief: π̂

(k+1)
−i = π̂

(k)
−i + α(k)(e

a
(k)
−i
− π̂

(k)
−i )
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where ri(π) is the expected payoff under joint policy π (see Equation (1)), and α(k) ≥ 0 is the
stepsize. The overall procedure is summarized in Algorithm 2.

Algorithm 2 Fictitious Play in zero-sum NGs (i-th player)

Choose π̂
(0)
j as a uniform distribution for all j ∈ N/{i}

for each timestep k = 0, 1, . . . do
Take action a

(k)
i ∈ argmaxai∈Ai

ri(eai , π̂
(k)
−i )

Observe other players’ action a
(k)
−i

Update the policy belief as π̂(k+1)
−i = π̂

(k)
−i + α(k)(e

a
(k)
−i
− π̂

(k)
−i )

end for

We provide the convergence guarantee of the FP dynamics as follows, showing that zero-sum NGs,
i.e., zero-sum polymatrix games [23, 24], possess the fictitious-play property [8].

Theorem 3. Assuming that
∑∞

k=0 α
(k) → ∞ and α(k) → 0 as k → ∞, then the limit points of

(π̂(k))k≥0 are the NE of the zero-sum NG.

Proof of Theorem 3. To prove the fictitious-play property, we consider a continuous version of
Algorithm 2. Assuming that

∑∞
k=0 α

(k) →∞ and α(k) → 0, [44, Proposition 3.27] states that we
can characterize the limit set of (π̂(k))k≥0 by considering the following dynamics:

πi +
dπi

dt
∈ argmax

ai∈Ai

ri(eai , π−i). (23)

We define a Lyapunov function as

V (π) =
∑
i∈N

(
max
ai∈Ai

ri(eai , π−i)− ri(π)

)
. (24)

Claim 5. V (π(t)) is a Lyapunov function for (23).

Proof. Let argmaxai∈Ai
ri(eai , π−i) in the formula be ai

⋆, then we have

dV (π(t))

dt
=
∑
i∈N

∑
j∈Ei

e⊺a⋆
i
ri,jπ

′
j

 =
∑
i∈N

∑
j∈Ei

e⊺a⋆
i
ri,j(ea⋆

j
− πj)


=
∑
i∈N

∑
j∈Ei

−e⊺a⋆
i
ri,jπj

 = −V (π(t))

where we use π′
j to denote dπj

dt , and the first equality is derived from the envelope theorem. Since
maxai

ri(ai, π−i) ≥ ri(π), V is guaranteed to be non-negative. We can thus express V (t) =
V (0)e−t, indicating that it is decreasing with a linear rate in continuous time.

Consequently, [44, Proposition 3.27] implies

lim
k→∞

(∑
i∈N

(
max
ai∈Ai

ri(eai
, π̂

(k)
−i )− ri(π̂

(k))

))
= 0

which concludes that every limit point of (π̂(k))k≥0 is an NE.

Note that the fictitious-play learning dynamics for zero-sum polymatrix games have also been
proposed and analyzed in [12], and our result above is a reproduction of it.
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D.1.2 Smooth fictitious play in zero-sum NGs

We can also provide guarantees for the learning dynamics of smooth fictitious play (may also be
referred to as stochastic fictitious play later) [7], with convergence to the quantal response equilibrium
(QRE) of the game [111, 112].
Definition 6. A policy π⋆

τ =
(
π⋆
τ,1, · · · , π⋆

τ,n

)
is a quantal response equilibrium of the game with

regularization coefficient τ if the following condition holds

π⋆
τ,i(ai) =

exp
(
[riπ

⋆
τ ]ai

/τ
)

∑
a′
i∈Ai

exp
(
[riπ⋆

τ ]a′
i
/τ
)

for all i ∈ N and ai ∈ Ai [111].

A QRE always exists in finite games. Moreover, a QRE has an equivalent notion as finding the Nash
equilibrium of the game with entropy-regularized payoffs: i.e., π⋆

τ satisfies that

rτ,i
(
π′
i, π

⋆
τ,−i

)
≤ rτ,i (π

⋆
τ ) ,

where

rτ,i(π) := ri(π) + τH(πi)−
∑

j∈Er,i

τ

|Er,j |
H(πj) (25)

and H(πi) := −
∑

ai∈Ai
πi(ai) log(πi(ai)) is the Shannon entropy function [113]. Reference

[83] provided a novel analysis showing that a unique NE exists for zero-sum NGs with entropy
regularization (thus the QRE for the unregularized zero-sum NG).
Remark 7. In most existing literature [51, 83], the entropy regularized reward is defined as ri(π) +
τH(πi). Indeed, note that

argmax
πi∈∆(Ai)

(ri(π) + τH(πi)) = argmax
πi∈∆(Ai)

ri(π) + τH(πi)−
∑

j∈Er,i

τ

|Er,j |
H(πj)


for any i ∈ N , so it does not affect the equilibria. Moreover, by defining rτ,i(π) := ri(π)+τH(πi)−∑

j∈Er,i

τ
|Er,j |H(πj), we can have that

∑
i∈N rτ,i(π) = 0 holds for any joint product policy π.

Algorithm 3 Stochastic fictitious play in zero-sum NGs (i-th player)

Choose π̂
(0)
j as a uniform distribution for all j ∈ N/{i}

for each timestep k = 0, 1, . . . do
Take action a

(k)
i ∼ argmaxµi∈∆(Ai) rτ,i(µi, π̂

(k)
−i )

Observe other players’ action a
(k)
−i

Update the policy belief as π̂(k+1)
−i = π̂

(k)
−i + α(k)(e

a
(k)
−i
− π̂

(k)
−i )

end for

In Algorithm 3, players initialize their beliefs for other players (π̂−i) as a uniform distribution. They
sample from the best-response policy with respect to the entropy-regularized reward, given the beliefs
of other players’ policies. Subsequently, each player observes other players’ actions and updates her
beliefs.
Theorem 4. Assuming that

∑∞
k=0 α

(k) → ∞ and limk→∞ α(k) → 0, (π̂(k))k≥0 converges to a
QRE of the zero-sum NG with probability 1.

Proof of Theorem 4. To prove the fictitious-play property, we consider a continuous-time version of
the learning dynamics in Algorithm 3. Assuming

∑∞
k=0 α

(k) →∞ and α(k) → 0, [44, Proposition
3.27] states that we can characterize the limit set of (π̂(k))k≥0 by considering the following dynamics

πi +
dπi

dt
= argmax

µi∈∆(Ai)

rτ,i(µi, π−i). (26)
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We define a Lyapunov function as

Vτ (π) =
∑
i∈N

(
max

µi∈∆(Ai)
rτ,i(µi, π−i)− rτ,i(π)

)
.

Claim 6. Vτ (π(t)) is a Lyapunov function for (26).

Proof. Let the maximizer of rτ,i(µi, π−i) in the formula be µ⋆
i , which we know is unique due to the

regularization. Thus, we have

dVτ (π(t))

dt
=

∑
i∈N

∑
j∈Ei

µ⋆⊺
i ri,jπ

′
j

−
(
τ(H(πi))

′)
=

∑
i∈N

∑
j∈Ei

µ⋆⊺
i ri,j(µ

⋆
j − πj)

−
(
τ(H(πi))

′)
=

∑
i∈N

∑
j∈Ei

−µ⋆⊺
i ri,jπj

+ τ(1 + log πi)
⊺π′

i


=

∑
i∈N

∑
j∈Ei

−µ⋆⊺
i ri,jπj

+ τ(1 + log πi)
⊺(µ⋆

i − πi)


=

∑
i∈N

∑
j∈Ei

−µ⋆⊺
i ri,jπj

+ τ(H(πi)) + τ(log πi)
⊺(µ⋆

i )


≤

∑
i∈N

∑
j∈Ei

−µ⋆⊺
i ri,jπj

+ τ(H(πi))− τ(H(µi))

 = −Vτ (π(t))

where the first equality is derived from the envelope theorem and the last inequality is from Gibbs’ in-
equality. Since maxµi∈∆(Ai) rτ,i(µi, π−i) ≥ rτ,i(π), V is guaranteed to be non-negative. Therefore,
we have 0 ≤ V (t) ≤ V (0)e−t, indicating that it is decreasing.

Consequently, [44, Proposition 3.27] implies that

lim
k→∞

(∑
i∈N

(
max

µi∈∆(Ai)
rτ,i(µi, π̂

(k)
−i )− rτ,i(π̂

(k))

))
= 0

which concludes that every limit point is a QRE. Since the QRE is unique for zero-sum NGs, we
conclude that (π(k))k≥0 converges to the QRE of the zero-sum NG.

Remark. Algorithm 2 converges to an NE, and Algorithm 3 converges to a QRE. Since the QRE is
unique in zero-sum NG for a fixed τ , we can identify the converging point in Algorithm 3, while we
cannot determine which NE is the converging point in Algorithm 2.

D.2 Fictitious-play property of infinite-horizon zero-sum NMGs of a star-shape

Before presenting the results, we examine some properties of a star-shaped zero-sum NG (i.e., the
polymatrix case). We define player 1 as the center player without loss of generality. First, we can
view a star-shaped zero-sum NG as a constant-sum separable star-shaped game, as detailed below.

Proposition 8. There exist some {ci}i∈N/{1} with ci ∈ R such that a star-shaped zero-sum NG
satisfies the following identities:

r⊺i,1 + r1,i = ci111111
⊺ for every i ∈ N/{1},

∑
i∈N/{1}

ci = 0.
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Algorithm 4 Fictitious play in zero-sum NMGs of a star-shape (i-th player)

Choose π̂
(0)
j (s) to be a uniform distribution for all j ∈ N/{i} and s ∈ S

Choose Q̂
(0)
i (s,a) to be an arbitrary value for all s ∈ S and a ∈ A

Choose N(s) = 0 for all s ∈ S
for each timestep k = 0, 1, . . . do

Observe the current state s(k) and update the visitation number as N(s(k)) = N(s(k)) + 1

Take action a
(k)
i ∈ argmaxai∈Ai

Q̂
(k)
i (s(k), eai

, π̂
(k)
−i (s

(k)))
Update Vi-belief for all i ∈ N and s ∈ S as

V̂
(k)
i (s) = max

ai∈Ai

Q̂
(k)
i (s, eai

, π̂
(k)
−i (s)) (27)

Observe other players’ action a
(k)
−i

Update the belief as π̂(k+1)
−i (s) = π̂

(k)
−i (s) + 111(s = s(k))αN(s)(e

a
(k)
−i
− π̂

(k)
−i (s)) for all s ∈ S

if player i = 1 then
Update the Q1,j-belief for all j ∈ N/{1}, s ∈ S, and a ∈ A as

Q̂
(k+1)
1,j (s, a1, aj) = Q̂

(k)
1,j (s, a1, aj)

+ 111(s = s(k))βN(s)
(
r1,j(s, a1, aj) + γ

∑
s′∈S

1

n− 1
P1(s

′ | s, a1)V̂ (k)
1 (s′)− Q̂

(k)
1,j (s, a1, aj)

)
Update the Q1-belief for all s ∈ S and a ∈ A as

Q̂
(k+1)
1 (s,a) =

∑
j∈N/{1}

Q̂
(k+1)
1,j (s, a1, aj)

else
Update the Qi-belief for all s ∈ S and a ∈ A as

Q̂
(k+1)
i (s,a) =Q̂

(k+1)
i,1 (s, ai, a1) = Q̂

(k)
i,1 (s, ai, a1) + 111(s = s(k))βN(s)

(
ri,1(s, ai, a1)

+ γ
∑
s′∈S

P1(s
′ | s, a1)V̂ (k)

i (s′)− Q̂
(k)
i,1 (s, ai, a1)

)
end if
State transitions s(k+1) ∼ P1(· | s(k), a(k)1 )

end for

Proof. By the definition of a zero-sum NG, for arbitrary π1 ∈ ∆(A1), {πi}i∈N/{1} ∈∏
i∈N/{1} ∆(Ai), the following holds:∑

i∈N/{1}

(
π⊺
1 r1,i + π⊺

1 r
⊺
i,1

)
πi = 0 (28)

which implies π⊺
1 (r1,i + r⊺i,1) = ci111

⊺ for some constant ci, since Equation (28) holds for any
πi ∈ ∆(Ai). To be specific, π⊺

1 (r1,i + r⊺i,1)πi should be the same when we plugging πi = eai for
any ai ∈ Ai, so that every element of π⊺

1 (r1,i + r⊺i,1) is the same, i.e., there exists some ci ∈ R such
that π⊺

1 (r1,i + r⊺i,1) = ci111
⊺. Plugging to Equation (28), we have

∑
i∈N/{1} ci = 0. Moreover, this

again implies r1,i + r⊺i,1 = ci111111
⊺, since π⊺

1 (r1,i + r⊺i,1) = ci111
⊺ always holds for any π1 ∈ ∆(A1) by

a similar argument as above.

Second, we define the Nash equilibrium value for the center player in a star-shaped zero-sum NG,
which is different from the general zero-sum NG case, where there may not exist a unique Nash value
[24].
Proposition 9. There exists a unique Nash equilibrium value for the center player 1 in a star-shaped
zero-sum NG (i.e., ri,j = 0 if i ̸= 1 and j ̸= 1).
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Proof. Player 1 aims to maximize
∑

i∈N/{1} π
⊺
1 r1,iπi while player i ̸= 1 aims to maximize

π⊺
1 r

⊺
i,1πi = π⊺

1 (ci111111
⊺ − r1,i)πi = ci − π⊺

1 r1,iπi, with ci given in Proposition 8. We can solve
these problems simultaneously by the following maxmin problem:

maximize
π1∈∆(A1)

minimize
(πi)i∈N/{1}∈

∏
i∈N/{1} ∆(Ai)

∑
i∈N/{1}

π⊺
1 r1,iπi.

Since ∆(A1) and
∏

i∈N/{1} ∆(Ai) are compact and convex sets, we can use the minimax theorem
to show that maximizeπ1∈∆(A1) minimize(πi)i∈N/{1}∈

∏
i∈N/{1} ∆(Ai)

∑
i∈N/{1} π

⊺
1 r1,iπi is unique.

Note that there can be multiple Nash equilibrium values for each non-center player, but the sum of
Nash equilibrium values for non-center players is always unique (see the proof of Proposition 9).

Now, we start to prove that fictitious play dynamics given in Algorithm 4 converges to a Markov
stationary NE in infinite-horizon zero-sum NMGs with a star-shaped network.

Theorem 2. Suppose Assumption 1 holds and Algorithm 4 visits every state infinitely often with
probability 1. Then, for a star-shaped multi-player zero-sum NMG, the belief (π̂(k))k≥0 converges to
a Markov stationary NE and the belief (Q̂(k))k≥0 converges to the corresponding NE value of the
zero-sum NMG with probability 1, as k →∞.

Proof. To prove the result, we consider a continuous-time version of Algorithm 4. Using standard
two-timescale stochastic approximation techniques [44, Proposition 3.27], we can show that the limit
set of our FP dynamics can be captured by that of a continuous-time differential inclusion. Before,
we define several notation:

Qi(s) := (Qi,1(s), . . . , Qi,i−1(s),0, Qi,i+1(s) . . . , Qi,n(s)) ∈ R|Ai|×
∑

i∈N |Ai|

Q(s) := ((Q1(s))
⊺, (Q2(s))

⊺, . . . , (Qn(s))
⊺)⊺ ∈ R

∑
i∈N |Ai|×

∑
i∈N |Ai|

h(Q(s)) := max
µ∈

∏
i∈N ∆(Ai)

∣∣∣∣∣∣
 ∑

i∈N/{1}

µ⊺
1Q1,i(s)µi +

∑
i∈N/{1}

µ⊺
i Qi,1(s)µ1

∣∣∣∣∣∣ . (29)

Then, we consider the following differential inclusion for each s ∈ S:

π1(s) +
dπ1(s)

dt
∈ argmax

a1∈A1

 ∑
i∈N/{1}

e⊺a1
Q1,i(s)πi(s)

 ,

πi(s) +
dπi(s)

dt
∈ argmax

ai∈Ai

(
e⊺ai

Qi,1(s)π1(s)
)
,

dQ1,i(s)

dt
=

dQi,1(s)

dt
= 0, (30)

with a Lyapunov function candidate being

Lλ(π,Q, s)

=

 max
a1∈A1

 ∑
i∈N/{1}

e⊺a1
Q1,i(s)πi(s)

+
∑

i∈N/{1}

max
ai∈Ai

(
e⊺ai

Qi,1(s)π1(s)
)
− λh(Q(s))


+

where h is defined before, and λ is chosen as 1 < λ < 1/γ. Then, Claim 7 below proves that
Lλ(π,Q, s) is a Lyapunov function for (30).

Claim 7. For every 1 < λ < 1/γ, Lλ(π,Q, s) is a Lyapunov function of (30) for the set Λ =
{(π,Q) : Lλ(π,Q, s) = 0}.

Proof. First, we define Vλ(π,Q, s) as below:

Vλ(π,Q, s) = max
a1∈A1

 ∑
i∈N/{1}

e⊺a1
Q1,i(s)πi(s)

+
∑

i∈N/{1}

max
ai∈Ai

(
e⊺ai

Qi,1(s)π1(s)
)
− λh(Q(s)).
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Then, we have Lλ(π,Q, s) = (Vλ(π,Q, s))+. Moreover, let the maximizer of∑
i∈N/{1} e

⊺
a1
Q1,i(s)πi(s) be a⋆1 and let the maximizer of e⊺ai

Qi,1(s)π1(s) as a⋆i for i ∈ N/{1}.
Then, we have

dVλ(π,Q, s)

dt
=

 ∑
i∈N/{1}

e⊺a⋆
1
Q1,i(s)πi(s)

′

+
∑

i∈N/{1}

(
e⊺a⋆

i
Qi,1(s)π

′
1(s)

)

=

 ∑
i∈N/{1}

e⊺a⋆
1
Q1,i(s)(ea⋆

i
− πi(s))

+
∑

i∈N/{1}

(
e⊺a⋆

i
Qi,1(s)(ea⋆

1
− π1(s))

)
< −Vλ(π,Q, s)

since
∑

i∈N/{1} e
⊺
a⋆
1
Q1,i(s)ea⋆

i
+
∑

i∈N/{1} e
⊺
a⋆
i
Qi,1(s)ea⋆

1
≤ h(Q(s)) < λh(Q(s)) holds by the

definition of h(Q(s)). Therefore, Vλ(π,Q, s) is strictly decreasing with respect to time when
Vλ(π,Q, s) ≥ 0. To emphasize the time dependence of Vλ and Lλ, we will write Vλ(π,Q, s, t) and
Lλ(π,Q, s, t).

If Vλ(π,Q, s, t) ≥ 0, then Lλ(π,Q, s, t) = Vλ(π,Q, s, t) is strictly decreasing if Lλ(π,Q, s, t) > 0.
Therefore, we can see that if Lλ(π,Q, s, t) > 0 so that Vλ(π,Q, s, t) > 0, then Lλ(π,Q, s, t′) <
Lλ(π,Q, s, t) for all t′ > t, i.e., Lλ(π,Q, s, t) keeps strictly decreasing in this case.

If Vλ(π,Q, s, t) < 0, then Lλ(π,Q, s, t) = 0 always holds. Assume that there exists t1 < t2 such
that Vλ(π,Q, s, t1) < 0 and Vλ(π,Q, s, t2) > 0. Due to the continuity of Vλ, there exists some
t ∈ (t1, t2) such that Vλ(π,Q, s, t) = 0. Then, dVλ(π,Q,s,t)

dt < −Vλ(π,Q, s, t) = 0, so it is strictly
negative, which prevents it from becoming a positive value, so it is a contradiction. Therefore, if
Lλ(π,Q, s, t) = 0, then Lλ(π,Q, s, t′) = 0 for all t′ > t in this case.

Therefore, [44, Proposition 3.27] implies

lim
k→∞

(
max
a1∈A1

 ∑
i∈N/{1}

e⊺a1
Q̂

(k)
1,i (s)π̂

(k)
i (s)


+

∑
i∈N/{1}

max
ai∈Ai

(
e⊺ai

Q̂
(k)
i,1 (s)π̂

(k)
1 (s)

)
− λh(Q̂(k)(s))

)
+

= 0 (31)

for every s ∈ S.

In Claim 8, we will prove that an NG with (G = (N , EQ),A = (Ai)i∈N , (Q̂(k)(s))(i,j)∈EQ
)

asymptotically becomes a zero-sum NG as k →∞ for all s ∈ S. Indeed, we have

h(Q̂(k)(s)) = max
µ∈

∏
i∈N ∆(Ai)

∣∣∣∣∣∣
 ∑

i∈N/{1}

µ⊺
1Q̂

(k)
1,i (s)µi +

∑
i∈N/{1}

µ⊺
i Q̂

(k)
i,1 (s)µ1

∣∣∣∣∣∣ ,
we can conclude that for arbitrary policy µ ∈

∏
i∈N ∆(Ai), the sum of payoffs in NG with (G =

(N , EQ),A = (Ai)i∈N , (Q̂(k)(s))(i,j)∈EQ
) goes to 0 as k → ∞. Therefore, h(Q̂(k)(s)) → 0

implies that the NG is zero-sum NG, where h is defined as Equation (29).

Before stating that Q̂(k) asymptotically becomes zero-sum NGs, we state a lemma from [16].
Lemma 1 ([16]). Suppose the sequence of random variables (yk)k≥0 with yk ∈ Rd satisfies

yk+1[n] ≤ (1− βn,k) yk[n] + βn,k (γ ∥yk∥∞ + ϵ̄k + ωn,k)

yk+1[n] ≥ (1− βn,k) yk[n] + βn,k (−γ ∥yk∥∞ + ϵk + ωn,k)

for all k ≥ 0, where yk[n] denotes the n-th element in yk, γ ∈ (0, 1),
∑∞

k=0 βn,k =
∞, limk→∞ βn,k = 0 for each n with probability 1, the error sequence (ϵk)k≥0 satisfies
lim supk→∞ |ϵ̄k| ≤ c and lim supk→∞ |ϵk| ≤ c for some c ≥ 0 with probability 1. Here,
ωn,k is a stochastic approximation term that is zero-mean and has finite variance conditioned on
the history. Suppose that ∥yk∥∞ is bounded for all k. Then, we have lim supk→∞ ∥yk∥∞ ≤

c
1−γ

with probability 1, provided that either ωn,k = 0 for all n, k or
∑∞

k=0 β
2
n,k < ∞ for each n with

probability 1.
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Claim 8. h(Q̂(k)(s)) converges to 0 for all s ∈ S . In other words, an NG with (G = (N , EQ),A =

(Ai)i∈N , (Q̂(k)(s))(i,j)∈EQ
) asymptotically becomes a zero-sum NG as k →∞ for all s ∈ S.

Proof. Rewriting Equation (31) with the belief of the value function, we have that for all s ∈ S

lim
k→∞

(∑
i∈N

V̂
(k)
i (s)− λh(Q̂(k)(s))

)
+

= 0. (32)

By the definition of V̂ (k)
i (s) and Equation (32), we have

−λh(Q̂(k)(s)) ≤ −h(Q̂(k)(s)) ≤
∑
i∈N

V̂
(k)
i (s) ≤ λh(Q̂(k)(s)) + ϵ̄k(s)

for all s ∈ S and k ≥ 0 for some (ϵ̄k(s))k≥0, where ϵ̄k(s) → 0. Moreover, summing over all the
Q-belief estimates over i, we have∑

i∈N
Q̂

(k+1)
i (s,a) = (1− β̄k(s))

∑
i∈N

Q̂
(k)
i (s,a) + γβ̄k(s)

(∑
s′∈S

P(s′ | s,a)
∑
i∈N

V̂
(k)
i (s′)

)

where β̄k(s) := 111(s = s(k))β(N(s)). Thus, we have∑
i∈N

Q̂
(k+1)
i (s,a) ≤ (1− β̄k(s))

∑
i∈N

Q̂
(k)
i (s,a) + β̄k(s)

(
γ̄max

s′∈S
h(Q̂(k)(s′)) + γϵ̄(k)

)
∑
i∈N

Q̂
(k+1)
i (s,a) ≥ (1− β̄k(s))

∑
i∈N

Q̂
(k)
i (s,a)− β̄k(s)

(
γ̄max

s′∈S
h(Q̂(k)(s′))

)

where γ̄ = γλ ∈ (0, 1). Since maxs′∈S h(Q̂(k)(s′)) is the maximal value of
∣∣∑

i∈N Q̂
(k)
i (s,a)

∣∣,
we can apply Lemma 1 to this situation. Let Z := S × A be the set of all possible state-action
pairs. Then, we can view this problem as yk[z] :=

∑
i∈N Q̂

(k)
i (s,a), for all k ≥ 0. Note that

yk is always bounded by 2Rn/(1 − γ), since the reward function is bounded by R, and, every
timestep we update the sum of Qi-value estimates over i ∈ N with a convex combination of the pre-
vious sum of Qi-value estimates over i ∈ N and

(∑
i ri(s,a) + γ

∑
s′∈S P(s′ | s,a)V (s′)

)
≤(

2Rn+ γ
∑

s′∈S P(s′ | s,a)maxa′ Q(s′,a′)
)
≤ 2Rn/(1 − γ), so we can recursively show

all the sum of Qi-value estimates over i ∈ N iterates are bounded. Therefore, Lemma 1
yields that maxs′∈S h(Q̂(k)(s′)) = ∥yk∥∞ → 0 as k → ∞. As a byproduct, we also have
limk→∞

∣∣∑
i∈N V̂

(k)
i (s)

∣∣ = 0, completing the proof.

For Q ∈ R
∑

i∈N |Ai|×
∑

i∈N |Ai| defined in (29), we denote Q1 := (Q1,2, . . . , Q1,n) and Q−1 :=
(Q⊺

2,1, . . . , Q
⊺
n,1)

⊺. Then, we define Val1 and Val−1, which are maxmin values with respect to Q1

and Q−1, respectively, as follows:

Val1(Q1(s)) = max
µ1∈∆(A1)

min
µ2∈∆(A2),...,µn∈∆(An)

∑
i∈N/{1}

µ⊺
1Q1,i(s)µi

Val−1(Q−1(s)) = max
µ2∈∆(A2),...,µn∈∆(An)

min
µ1∈∆(A1)

∑
i∈N/{1}

µ⊺
1Q

⊺
i,1(s)µi.

Note that the Val operator can be viewed as the maxmin operator in the two-player zero-sum case,
and it is indeed the star-shaped topology that enables us to write out a value iteration operator based
on it, whose fixed point corresponds to the NE of the game. In general, it is hard to define such a
value-iteration operator for other network structures. Also, note that since the maxmin formulas in
Val1 and Val−1 are by definition non-expansive, the induced value iteration operator is contracting
(due to the γ ∈ (0, 1) discount factor), which is key in showing the convergence of our FP dynamics.

Claim 9. |V̂ (k)
1 (s)− Val1(Q̂

(k)
1 (s))| and |

∑
i∈N/{1} V̂

(k)
i (s)− Val−1(Q̂

(k)
−1(s))| converge to 0 for

all s ∈ S.
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Proof. The definition of V̂ (k)
i gives

V̂
(k)
1 (s) = max

ai∈Ai

E
a−i∼π̂

(k)
−1
{Q̂(k)

1 (s,a)} ≥ Val1(Q̂
(k)
1 (s)) ≥ min

µ2,...,µn

∑
i∈N/{1}

(π̂
(k)
1 )⊺Q̂

(k)
1,i (s)µi

≥ min
µ2,...,µn

∑
i∈N/{1}

(π̂
(k)
1 )⊺(−(Q̂(k)

i,1 (s))
⊺)µi + min

µ2,...,µn

∑
i∈N/{1}

(π̂
(k)
1 )⊺(Q̂

(k)
1,i (s) + (Q̂

(k)
i,1 (s))

⊺)µi

≥ − max
µ2,...,µn

∑
i∈N/{1}

(π̂
(k)
1 )⊺(Q̂

(k)
i,1 (s))

⊺µi + min
µ2,...,µn

∑
i∈N/{1}

(π̂
(k)
1 )⊺(Q̂

(k)
1,i (s) + (Q̂

(k)
i,1 (s))

⊺)µi

≥ − max
µ2,...,µn

∑
i∈N/{1}

(π̂
(k)
1 )⊺(Q̂

(k)
i,1 (s))

⊺µi − h(Q̂(k)(s)) = −
∑

i∈N/{1}

V̂
(k)
i (s)− h(Q̂(k)(s)),

where the third inequality is due to the summation of minimization being no greater than the
minimization, and the fifth inequality is from the definition of h. The above inequality further implies

V̂
(k)
1 (s) +

∑
i∈N/{1}

V̂
(k)
i (s) + h(Q̂(k)(s)) ≥ V̂

(k)
1 (s)− Val1(Q̂

(k)
1 (s)) ≥ 0.

The left-hand side goes to zero when k →∞, so the lemma is proved for player 1. The other direction
can be proved in the same way.

Then, we define Shapley’s minimax value-iteration operator T1 : R|S|×(|A1|×
∑

i∈N/{1}) |Ai|) →
R|S|×(|A1|×

∑
i∈N/{1}) |Ai|) and T−1 : R|S|×(

∑
i∈N/{1} |Ai|×|A1|) → R|S|×(

∑
i∈N/{1} |Ai|×|A1|) as in

a two-player zero-sum Markov game [13] that

(T1Q1) (s, a1, ai) = r1(s, a1, ai) + γ
∑
s′∈S

1

n− 1
P1(s

′ | s, a1)Val1(Q1(s
′))

(T−1Q−1) (s, ai, a1) = ri(s, ai, a1) + γ
∑
s′∈S

1

n− 1
P1(s

′ | s, a1)Val−1(Q−1(s
′)).

Also, we define several norms:

∥·∥max : Rm×n → R such that ∥A∥max = max
i∈[m],j∈[n]

|Ai,j |

∥·∥max,1 : R|A1|×
∑

i∈N/{1} |Ai| → R such that ∥Xs∥max,1 :=
∑

i∈N/{1}

∥Xs,i∥max

∥·∥max,1,max : R|S|×(|A1|×
∑

i∈N/{1}) |Ai|) → R such that ∥X∥max,1 :=
∥∥∥(∥Xs∥max,1)s∈S

∥∥∥
max

.

Claim 10. T1 and T−1 are contracting with respect to the norm ∥·∥max,1,max.

Proof. By definition of the Val operator, we have that for any Q1 = (Q1,2, . . . , Q1,n) ∈
R|A1|×

∑
j∈N/{1} |Aj | and Q′

1 = (Q′
1,2, . . . , Q

′
1,n) ∈ R|A1|×

∑
j∈N/{1} |Aj | and any i ∈ N/{1},

s ∈ S,

∥((T1Q1)(s, a1, ai)− (T1Q′
1)(s, a1, ai))i∥max

=
γ

n− 1

∑
s′∈S

P1(s
′ | s, a1)(Val1(Q1(s

′))− Val1(Q′
1(s

′)))

≤ γ

n− 1

∑
s′∈S

P1(s
′ | s, a1)max

a1

∣∣∣∣∣∣ max
a2,...,an

∑
i∈N/{1}

(Q1,i −Q′
1,i)(s

′, a1, ai)

∣∣∣∣∣∣
≤ γ

n− 1
∥Q1 −Q′

1∥max,1,max ,

so for any s ∈ S , ∥((T1Q1)(s, a1, ai)− (T1Q′
1)(s, a1, ai))i∥max,1

≤ γ ∥Q1 −Q′
1∥max,1,max holds

and therefore ∥(T1Q1 − T1Q′
1)i∥max,1,max

≤ γ ∥Q1 −Q′
1∥max,1,max.
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Similarly, we have that for any Q−1 = (Q⊺
2,1, . . . , Q

⊺
n,1)

⊺ ∈ R
∑

j∈N/{1} |Aj |×|A1| and Q′
−1 =

(Q
′⊺
2,1, . . . , Q

′⊺
n,1)

⊺ ∈ R
∑

j∈N/{1} |Aj |×|A1|∥∥((T−1Q−1)(s, ai, a1)− (T−1Q
′
−1)(s, ai, a1)

)
i

∥∥
max

=
γ

n− 1

∑
s′∈S

P1(s
′ | s, a1)(Val−1(Q−1(s

′))− Val−1(Q
′
−1(s

′)))

≤ γ

n− 1

∑
s′∈S

P1(s
′ | s, a1) max

a2,...,an

∣∣∣∣∣∣max
a1

∑
i∈N/{1}

(Qi,1 −Q′
i,1)(s

′, ai, a1)

∣∣∣∣∣∣
≤ γ

n− 1

∥∥Q−1 −Q′
−1

∥∥
max,1,max

,

so for any s ∈ S,
∥∥((T−1Q−1)(s, ai, a1)− (T−1Q

′
−1)(s, ai, a1)

)
i

∥∥
max,1

≤
γ
∥∥Q−1 −Q′

−1

∥∥
max,1,max

holds and therefore
∥∥(T−1Q−1 − T−1Q

′
−1

)
i

∥∥
max,1,max

≤
γ
∥∥Q−1 −Q′

−1

∥∥
max,1,max

.

Since the operators T1 and T−1 are contracting, they have a unique fixed point denoted by Q⋆
1 and

Q⋆
−1. Moreover, we can guarantee that

∑
i∈N/{1} Q

⋆
1,i(s, a1, ai) +

∑
i∈N/{1} Q

⋆
i,1(s, ai, a1) = 0

for every (s,a) and i ∈ N/{1} since we can interpret it as a fixed point of zero-sum two-player
Markov game and Q⋆ are the Q value. The update of beliefs on the Q-function can be written as

Q̂
(k+1)
1 (s,a) = (1− β̄k(s))Q̂

(k)
1 (s,a) + β̄k(s)

 ∑
i∈N/{1}

T1Q̂(k)
1 (s, a1, ai) + E(k)1 (s,a)


∑

i∈N/{1}

Q̂
(k+1)
i (s,a) = (1− β̄k(s))

∑
i∈N/{1}

Q̂
(k)
i (s,a)

+ β̄k(s)

 ∑
i∈N/{1}

T−1Q̂
(k)
−1(s, ai, a1) + E

(k)
−1 (s,a)

 .

Here, E(k)1 (s,a) and E(k)−1 (s,a) are defined as

E(k)1 (s,a) = γ
∑
s′∈S

P1(s
′ | s, a1)

[
V̂

(k)
1 (s′)− Val1(Q̂

(k)
1 (s′))

]

E(k)−1 (s,a) = γ
∑
s′∈S

P1(s
′ | s, a1)

 ∑
i∈N/{1}

V̂
(k)
i (s′)− Val−1(Q̂

(k)
−1(s

′))


where the two values go to 0 by Claim 9.

Claim 11. |Q̂(k)
1 (s,a)−

∑
i∈N/{1} Q

⋆
1(s, a1, ai)| and |Q̂(k)

−1(s,a)−
∑

i∈N/{1} Q
⋆
−1(s, ai, a1)| con-

verge to 0 as k →∞ for all s ∈ S and a ∈ A.

Proof. Define Q̃(k)
1 (s,a) := Q̂

(k)
1 (s,a)−

∑
i∈N/{1} Q

⋆
1(s, a1, ai) and Q̃

(k)
−1(s,a) := Q̂

(k)
−1(s,a)−∑

i∈N/{1} Q
⋆
−1(s, ai, a1). Then, by using Q⋆

1 and Q⋆
−1 as the fixed point, we have that for each

s ∈ S and a ∈ A:
Q̃

(k+1)
1 (s,a) = (1− β̄k(s))Q̃

(k)
1 (s,a)

+ β̄k(s)

 ∑
i∈N/{1}

T1Q̂(k)
1 (s, a1, ai)−

∑
i∈N/{1}

T1Q⋆
1(s, a1.ai) + E

(k)
1 (s,a)


Q̃

(k+1)
−1 (s,a) = (1− β̄k(s))Q̃

(k)
−1(s,a)

+ β̄k(s)

 ∑
i∈N/{1}

T−1Q̂
(k)
−1(s, ai, a1)−

∑
i∈N/{1}

T−1Q
⋆
−1(s, ai, a1) + E

(k)
−1 (s,a)


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and Claim 10 implies that

Q̃
(k+1)
1 (s,a) ≤ (1− β̄k(s))Q̃

(k)
1 (s,a) + β̄k(s)

(
γ
∥∥∥Q̃1

∥∥∥
max,1,max

+ ϵ̄(k)
)

Q̃
(k+1)
1 (s,a) ≥ (1− β̄k(s))Q̃

(k)
1 (s,a) + β̄k(s)

(
−γ
∥∥∥Q̃1

∥∥∥
max,1,max

− ϵ̄(k)
)

which yields Q̃(k+1)
1 (s,a)→ 0 and also Q̃

(k+1)
−1 (s,a)→ 0 as k →∞ by Lemma 1.

Therefore, we verified that V̂ (k)
1 (s)−Val1(Q⋆

1(s))→ 0 and V̂
(k)
−1 (s)−Val−1(Q

⋆
−1(s))→ 0 for every

s ∈ S . Therefore, the beliefs on the opponents’ policies converge to a (perfect) Nash equilibrium of
the underlying zero-sum NMG.

Remark 8. This can be also done with the stochastic fictitious-play dynamics, in a similar way as
the argument in Section D.1.2.
Remark 9 (Stationary equilibrium computation via value iteration). By Claim 10, we know that
with a star-shaped topology, we can formulate a contracting value iteration operator, which plays
an important role in showing the convergence of fictitious play. In fact, iterating such a contracting
operator, which leads to the value iteration algorithm, can lead to efficient NE computation in this
star-shaped case also, with a fixed constant γ. This folklore result supplements the hardness results
in Theorem 1, where stationary equilibria computation in cases other than the star-shaped ones are
computationally intractable. This completes the landscape of stationary equilibria computation in
zero-sum NMGs. We provide the value-iteration process in Algorithm 5. One can guarantee that
Q1(s,a) :=

∑
i∈N/{1} Q1,i(s, a1, ai) converges to the Q⋆

1(s,a), which corresponds to the Nash
equilibrium values of the zero-sum NMG. Also, by solving the maxmin problem in (33), Q1,i(s)
provides an approximate NE policy.

Algorithm 5 Value iteration for zero-sum NMGs of a star-shape

Initialize Q1,i(s, a1, ai) = 0, Qi,1(s, ai, a1) = 0 for all s ∈ S,a ∈ A, i ∈ N/{1} and Vi(s) = 0
for all s ∈ S, i ∈ N
for each iteration t = 0, 1, . . . do

Find µ for each s ∈ S such that

µ(s) ∈ argmax
µ1∈∆(A1)

argmin
µ2∈∆(A2),...,µn∈∆(An)

∑
i∈N/{1}

µ⊺
1Q1,i(s)µi (33)

Update V1(s) =
∑

i∈N/{1} µ
⊺
1(s)Q1,i(s)µi(s) for all s ∈ S

Update Q1,i(s, a1, ai) = r1,i(s, a1, ai) + γ
∑

s′∈S
1

n−1P1(s
′ | s, a1)V1(s

′) for all i ∈ N/{1},
s ∈ S, a ∈ A

end for

E Background on Stochastic Approximation and Differential Inclusions

Section E introduces the theorem statement of [44]. Let F : Rm ⇒ Rm be a set-valued function.
Assume that F satisfies the following properties:

1. F is a closed set-valued map, meaning that its graph Graph(F ) = {(x, y) : y ∈ F (x)} is a
closed subset of Rm × Rm.

2. F (x) is a non-empty, compact, and convex subset of Rm for all x ∈ Rm.
3. There exists a constant c > 0 such that for all x ∈ Rm, we have supz∈F (x) |z| ≤ c(1 + |x|).

The differential inclusion problem involves finding a solution vector function x : R → Rm that
satisfies the initial condition x(0) = x ∈ Rm and the following relationship for almost all t ∈ R:

dx(t)

dt
∈ F (x(t)).
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Definition 7 (Perturbed solutions). A perturbed solution to F refers to a continuous function y :
R+ = [0,∞)→ Rm that meets the following requirements:

• y is absolutely continuous.

• There is a locally integrable function t 7→ U(t) that satisfies:

– For all T > 0, the supremum of
∣∣∣∫ t+v

t
U(s)ds

∣∣∣ over the interval 0 ≤ v ≤ T converges
to zero as t→∞.

– For almost every t > 0, the expression dy(t)
dt − U(t) belongs to F δ(t)(y(t)), where

δ : [0,∞)→ R is a function such that δ(t)→ 0 as t→∞.

Definition 8 (Stochastic approximations). A discrete-time process {xn}n∈N is a stochastic approxi-
mation if it satisfies the following relationship:

xn+1 − xn − γn+1Un+1 ∈ γn+1F (xn) ,

where the characteristics γ and U meet the following conditions:

• The sequence (γn)n≥1 consists of non-negative numbers such that
∑∞

n=1 γn = ∞ and
limn→∞ γn = 0.

• The elements Un ∈ Rm can be either deterministic or random perturbations.

A continuous-time process can be associated with such a process as follows:

Definition 9 (Affine interpolated process). Define the following: τ0 = 0 and τn =
∑n

i=1 γi for n ≥
1. The continuous-time affine interpolated process w : R+ → Rm is defined as:

w (τn + s) := xn + s
xn+1 − xn

τn+1 − τn
, s ∈ [0, γn+1) .

We define Φt(x) = {x(t) : x is a solution to dx(t)
dt ∈ F (x(t)) with x(0) = x}.

Definition 10 (Lyapunov function). Lyapunov function for a set S is a continuous function V :
Rm → R if V (y) < V (x) for all x ∈ S ⊆ Rm, y ∈ Φt(x), t > 0, and V (y) ≤ V (x) for all x ∈ S,
y ∈ Φt(x), t > 0.

Theorem 5. Assume that the following hold:

• For all T > 0, the supremum of
∥∥∥∑k−1

i=n γi+1Ui+1

∥∥∥ for k = n + 1, . . . ,m (τn + T )

converges to zero as n→∞, where

m(t) = sup {k ≥ 0 : t ≥ τk} .

• supn ∥xn∥ = M <∞.

Then the affine interpolated process (c.f. Definition 9) is a perturbed solution.

Theorem 6. Suppose that V is a Lyapunov function for a set Λ. Assume that V (Λ) has an empty
interior. For every bounded perturbed solution y, define L(y) =

⋂
t≥0 {y(s) : s ≥ t}, then L(y) is

contained in Λ and V (L(y)) is constant.

F Omitted Details in Section 6

We first recall the folklore result that approximating Markov non-stationary NE in infinite-horizon
discounted settings can be achieved by finding approximate Markov NE in finite-horizon settings,
with a large enough horizon length.

Proposition 10. A 2ϵ-approximate Markov non-stationary NE in an infinite-horizon γ-discounted
MG can be generated by (1) truncating the trajectory at time step H ≥ log(R/ϵ)

1−γ and (2) finding an
ϵ-approximate Markov NE in the H-horizon MG.
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Proof. We will execute a policy π such that (1) for the first H steps, we follow ϵ-approximate NE in
the H-truncated MG, and (2) after the H steps, we follow an arbitrary policy. Then, we have

V π
i (s) =

∞∑
h=1

Eπ[γ
h−1ri(sh, ah) | s1 = s]

≥
H∑

h=1

Eµi,π−i
[γh−1ri(sh, ah) | s1 = s]− ϵ+

∞∑
h=H+1

Eπ[γ
h−1ri(sh, ah) | s1 = s]

≥
H∑

h=1

Eµi,π−i [γ
h−1ri(sh, ah) | s1 = s]− ϵ+

∞∑
h=H+1

Eµi,π−i [γ
h−1ri(sh, ah) | s1 = s]− Rγh−1

1− γ

≥
∞∑
h=1

Eµi,π−i
[γh−1ri(sh, ah) | s1 = s]− 2ϵ

for an arbitrary policy µi. Here, the first inequality comes from the definition of NE in the H-truncated
MG, the second inequality comes from 0 ≤ ri ≤ R and the last inequality comes from the definition
of H . Therefore, the executed policy is a 2ϵ-approximate NE.

In this section, we will utilize two performance metrics: Matrix-NE-Gap and Matrix-QRE-Gap.
For the definition of QRE, we refer to Definition 6 and (25).
Definition 11. For an NG M with (G = (N , Er),A =

∏
i∈N Ai, (ri,j)(i,j)∈Er

), we define Matrix-
NE-Gap and Matrix-QRE-Gap of M for some product policy π as follows:

Matrix-NE-Gap(M,π) = max
i∈N

max
π′
i∈∆(Ai)

(ri(π
′
i, π−i)− ri(π))

= max
i∈N

 max
π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπj

−
 ∑

j∈Er,i

πiri,jπj

 .

Matrix-QRE-Gapτ (M,π) = max
i∈N

max
π′
i∈∆(Ai)

(rτ,i(π
′
i, π−i)− rτ,i(π))

= max
i∈N

 max
π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπj + τH(π′

i)

−
 ∑

j∈Er,i

πiri,jπj + τH(πi)

 .

When the underlying graph and the action space for the NG are clear, we also
write Matrix-NE-Gap(M,π) or Matrix-QRE-Gapτ (M,π) as Matrix-NE-Gap(r, π) or
Matrix-QRE-Gapτ (r, π), respectively.

We now provide the relationship between Matrix-NE-Gap(r, π) and Matrix-QRE-Gapτ (r, π).
Lemma 2 ([51], Page 6, Equation (8)). For an NG M with (G = (N , Er),A =∏

i∈N Ai, (ri,j)(i,j)∈Er
), the following holds:

Matrix-NE-Gap(r, π) ≤ Matrix-QRE-Gapτ (r, π) + τ max
i∈N

log |Ai|.

Thus, setting τ = ϵ
2maxi∈N log |Ai| , then an ϵ/2-approximate QRE is also an ϵ-approximate NE.

Hence, finding an approximate-QRE for zero-sum NGs is sufficient for finding an approximate-NE,
with a small enough τ . Now, we define the NE-Gap for an MNMG.
Definition 12. For an MNMG M with (G = (N , EQ),S,A, H, (Ph)h∈[H], (rh,i,j(s))(i,j)∈EQ,s∈S),
NE-Gap for some product policy π at timestep h ∈ [H] is defined as follows:

NE-Gaph(M,π) = max
i∈N

max
s∈S

max
π′
i∈∆(Ai)|S|×H

(
V

π′
i,π−i

h,i (s)− V π
h,i(s)

)
.

Now we summarize the algorithm in Algorithm 6. By Algorithm 6, Qh,i,j(s, ai, aj) =
Qπ

τ,h,i,j(s, ai, aj) and Vh,i(s) = V π
τ,h,i(s) holds, so that an NG characterized by

(G,A, (Qh,i,j(s))(i,j)∈EQ
) is always a zero-sum NG for all s ∈ S, h ∈ [H]. And by induction,

we can show that |Qπ
h,i,j(s, ai, aj)| ≤ (H +1−h)R for all π, h ∈ [H], (i, j) ∈ EQ, s ∈ S , ai ∈ Ai,

aj ∈ Aj (i.e., ∥Qπ
h(s)∥max ≤ HR for all π, h ∈ [H], s ∈ S).
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Algorithm 6 A value-iteration-based algorithm for finding NE in zero-sum NMGs

Update VH+1,i(s) = 0 for all s ∈ S and i ∈ N
for step h = H,H − 1, . . . , 1 do

if NC ̸= ∅ then
Update Qh,i,j(s, ai, aj) for all (i, j) ∈ EQ, s ∈ S, ai ∈ Ai, aj ∈ Aj as

Qh,i,j(s, ai, aj) = rh,i,j(s, ai, aj)

+
∑
s′∈S

(
1

|EQ,i|
111(i ∈ NC)Fh,i(s

′ | s, ai) + 111(j ∈ NC)Fh,j(s
′ | s, aj)

)
· Vh+1,i(s

′)

(34)
else if NC = ∅ then

Update Qh,i,j(s, ai, aj) for all (i, j) ∈ EQ, s ∈ S, ai ∈ Ai, aj ∈ Aj as

Qh,i,j(s, ai, aj) = rh,i,j(s, ai, aj) +
∑
s′∈S

(
1

|EQ,i|
111(j ∈ EQ,i)Fh,o(s

′ | s) · Vh+1,i(s
′)

)
(35)

end if
Update πh(s) = NE-ORACLE(G,A, (Qh,i,j(s))(i,j)∈EQ

) for all s ∈ S
Update Vh,i(s) for all i ∈ N , s ∈ S as

Vh,i(s) =
∑

j∈EQ,i

π⊺
h,i(s)Qh,i,j(s)πh,j(s) (36)

end for

Proposition 4. Suppose that for all h ∈ [H], i ∈ N , s ∈ S,
NE-ORACLE(G,A, (Qh,i,j(s))(i,j)∈EQ

) provides an ϵh,s-approximate NE for the zero-
sum NG (G,A, (Qh,i,j(s))(i,j)∈EQ

) in Algorithm 6. Then, the output policy π in Algo-
rithm 6 is an (

∑
h∈[H] maxs∈S ϵh,s)-approximate NE for the corresponding zero-sum NMG

(G = (N , EQ),S,A, H, (Ph)h∈[H], (rh,i,j(s))(i,j)∈EQ,s∈S).

Proof. Let M = (G,S,A, H, (Ph)h∈[H], (rh,i,j(s))(i,j)∈EQ,s∈S). For any π and h ∈ [H], we have

NE-Gaph(M,π) = max
i∈N

max
s∈S

max
π′
i∈∆(Ai)|S|×H

(
V

π′
i,π−i

h,i (s)− V πi

h,i(s)
)

= max
i∈N

max
s∈S

max
π′
i∈∆(Ai)|S|×H

[
V

π′
i,π−i

h,i (s)− V
(π′

h,i,πh,−i),πh+1:H

h,i (s) + V
(π′

h,i,πh,−i),πh+1:H

h,i (s)− V π
h,i(s)

]
= max

i∈N
max
s∈S

max
π′
i∈∆(Ai)|S|×H

[
Ph,(π′

h,i,πh,−i)(V
π′
i,π−i

h+1,i − V
πh+1:H

h+1,i )(s) + V
(π′

h,i,πh,−i),πh+1:H

h,i (s)− V π
h,i(s)

]
≤ NE-Gaph+1(M,π) + max

i∈N
max
s∈S

max
π′
h,i(s)∈∆(Ai)

∑
i∈N

[
V

(π′
h,i,πh,−i),πh+1:H

h,i (s)− V π
h,i(s)

]
= NE-Gaph+1(M,π) + max

s∈S
Matrix-NE-Gap(Qh(s), πh) ≤ NE-Gaph+1(M,π) + max

s∈S
ϵh,s.

Therefore, for any π and h ∈ [H], we have NE-Gaph(M,π) ≤
∑

h∈[H] maxs∈S ϵh,s.

F.1 Several examples of NE-ORACLE

Example 1. Optimism & Regularization: OMWU algorithm [51]. According to [51, Theorem 1],
if we apply Algorithm 7 to (G,A, (Qh,i,j(s))(i,j)∈EQ

) for each h ∈ [H], s ∈ S , the required number
of iterations for Matrix-NE-Gap(Qπ

h(s), πh) ≤ ϵ/H is Õ
(
H2dmax/ϵ

)
where dmax is the maximum

degree of underlying graph G. Consequently, the overall iteration complexity is Õ
(
H3dmax|S|/ϵ

)
.

Note that these results are in terms of last-iterate convergence.
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Algorithm 7 OMWU for zero-sum NGs with τ -entropy regularization [51]

Choose π
(0)
i , π̄

(0)
i as uniform distributions for all i ∈ N

Define τ = 1/(nmaxi∈N log |Ai|) and η = 1/(8n ∥r∥∞)
for timestep t = 0, 1, . . . , do

Update the policy π̄
(t+1)
i as π̄

(t+1)
i (ai) ∝ π̄

(t)
i (ai)

1−ητ exp
(
η[riπ

(t)]ai

)
for all i ∈ N and

ai ∈ Ai

Update the policy π
(t+1)
i as π(t+1)

i (ai) ∝ π̄
(t+1)
i (ai)

1−ητ exp
(
η[riπ

(t)]ai

)
for all i ∈ N and

ai ∈ Ai

end for

Regularization Regularization-free

Optimism Õ(1/ϵ) last-iterate
OMWU [51]:

Õ(1/ϵ) average-iterate + Marginalization
[114, 115, 116, 54]:

Asymptotic last-iterate
Õ(1/ϵ2) best-iterate

OMD [54]:

Optimism-free

Õ(1/ϵ6) last-iterate
Algorithm 10:

Õ(1/ϵ4) last-iterate
Algorithm 9:

Õ(1/ϵ2) average-iterate + Marginalization
Any no-regret learning algorithm with

Table 1: Iteration complexities for finding an ϵ-NE for a zero-sum NG with (G =

(N , E),A, (ri,j)(i,j)∈E) with different NE-ORACLE subroutines. Õ(·) omits polylog terms and
polynomial dependencies on n, ∥r∥max, R.

Example 2. Optimism & Regularization-free: OMD algorithm [54]. According to [54, Theorem
3.4], if we apply Algorithm 8 to (G,A, (Qh,i,j(s))(i,j)∈EQ

) for each h ∈ [H], s ∈ S, the required
number of iterations for Matrix-NE-Gap(Qπ

h(s), πh) ≤ ϵ/H is Õ
(
H3n/ϵ2

)
. Consequently, the

overall iteration complexity is Õ
(
H4n|S|/ϵ2

)
. Note that these results are in terms of best-iterate

convergence.

Algorithm 8 OMD with KL-distance generating function for zero-sum NGs [54]

Choose π
(0)
i , π̄

(0)
i as uniform distributions for all i ∈ N

Define η = 1/(4n ∥r∥∞)
for timestep t = 0, 1, . . . , do

Update the policy π
(t+1)
i as π(t+1)

i (ai) ∝ π̄
(t)
i (ai) exp

(
η[riπ

(t)]ai

)
for all i ∈ N and ai ∈ Ai

Update the policy π̄
(t+1)
i as π̄

(t+1)
i (ai) ∝ π̄

(t)
i (ai) exp

(
η[riπ

(t+1)]ai

)
for all i ∈ N and

ai ∈ Ai

end for

Example 3. Optimism-free & Regularization: MWU algorithm. We provide MWU for zero-
sum NGs with regularization in Section F.2. According to Theorem 7 and Theorem 8, if we apply
Algorithm 9 or Algorithm 10 to (G,A, (Qh,i,j(s))(i,j)∈EQ

) for each h ∈ [H], s ∈ S, the required
number of iterations for Matrix-NE-Gap(Qπ

h(s), πh) ≤ ϵ/H is Õ
(
H8n/ϵ4

)
or Õ

(
H18n3/ϵ6

)
,

respectively. Consequently, the overall iteration complexity is Õ
(
H9n|S|/ϵ4

)
or Õ

(
H19n3|S|/ϵ6

)
,

respectively. Note that these results are in terms of last-iterate convergence.
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Regularization Regularization-free

Optimism Õ(1/ϵ) last-iterate
Algorithm 6 + OMWU [51]:

Õ(1/ϵ) average-iterate + Marginalization
Algorithm 6 + [114, 115, 116, 54]:

Õ(1/ϵ2) best-iterate
Algorithm 6 + OMD [54]:

Optimism-free

Õ(1/ϵ6) last-iterate
Algorithm 6 + Algorithm 10:

Õ(1/ϵ4) last-iterate
Algorithm 6 + Algorithm 9:

with Õ(1/ϵ2) average-iterate + Marginalization
Algorithm 6 + Any no-regret learning algorithm

Table 2: Iteration complexities for finding an ϵ-NE for a zero-sum NMG with different NE-ORACLE
subroutines. Õ(·) omits polylog terms and polynomial dependencies on n,H, |S|, R, ∥r∥max.

F.2 Analysis of MWU for zero-sum NGs with regularization

F.2.1 Fixed regularization

First, we provide an algorithm that has a fixed coefficient for entropy-regularization (Algorithm 9).
Recall that 0 ≤ ri ≤ R for some R > 0, for all i ∈ N .

Algorithm 9 MWU for zero-sum NGs with τ -entropy regularization

Choose K = ⌈2R/τ + log(maxi∈N |Ai|))⌉
Choose π

(0)
i as a uniform distribution for all i ∈ N

for timestep t = 0, 1, . . . do
Define η(t) = 1/(τ(t+K))

Update the policy as π
(t+1)
i (ai) ∝ (π

(t)
i (ai))

1−η(t)τ exp
(
η(t)[riπ

(t)]ai

)
for all i ∈ N and

ai ∈ Ai

end for

Claim 12. Define Ωi =
{
πi ∈ ∆(Ai) | πi(ai) ≥ 1

|Ai| exp
(
−R

τ

)
for all ai ∈ Ai

}
and g

(t)
i =

riπ
(t) − τ log π

(t)
i in Algorithm 9. Then, π(t+1)

i = argmaxπi∈Ωi

(
π⊺
i g

(t)
i − 1

η(t) KL(πi, π
(t)
i )
)

holds for all i ∈ N and t ≥ 0.

Proof. The equation π
(t+1)
i (ai) ∝ (π

(t)
i (ai))

1−η(t)τ exp
(
η(t)[riπ

(t)]ai

)
implies that

π
(t+1)
i = argmax

πi∈∆(Ai)

(
π⊺
i g

(t)
i −

1

η(t)
KL(πi, π

(t)
i )

)

by a simple algebra. The remaining part to establish is that π(t+1)
i ∈ Ωi holds true for all t ≥ 0 and

for every i ∈ N . To prove the remaining part, we use induction. As π(0)
i is chosen to be a uniform
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distribution, it is clear that π(0)
i ∈ Ωi. Under the assumption that π(t)

i ∈ Ωi, we have

π
(t+1)
i (ai) =

(π
(t)
i (ai))

1−η(t)τ exp
(
[η(t)riπ

(t)]ai

)∑
a′
i∈Ai

(π
(t)
i (a′i))

1−η(t)τ exp
(
[η(t)riπ(t)]a′

i

)
≥
(i)

(
1

|Ai| exp
(
−R

τ

))1−η(t)τ

∑
a′
i∈Ai

(π
(t)
i (a′i))

1−η(t)τ exp
(
[η(t)riπ(t)]a′

i

)
≥
(ii)

(
1

|Ai| exp
(
−R

τ

))1−η(t)τ

exp(η(t)R)
∑

a′
i∈Ai

(π
(t)
i (a′i))

1−η(t)τ
≥
(iii)

(
1

|Ai| exp
(
−R

τ

))1−η(t)τ

exp(η(t)R)|Ai|η(t)τ

=
1

|Ai|
exp

(
−R

τ

)
thereby concluding the proof of our claim. In the above, (i) is derived from exp

(
[η(t)riπ

(t)]ai

)
≥ 1

and the induction hypothesis; (ii) is the result of exp
(
[η(t)riπ

(t)]ai

)
≤ exp(η(t)R). Finally, (iii)

comes from
∑

ai∈Ai
(π

(t)
i (ai))

1−η(t)τ ≤ |Ai|
(

1
|Ai|

∑
ai∈Ai

π
(t)
i (ai)

)1−η(t)τ

, by Jensen’s inequal-
ity.

In the forthcoming analysis of Algorithm 9 and Algorithm 10, our first step bounds KL(π⋆
τ , π).

Following this, we employ Proposition 11 below to bound the term Matrix-QRE-Gapτ . Finally, we
leverage Lemma 2 to bound the Matrix-NE-Gap.

Proposition 11. For any τ > 0, π, and r, the following holds:

Matrix-QRE-Gapτ (r, π) ≤ O
((

τ max
i∈N

log |Ai|+R

)√
KL(π⋆

τ , π)

)
.

Proof. For any π, τ , and r, we have

Matrix-QRE-Gapτ (r, π)

= max
i∈N

 max
π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπj + τH(π′

i)

−
 ∑

j∈Er,i

πiri,jπj + τH(πi)


= max

i∈N

[
max

π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπ

⋆
τ,j + τH(π′

i) +
∑

j∈Er,i

π′
iri,jπj −

∑
j∈Er,i

π′
iri,jπ

⋆
τ,j


−

 ∑
j∈Er,i

πiri,jπj + τH(πi)

]

≤
(i)

max
i∈N

[
max

π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπ

⋆
τ,j + τH(π′

i)

+
∑

j∈Er,i

R
∥∥πj − π⋆

τ,j

∥∥
1

−

 ∑
j∈Er,i

πiri,jπj + τH(πi)

]

≤
(ii)

max
i∈N

[
max

π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπ

⋆
τ,j + τH(π′

i)

−
 ∑

j∈Er,i

π⋆
τ,iri,jπ

⋆
τ,j + τH(πi)


+ 2

∑
j∈Er,i

R
∥∥πj − π⋆

τ,j

∥∥
1
+R

∥∥πi − π⋆
τ,i

∥∥
1

]
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≤
(iii)
O
(
R
√

KL(π⋆
τ , π)

)
+max

i∈N

 max
π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπ

⋆
τ,j + τH(π′

i)

−
 ∑

j∈Er,i

π⋆
τ,iri,jπ

⋆
τ,j + τH(πi)


≤
(iv)
O
(
R
√

KL(π⋆
τ , π)

)
+max

i∈N

[
max

π′
i∈∆(Ai)

 ∑
j∈Er,i

π′
iri,jπ

⋆
τ,j + τH(π′

i)


−

 ∑
j∈Er,i

π⋆
τ,iri,jπ

⋆
τ,j + τH(π⋆

τ,i)

+
√
3τ log |Ai|

√
KL(π⋆

τ,i, πi)

]

≤ O
((

τ max
i∈N

log |Ai|+R

)√
KL(π⋆

τ , π)

)
,

where (i) and (ii) are due to the definition of R. Meanwhile, (iii) holds by the Pinsker inequality,
and (iv) holds by bounding the difference in Shannon entropy via KL divergence, [117, Theorem
2].

Lemma 3 ([83, 51]). For any zero-sum NG with (G = (N , Er),A, (ri,j)(i,j)∈Er
), for any joint

product policies µ, ν, the following holds:∑
i∈N

(ri(µi, ν−i) + ri(νi, µ−i)) = 0.

By Lemma 3 and the definition of rτ,i (Equation (25)), we can derive∑
i∈N

(
rτ,i(π

(t)
i , π⋆

τ,−i) + rτ,i(π
⋆
τ,i, π

(t)
−i)
)
= 0. (37)

Analogous to the method used in Claim 12, we can show that the QRE, π⋆
τ , belongs to

∏
i∈N Ωi.

Furthermore, we can bound g
(t)
i (ai) for all i ∈ N and ai ∈ Ai by

g
(t)
i (ai) ≤ R− τ log π

(t)
i (ai) ≤ R− τ log

(
1

|Ai|
exp

(
−R

τ

))
= 2R+ τ log(|Ai|)

so that η(t)g(t)i (ai) ≤ 1 for all i ∈ N , ai ∈ Ai, and t ≥ 0. Therefore, we can apply Lemma 4 below.

Lemma 4 ([118], Theorem 2). For a convex set Ω ⊆ ∆(A), ηµ ⪯ 111 ∈ R|A|, and any π ∈ Ω, define

π′ = argmax
π̃∈Ω

(
π̃⊺µ− 1

η
KL(π̃, π)

)
.

Then, for any ν ∈ Ω, the following holds:

(ν − π)⊺g ≤ KL(ν, π)− KL(ν, π′)

η
+ η

∑
a∈A

π(a)g(a)2.

Now, we state the theorem on the iteration complexity of Algorithm 9 to obtain an ϵ-NE.

Theorem 7. The last iterate of Algorithm 9 requires no more than Õ
(
nR4/ϵ4

)
iterations to achieve

an ϵ-NE of (G,A, (ri,j)(i,j)∈Er
).
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Proof. First, we bound the difference between rτ,i(π
⋆
τ,i, π

(t)
−i) and rτ,i(π

(t)) as follows:

rτ,i(π
⋆
τ,i, π

(t)
−i)− rτ,i(π

(t))

=
(
π⋆
τ,i − π

(t)
i

)⊺
riπ

(t) + τ

( ∑
ai∈Ai

π
(t)
i (ai) log π

(t)
i (ai)−

∑
ai∈Ai

π⋆
τ,i(ai) log π

⋆
τ,i(ai)

)

=
(
π⋆
τ,i − π

(t)
i

)⊺
g
(t)
i − τKL

(
π⋆
τ,i, π

(t)
i

)
≤

KL
(
π⋆
τ,i, π

(t)
i

)
−KL

(
π⋆
τ,i, π

(t+1)
i

)
η(t)

+ η(t)
∑

ai∈Ai

π
(t)
i (ai)

(
g
(t)
i (ai)

)2
− τKL

(
π⋆
τ,i, π

(t)
i

)

≤
KL
(
π⋆
τ,i, π

(t)
i

)
−KL

(
π⋆
τ,i, π

(t+1)
i

)
η(t)

+ η(t)
(
2R+ τ max

i∈N
log(|Ai|)

)2

− τKL
(
π⋆
τ,i, π

(t)
i

)
.

Here, the penultimate inequality holds by Lemma 4 since πτ,i ∈ Ωi and η(t)g
(t)
i (ai) ≤ 1 holds for

all t > 0 and ai ∈ Ai. Therefore, we have

KL
(
π⋆
τ,i, π

(t+1)
i

)
≤
(
1− η(t)τ

)
KL
(
π⋆
τ,i, π

(t)
i

)
+ η(t)(rτ,i(π

(t))− rτ,i(π
⋆
τ,i, π

(t)
−i))

+ (η(t))2
(
2R+ τ max

i∈N
log(|Ai|)

)2

(38)

for all i ∈ N and t ≥ 0. If we sum (38) over i ∈ N , we have

KL
(
π⋆
τ , π

(t+1)
)

≤
(
1− η(t)τ

)
KL
(
π⋆
τ , π

(t)
)
+ n(η(t))2

(
2R+ τ max

i∈N
log(|Ai|)

)2

+
∑
i∈N

η(t)(rτ,i(π
(t))− rτ,i(π

⋆
τ,i, π

(t)
−i))

=
(
1− η(t)τ

)
KL
(
π⋆
τ , π

(t)
)
+ n(η(t))2

(
2R+ τ max

i∈N
log(|Ai|)

)2

+
∑
i∈N

η(t)(rτ,i(π
(t)
i , π⋆

τ,−i)− rτ,i(π
⋆
τ )) (39)

≤
(
1− η(t)τ

)
KL
(
π⋆
τ , π

(t)
)
+ n(η(t))2

(
2R+ τ max

i∈N
log(|Ai|)

)2

(40)

for all t ≥ 0 where (39) holds due to (37) and
∑

i∈N rτ,i(π
(t)) =

∑
i∈N rτ,i(π

⋆
τ ) = 0, and (40)

holds due to that π⋆
τ is the NE for the game that having the payoff rτ,i. If we recursively apply (40),
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we have

KL
(
π⋆
τ , π

(t+1)
)

≤
t∏

l=0

(1− η(l)τ)KL(π⋆
τ , π

(0)) + n

(
2R+ τ max

i∈N
log(|Ai|)

)2 t∑
l=0

(η(l))2
t∏

s=l+1

(1− η(s)τ)

=

t∏
l=0

(1− 1/(l +K))KL(π⋆
τ , π

(0))

+ n

(
2R+ τ max

i∈N
log(|Ai|)

)2 t∑
l=0

1

τ2
(1/(l +K)2)

t∏
s=l+1

(1− 1/(s+K))

≤ K/(K + t)KL(π⋆
τ , π

(0))

+ n

(
2R+ τ max

i∈N
log(|Ai|)

)2
1

τ2
log ((t+K + 1)/(K)) (1/(t+K))

= Õ

((
K
∑
i∈N

log(|Ai|) + nmax

(
R2/τ2,max

i∈N
log2(|Ai|)

))
/t

)

= Õ
(
nmax

(
R2/τ2,max

i∈N
log2(|Ai|)

)
/t

)
.

Therefore, if we iterate Algorithm 9 for T times, by Proposition 11 and Lemma 2, we obtain an

Õ

(
τ max

i∈N
log |Ai|+

(
τ max

i∈N
log |Ai|+R

)√
nmax

(
R2/τ2,max

i∈N
log2(|Ai|)

)
/T

)
approximate NE. Therefore, if we want to obtain an ϵ-NE (ϵ > 0) for the matrix game in the last
iterate, we need to have Õ

(
nR4/ϵ4

)
iteration.

F.2.2 Diminishing regularization

One might also consider the algorithm with a diminishing choice of τ . We provide Algorithm 10 for
this case.

Algorithm 10 MWU for zero-sum NGs with diminishing entropy regularization

Choose K = (R+ 2maxi∈N log |Ai|)2

Choose π
(0)
i as a uniform distribution for all i ∈ N

for timestep t = 0, 1, . . . do
Define τ (t) = (t+K)−1/6 and η(t) = (t+K)−1/2

Update g
(t)
i = riπ

(t) − τ (t) log π
(t)
i for all i ∈ N

Define Ω
(t)
i =

{
πi ∈ ∆(Ai) | πi(ai) ≥ 1

|Ai|(t+K)2 for all ai ∈ Ai

}
Update the policy as π(t+1)

i = argmax
πi∈Ω

(t)
i

(
π⊺
i g

(t)
i − 1

η(t) KL(πi, π
(t)
i )
)

for all i ∈ N
end for

Let π⋆
τ(t) be the unique NE in the policy space

∏
i∈N Ω

(t)
i for the game that has the payoff rτ(t),i as

rτ(t),i(π) = ri(π) + τ (t)H(πi)−
∑

j∈Er,i

τ (t)

|Er,j |
H(πj) = π⊺

i riπ + τ (t)H(πi)−
∑

j∈Er,i

τ (t)

|Er,j |
H(πj).

Moreover, we can bound g
(t)
i (ai) for all i ∈ N and ai ∈ Ai:

g
(t)
i (ai) ≤ R− (t+K)−1/6 log π

(t)
i (ai) ≤ R+ 2(t+K)−1/6 log(|Ai|(t+K))

≤ R+ 2max
i∈N

log(|Ai|),

so that η(t)g(t)i (ai) ≤ 1 for all i ∈ N , ai ∈ Ai, and t ≥ 0. Therefore, we can apply Lemma 4.
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Theorem 8. The last iterate of Algorithm 10 requires no more than Õ
(
n3R12/ϵ6

)
iterations to

achieve an ϵ-NE of (G,A, (ri,j)(i,j)∈Er
).

Proof. First, we bound the difference between rτ(t),i(π
⋆
τ(t),i

, π
(t)
−i) and rτ(t),i(π

(t)) as follows:

rτ(t),i(π
⋆
τ(t),i, π

(t)
−i)− rτ(t),i(π

(t))

=
(
π⋆
τ(t),i − π

(t)
i

)⊺
riπ

(t) + τ (t)

( ∑
ai∈Ai

π
(t)
i (ai) log π

(t)
i (ai)−

∑
ai∈Ai

π⋆
τ(t),i(ai) log π

⋆
τ(t),i(ai)

)

=
(
π⋆
τ(t),i − π

(t)
i

)⊺
g
(t)
i − τ (t)KL

(
π⋆
τ(t),i, π

(t)
i

)
≤

KL
(
π⋆
τ(t),i

, π
(t)
i

)
−KL

(
π⋆
τ(t),i

, π
(t+1)
i

)
η(t)

+ η(t)
∑

ai∈Ai

π
(t)
i (ai)

(
g
(t)
i (ai)

)2
− τ (t)KL

(
π⋆
τ(t),i, π

(t)
i

)

≤
KL
(
π⋆
τ(t),i

, π
(t)
i

)
−KL

(
π⋆
τ(t),i

, π
(t+1)
i

)
η(t)

+ η(t)
(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2

− τ (t)KL
(
π⋆
τ(t),i, π

(t)
i

)
.

Here, the penultimate inequality holds by Lemma 4 since πτ(t),i ∈ Ω
(t)
i and η(t)g

(t)
i (ai) ≤ 1 holds

for every t > 0 and ai ∈ Ai. Therefore, we have

KL
(
π⋆
τ(t+1),i, π

(t+1)
i

)
≤
(
1− η(t)τ (t)

)
KL
(
π⋆
τ(t),i, π

(t)
i

)
+ η(t)(rτ(t),i(π

(t))− rτ(t),i(π
⋆
τ(t),i, π

(t)
−i)) (41)

+ (η(t))2
(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2

+KL
(
π⋆
τ(t+1),i, π

(t+1)
i

)
−KL

(
π⋆
τ(t),i, π

(t+1)
i

)
for all i ∈ N and t ≥ 0. If we sum (41) over i ∈ N , we have

KL
(
π⋆
τ(t+1) , π

(t+1)
)

≤
(
1− η(t)τ (t)

)
KL
(
π⋆
τ(t) , π

(t)
)
+ n(η(t))2

(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2

+
∑
i∈N

η(t)(rτ(t),i(π
(t))− rτ(t),i(π

⋆
τ(t),i, π

(t)
−i)) + KL

(
π⋆
τ(t+1) , π

(t+1)
)
−KL

(
π⋆
τ(t) , π

(t+1)
)

=
(
1− η(t)τ (t)

)
KL
(
π⋆
τ(t) , π

(t)
)
+ n(η(t))2

(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2

(42)

+
∑
i∈N

η(t)(rτ(t),i(π
(t)
i , π⋆

τ(t),−i)− rτ(t),i(π
⋆
τ(t))) + KL

(
π⋆
τ(t+1) , π

(t+1)
)
−KL

(
π⋆
τ(t) , π

(t+1)
)

≤
(
1− η(t)τ (t)

)
KL
(
π⋆
τ(t) , π

(t)
)
+ n(η(t))2

(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2

+KL
(
π⋆
τ(t+1) , π

(t+1)
)
−KL

(
π⋆
τ(t) , π

(t+1)
)
, (43)
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for all t ≥ 0 where (42) holds due to (37), and (43) holds due to that π⋆
τ is the NE for the game with

the payoff rτ(t),i. If we recursively apply (43), we have

KL
(
π⋆
τ(t+1) , π

(t+1)
)

≤
t∏

l=0

(1− η(l)τ (l))KL(π⋆
τ , π

(0))

+ n

(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2 t∑
l=0

(η(l))2
t∏

s=l+1

(1− η(s)τ (s))

+

t∑
l=0

t∏
s=l+1

(1− η(s)τ (s))
(
KL
(
π⋆
τ(t+1) , π

(t+1)
)
−KL

(
π⋆
τ(t) , π

(t+1)
))

≤
t∏

l=0

(1− (t+K)−2/3)KL(π⋆
τ , π

(0))

+ n

(
R+ 2(t+K)−1/6 max

i∈N
log(|Ai|(t+K))

)2 t∑
l=0

(1/(l +K))

t∏
s=l+1

(1− (s+K)−2/3)

+

t∑
l=0

t∏
s=l+1

(1− (s+K)−2/3)
(
KL
(
π⋆
τ(t+1) , π

(t+1)
)
−KL

(
π⋆
τ(t) , π

(t+1)
))

≤
(i)
Õ
(
nmax(R2,max

i∈N
log(|Ai|t)t−1/3)(t+K)−1/3 +max

i∈N
log3(|Ai|t)(t+K)−1/3

)
= Õ

(
nR2t−1/3

)
.

Here, (i) holds because

t∏
l=0

(1− (t+K)−2/3)KL(π⋆
τ , π

(0)) = Õ
(
exp

(
−t1/3

))
holds,

t∑
l=0

(1/(l +K))

t∏
s=l+1

(1− (s+K)−2/3) = Õ((t+K)−1/3)

holds by [119, Lemma 4], and

t∑
l=0

t∏
s=l+1

(1− (s+K)−2/3)
(
KL
(
π⋆
τ(t+1) , π

(t+1)
)
−KL

(
π⋆
τ(t) , π

(t+1)
))

≤ max
i∈N

log3(|Ai|(t+K))(t+K)−1/3

holds by [119, Lemma 4, Lemma 15]. Therefore, if we iterate Algorithm 10 for T times, by
Proposition 11 and Lemma 2, we obtain

Õ
(
T−1/6 max

i∈N
log |Ai|+

(
T−1/6 max

i∈N
log |Ai|+R

)√
nR2T−1/3

)
approximate NE. Therefore, if we want to obtain ϵ-NE (ϵ > 0) for the matrix game, we need to have
Õ
(
n3R12/ϵ6

)
iterations.

G Experimental Results

We now present experimental results for the learning dynamics/algorithms investigated before.
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G.1 Fictitious-play property of zero-sum NMGs

We present an experiment for the fictitious-play property in Section 5. We experimented with an
infinite-horizon γ-discounted zero-sum NMG (G = (N , EQ),S,A,P, (ri)i∈N , γ), where N =
{0, 1, 2}, S = {0, 1}, Ai = {0, 1} for all i ∈ N , P(s′ | s,a) := F0(s

′ | s, a0), F0(0 | 0, 1) =

F0(0 | 1, 0) = 0.8, F0(0 | 1, 1) = F0(0 | 0, 0) = 0.2, r0,1(0) = −r1,0(0)⊺ =

[
1 2

4 3

]
, r0,2(0) =

−r2,0(0)⊺ =

[
4 3

2 1

]
, r0,1(1) = −r1,0(1)⊺ =

[
4 3

2 1

]
, r0,2(1) = −r2,0(1)⊺ =

[
1 2

4 3

]
, αt =

1
t0.55 , βt =

1
t0.75 , and γ = 0.99. We iterated 228 times for the experiments. The result is demonstrated

in Figure 3 (a). Note that the gray and black lines indicate the sum of the values for states 0 and 1,
which asymptotically go to 0.

(a) Value function estimates plot (b) maxi∈N ,s∈S

(
V

†,π−i

1,i (s)− V π
1,i(s)

)
plot

Figure 3: (a) Fictitious play experiment. The red and dark red lines indicate player 0’s value function
estimates for states 0 and 1, respectively. The green and dark green lines indicate player 1’s value
function estimates for states 0 and 1, respectively. The blue and dark blue lines indicate player 2’s
value function estimates for states 0 and 1, respectively. The gray and black lines indicate the sum of
each player’s value function estimates for states 0 and 1, respectively. x-axis denotes the logarithm
with base 2 of the number of iterates (stages) and y-axis denotes the value function estimates. (b)
Value-iteration-based algorithms with (OMWU, OMD, MWU) NE-ORACLE subroutines. The
blue, orange, and green lines indicate maxi∈N ,s∈S

(
maxπ′

i∈∆(Ai) V
π′
i,π−i

1,i (s)− V π
1,i(s)

)
value of

the OMWU, OMD, and MWU NE-ORACLE, respectively. x-axis denotes the number of iteration of
NE-ORACLE subroutine, and y-axis denotes the NE-Gap.

G.2 Value-iteration with different NE-ORACLEs

We present an experiment for zero-sum NMGs with different NE-ORACLEs in Section 6.
We experimented with a zero-sum NMG (G = (N , EQ),S,A, H, (Ph)h∈[H], (rh,i)h∈[H],i∈N )
where N = {0, 1, 2}, EQ = {(1, 2), (1, 0), (2, 0)}, S = {0,1}, Ai = {0, 1} for all i ∈ N ,
H = 5, Ph(s

′ | s,a) :=
∑

i∈N Fi(s
′ | s, ai), F0(s

′ | s, a0) = 0, F1(s
′ | s, a1) = 1

3P1(s
′ | s, a1),

F2(s
′ | s, a2) = 2

3P2(s
′ | s, a2), P1(0 | 0, 1) = P1(0 | 1, 0) = P2(0 | 0, 1) = P2(0 | 1, 0) is determined

randomly, P1(0 | 1, 1) = P1(0 | 0, 0) = P2(0 | 1, 1) = P2(0 | 0, 0) is determined randomly, and rh,i
is determined randomly such that it makes (G,A, (rh,i(s))i∈N ) a zero-sum NG for every h. We set
τ = 0.05 for both OMWU and MWU. We set η = 1/(36H) for both OMWU and OMD. We iterated
the algorithm for T = 5000 times. The result is plotted in Figure 3 (b).
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H Limitations and Broader Impact

Limitations and future directions. One main focus of our paper is on introducing the new
model of multi-player zero-sum Markov games, and studying the performance of basic learning and
(centralized) computation algorithms. We did not intend to develop more advanced decentralized
multi-agent RL algorithms with finite-sample/iteration guarantees, which would be one of our
immediate next steps. Our convergence guarantees for fictitious-play dynamics in the infinite-
horizon setting only hold for the star-shaped structure, and it would be interesting to explore other
network structures that possess the fictitious-play property, and how they mirror the conditions for
the computational hardness result.

Broader impact. Our work mainly focuses on the theoretical aspects of multi-player Markov games
with networked local interactions. We expect no negative social impacts from our results.
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