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Abstract

We study a new class of Markov games, (multi-player) zero-sum Markov Games
with Networked separable interactions (zero-sum NMGs), to model the local
interaction structure in non-cooperative multi-agent sequential decision-making.
We define a zero-sum NMG as a model where the payoffs of the auxiliary games
associated with each state are zero-sum and have some separable (i.e., polymatrix)
structure across the neighbors over some interaction network. We first identify
the necessary and sufficient conditions under which an MG can be presented as
a zero-sum NMG, and show that the set of Markov coarse correlated equilibrium
(CCE) collapses to the set of Markov Nash equilibrium (NE) in these games, in
that the product of per-state marginalization of the former for all players yields the
latter. Furthermore, we show that finding approximate Markov stationary CCE in
infinite-horizon discounted zero-sum NMGs is PPAD-hard, unless the underlying
network has a “star topology”. Then, we propose fictitious-play-type dynamics,
the classical learning dynamics in normal-form games, for zero-sum NMGs, and
establish convergence guarantees to Markov stationary NE under a star-shaped
network structure. Finally, in light of the hardness result, we focus on computing
a Markov non-stationary NE and provide finite-iteration guarantees for a series
of value-iteration-based algorithms. We also provide numerical experiments to
corroborate our theoretical results.

1 Introduction

Nash Equilibrium (NE) has been broadly used as a solution concept in game theory, since the seminal
works of [1, 2]. Perhaps equally important, NE is also deeply rooted in the prediction and analysis
of learning dynamics in multi-agent strategic environments: it may appear as a natural outcome of
many non-equilibrating learning processes of multiple agents interacting with each other [3, 4]. A
prominent example of such learning processes is fictitious play (FP) [5, 6], in which myopic agents
estimate the opponents’ play using history, and then choose a best-response action (based on their
payoff matrix) against this estimate, as if the opponents use it as their stationary strategy. The focus
of these studies has initially been on the convergence to NE in zero-sum games (see [5, 6], and also
[7, 4]), and in games with aligned objective (identical-interest and potential games, see [8]). Since
then, FP has been shown to converge to NE in more important classes of games, including 2xn games
[9, 10], “one-against-all” games [11], and zero-sum polymatrix games [12], justifying the prediction
power of NE in learning in normal-form/matrix games.

Some of these results have recently been extended to the stochastic game (also known as the
Markov game (MG)) setting, a model for multi-agent sequential decision-making with state transition
dynamics, first introduced in [13]. In particular, [14, 15, 16, 17, 18] have studied best-response-type
learning dynamics in two-player zero-sum MGs, and [19, 17] have studied that in multi-player
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identical-interest games. Following the same path as studying matrix games, one natural question
arises: Are there other classes of MGs beyond two-player zero-sum and identical-interest cases that
allow natural learning dynamics, e.g., fictitious play, to justify NE as the long-run emerging outcome?
On the other end of the spectrum, it is well-known that for general-sum normal-form games, the
special case of MGs without the state transition dynamics, computing an NE is intractable [20, 21].
Relaxed solution concepts as (coarse) correlated equilibrium ((C)CE) have thus been favored when
it comes to equilibrium computation for general-sum, multi-player games [22, 3]. Encouragingly,
when the interactions among players have some networked separable structure, also known as being
polymatrix, computing NE may be made tractable even in multi-player settings. This has been
instantiated in the seminal works [23, 24] in the normal-form game setting, which showed that any
CCE collapses to the NE in such games when the payoffs are zero-sum. Thus, any algorithms that
can efficiently compute the CCE in such games will lead to the efficient computation of the NE.
In fact, besides being of theoretical interest, multi-player zero-sum games with networked separable
interactions also find a range of applications, including security games [24], fashion games [25, 26,
27], and resource allocation problems [28]. These examples, oftentimes, naturally involve some state
transition that captures the dynamics of the evolution of the environment in practice. For example, in
the security game, the protection level or immunity of a target increases as a function of the number
of past attacks, leading to a smaller probability of an attack on the target being successful. Hence, it is
imperative to study such multi-player zero-sum games with state transitions. As eluded in the recent
results [29, 30], such a transition from stateless to stateful cases may not always yield straightforward
and expected results, e.g., computing stationary CCE can be computationally intractable in stochastic
games, in stark contrast to the normal-form case where CCE can be efficiently computed. This
naturally prompts another question: Are there other types of (multi-player) MGs that may circumvent
the computational hardness of computing NE/CCE?
In an effort to address these two questions, we introduce a new class of Markov games – (multi-player)
zero-sum Markov games with networked separable interactions (zero-sum NMGs). We summarize
our contributions as follows, and defer a more detailed literature review to Appendix A.
Contributions. First, we introduce a new class of non-cooperative Markov games: (multi-player)
zero-sum MGs with Networked separable interactions (zero-sum NMGs), wherein the payoffs of the
auxiliary-games associated with each state, i.e., the sum of instantaneous reward and expectation
of any estimated state-value functions, possess the multi-player zero-sum and networked separable
(i.e., polymatrix) structure as in [31, 28, 23, 24] for normal-form games, a strict generalization of the
latter. We also provide structural results on the reward and transition dynamics of the game, as well
as examples of this class of games. Specifically, for a Markov game to qualify as a zero-sum NMG, if
and only if its reward function has the zero-sum polymatrix structure, and its transition dynamics
is an ensemble of multiple single-controller transition dynamics that are sampled randomly at each
state (see Remark 3 for more details). This transition dynamics covers the common ones in the MG
literature, including the single-controller and turn-based dynamics. Second, we show that Markov
CCE and Markov NE collapse in that the product of per-state marginal distributions of the former
yields the latter, making it sufficient to focus on the former in equilibrium computation. We then
show the PPAD-hardness [32] of computing the Markov stationary equilibrium, a natural solution
concept in infinite-horizon discounted MGs, unless the underlying network has a star-topology. This
is in contrast to the normal-form case where CCE is always computationally tractable. Third, we
study the fictitious-play property [8] of zero-sum NMGs, showing that the fictitious-play dynamics
[16, 19] converges to the Markov stationary NE, for zero-sum NMGs with a star-shaped network
structure. Finally, in light of the hardness of computing stationary equilibria, we develop a series of
value-iteration-based algorithms for computing a Markov non-stationary NE of zero-sum NMGs,
with finite-iteration guarantees. We also provide numerical experiments to corroborate our theoretical
results in Section G. We hope our results serve as a starting point for studying this networked separable
interaction structure in non-cooperative Markov games.
Notation. For a real number c, we use (c)+ to denote max{c, 0}. For an event E , we use 111(E) to
denote the indicator function such that 111(E) = 1 if E is true, and 111(E) = 0 otherwise. We define
multinomial distribution with probability (wi)i∈N as Multinomial

(
(wi)i∈N

)
. We denote the uniform

distribution over a set S as Unif(S). We denote the Bernoulli distribution with probability p as
Bern(p). The sgn function is defined as sgn(x) = 2× 111(x ≥ 0)− 1. The KL-divergence between
two probability distributions p, q is denoted as KL(p, q) = Ep[log(p/q)]. For a graph G = (N , E),
we denote the set of neighboring nodes of node i ∈ N as Ei (without including i). The maximum
norm of a matrix X ∈ Rm×n, denoted as ∥X∥max, is defined as ∥X∥max := maxi∈[m],j∈[n] |Xi,j |.
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2 Preliminaries
2.1 Markov games

We define a Markov game as a tuple (N ,S,A, H, (Ph)h∈[H], (rh,i)h∈[H],i∈N , γ), where N = [n] is
the set of players, S is the state space with |S| = S,Ai is the action space for player i with |Ai| = Ai

and A =
∏

i∈N Ai, H ≤ ∞ is the length of the horizon, Ph : S × A → ∆(S) captures the state
transition dynamics at timestep h, rh,i ∈ [0, R] is the reward function for player i at timestep h,
bounded by some R > 0, and γ ∈ (0, 1] is a discount factor. An MG with a finite horizon (H <∞)
is also referred to as an episodic MG, while an MG with an infinite horizon (H =∞) and γ < 1 is
referred to as an infinite-horizon γ-discounted MG. When H =∞, we will consider the transition
dynamics and reward functions, denoted by P and (ri)i∈N , respectively, to be independent of h.
Hereafter, we may use agent and player interchangeably.

Policy. Consider the stochastic Markov policy for player i, denoted by πi, as πi := {πh,i :
S → ∆(Ai)}h∈[H]. A joint Markov policy is a policy π := {πh : S → ∆(A)}h∈[H], where
πh : S → ∆(A) decides the joint action of all players that can be potentially correlated. A joint
Markov policy is a product Markov policy if πh : S →

∏
i∈N ∆(Ai) for all h ∈ [H], and is denoted

as π = π1 × π2 × · · · × πn. When the policy is independent of h, the policy is called a stationary
policy. We let ah denote the joint action of all agents at timestep h. Unless otherwise noted, we will
work with Markov policies throughout. We denote π(s) ∈ ∆(A) as the joint policy at state s ∈ S.

Value function. For player i, the value function under joint policy π, at timestep h and state
sh is defined as V π

h,i(sh) := Eπ

[∑H
h′=h γ

h′−hrh′,i(sh′ ,ah′)
∣∣ sh], which denotes the expected

cumulative reward for player i at step h if all players adhere to policy π. We also define V π
h,i(ρ) :=

Esh∼ρ[V
π
h,i(sh)] for some state distribution ρ ∈ ∆(S). We denote the Q-function for the i-th player

under policy π, at step h and state sh as Qπ
h,i(sh,ah) := Eπ

[∑H
h′=h γ

h′−hrh′,i(sh′ ,ah′)
∣∣ sh,ah

]
,

which determines the expected cumulative reward for the i-th player at step h, when starting from
the state-action pair (sh,ah). For the infinite-horizon discounted setting, we also use V π

i and Qπ
i to

denote V π
1,i and Qπ

1,i for short, respectively.

Approximate equilibrium. Define an ϵ-approximate Markov perfect Nash equilibrium as a
product policy π, which satisfies maxi∈N maxµi∈(∆(Ai))|S|×H (V

µi,π−i

h,i (ρ) − V π
h,i(ρ)) ≤ ϵ for

all ρ ∈ ∆(S) and h ∈ [H], where π−i represents the marginalized policy of all players ex-
cept player i. Define an ϵ-approximate Markov coarse correlated equilibrium as a joint policy
π, which satisfies maxi∈N maxµi∈(∆(Ai))|S|×H (V

µi,π−i

h,i (ρ) − V π
h,i(ρ)) ≤ ϵ for all ρ ∈ ∆(S)

and h ∈ [H]. In the infinite-horizon setting, they can be equivalently defined as satisfying
maxs∈S maxi∈N maxµi∈(∆(Ai))|S|(V

µi,π−i

i (s) − V π
i (s)) ≤ ϵ. If the above conditions only hold

for certain ρ and h = 1, we refer to them as Markov non-perfect NE and CCE, respectively. Unless
otherwise noted, we hereafter focus on Markov perfect equilibria, and sometimes refer to them simply
as Markov equilibria when it is clear from the context. In the infinite-horizon setting, if additionally,
the policy is stationary, then they are referred to as a Markov stationary NE and CCE, respectively.

2.2 Multi-player zero-sum games with networked separable interactions
As a generalization of two-player zero-sum matrix games, (multi-player) zero-sum polymatrix games
have been introduced in [31, 28, 23, 24]. A polymatrix game, also known as a separable network
game is defined by a tuple (G = (N , Er),A =

∏
i∈N Ai, (ri,j)(i,j)∈Er

). Here, G is an undirected
connected graph where N = [n] denotes the set of players and Er ⊆ N × N denotes the set of
edges describing the rewards’ networked structures, where the graph neighborhoods represent the
interactions among players. For each edge, a two-player game is defined for players i and j, with
action sets Ai and Aj , and reward functions ri,j : Ai ×Aj → R, and similarly for rj,i. The reward
for player i for a given joint action a = (ai)i∈N ∈

∏
i∈N Ai is calculated as the sum of the rewards

for all edges involving player i, that is, ri(a) =
∑

j:(i,j)∈Er
ri,j(ai, aj). To be consistent with our

terminology later, hereafter, we also refer to such games as (multi-player) Games with Networked
separable interactions (NGs).
In a zero-sum polymatrix game (i.e., a (multi-player) zero-sum Game with Networked separable
interactions (zero-sum NG)), the sum of rewards for all players at any joint action a = (ai)i∈N ∈∏

i∈N Ai equals zero, i.e.,
∑

i∈N ri(a) = 0. One can define the policy of agent i, i.e., πi ∈ ∆(Ai),
so that the agent takes actions by sampling ai ∼ πi(·). Note that πi can be viewed as the reduced
case of the policy defined in Section 2.1 when S = ∅ and H = 1. The expected reward for player i
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under π can then be computed as:

ri(π) :=
∑

j:(i,j)∈Er

∑
ai∈Ai,aj∈Aj

ri,j (ai, aj)πi(ai)πj(aj) = π⊺
i riπ, (1)

where ri denotes the matrix ri := (ri,1, . . . , ri,(i−1),0, ri,(i+1), . . . , ri,n) ∈ R|Ai|×
∑

i∈N |Ai| and
πππ := (π⊺

1 , π
⊺
2 , . . . , π

⊺
n)

⊺ ∈ R
∑

i∈N |Ai|. We define r := (r⊺1 , r
⊺
2 , . . . , r

⊺
n)

⊺ ∈ R
∑

i∈N |Ai|×
∑

i∈N |Ai|.
Then in this case we have

∑
i∈N ri(π) = 0 for any policy π. See more prominent application

examples of zero-sum polymatrix games in [23, 24].

3 Multi-Player (Zero-Sum) MGs with Networked Separable Interactions
We now introduce our model of multi-player zero-sum MGs with networked separable interactions.

3.1 Definitions

Definition 1. An infinite-horizon γ-discounted MG is called a (multi-player) MG with Networked
separable interactions (NMG) characterized by a tuple (G = (N , EQ),S,A,P, (ri)i∈N , γ) if for
any function V : S → R, defining QV

i (s,a) := ri(s,a) + γ
∑

s′∈S P(s′ | s,a)V (s′), there
exist a set of functions (QV

i,j)(i,j)∈EQ
and an undirected connected graph G = (N , EQ) such that

QV
i (s,a) =

∑
j∈EQ,i

QV
i,j(s, ai, aj) holds for every i ∈ N , s ∈ S, a ∈ A, where EQ,i denotes the

neighbors of player i induced by the edge set EQ (without including i). When it is clear from the
context, we represent the NMG tuple simply as G = (N , EQ).
A finite-horizon MG is called a (multi-player) MG with Networked separable interactions if
for any set of functions V := {Vh}h∈[H+1] where Vh : S → R, defining QV

h,i(s,a) :=

rh,i(s,a) + γ
∑

s′∈S Ph(s
′ | s,a)Vh+1(s

′), there exist a set of functions (QV
h,i,j)(i,j)∈EQ,h∈[H]

such that QV
h,i(s,a) =

∑
j∈EQ,i

QV
h,i,j(s, ai, aj) holds for every i ∈ N , s ∈ S, h ∈ [H], a ∈ A.

A (multi-player) NMG is called a (multi-player) zero-sum MG with Networked separable interactions
(zero-sum NMG) if additionally (G = (N , EQ),A =

∏
i∈N Ai, (ri,j(s) := Q000

i,j(s))(i,j)∈EQ
) forms

a zero-sum NG for all s ∈ S in the infinite-horizon γ-discounted case, or (G = (N , EQ),A =∏
i∈N Ai, (rh,i,j(s) := Q000

h,i,j(s))(i,j)∈EQ
) forms a zero-sum NG for all s ∈ S and h ∈ [H] in the

finite-horizon case.

Regarding the assumption that the above conditions hold under any (set of) functions V , one may
understand this as a structural requirement to inherit the polymatrix structure in the Markov game
case. It is natural since {QV

i }i∈N would play the role of the payoff matrix in the normal-form case,
when value-(iteration) based algorithms are used to solve the MG. As our hope is to exploit the
networked structure in the payoff matrices to develop efficient algorithms for solving such MGs,
if we do not know a priori which value function estimate V will be encountered in the algorithm
update, the networked structure may easily break if we do not assume them to hold for all possible V .
Moreover, such a definition easily encompasses the normal-form case, by preserving the polymatrix
structure of the reward functions (when substituting V to be a zero function). Some alternative
definition (see Remark 2) may not necessarily preserve the polymatrix structure of even the reward
functions in a consistent way (see Section B.4 for a concrete example). We thus focus on Definition 1,
which at least covers the polymatrix structure of the reduced case regarding only reward functions.

Indeed, such a networked structure in Markov games may be fragile. We now propose both sufficient
and necessary conditions for the reward function’s structure and the transition dynamics of the MG,
to be an NMG. Here we focus on the infinite-horizon discounted setting for a simpler exposition.
For finite-horizon cases, a similar statement holds, which is deferred to Appendix B. We also defer
the full statement and proof of the following result to Appendix B. We first introduce the definition
of decomposability and the set NC , which will be used in establishing the conditions. For a graph
G = (N , E), we define NC := {i | (i, j) ∈ E for all j ∈ N}, which may be an empty set if no such
node i exists.
Definition 2 (Decomposability). A non-negative function f : X |D| → R+ ∪ {0} is decomposable
with respect to a set D ̸= ∅ if there exists a set of non-negative functions (fi)i∈D with fi : X →
R+ ∪ {0}, such that f(x) =

∑
i∈D fi(xi) holds for any x ∈ X |D|. A non-negative function

f : X |D| → R+ ∪ {0} is decomposable with respect to a set D = ∅, if there exists a non-negative
constant fo such that f(x) = fo holds for any x ∈ X |D|.
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Proposition 1. For a given graph G = (N , EQ), an MG (N ,S,A,P, (ri)i∈N , γ) with more than
two players is an NMG with respect to G if and only if: (1) ri(s, ai, ·) is decomposable with respect
to EQ,i for each i ∈ N , s ∈ S, ai ∈ Ai, i.e., ri(s,a) =

∑
j∈EQ,i

ri,j(s, ai, aj) for a set of functions
{ri,j(s, ai, ·)}j∈EQ,i

, and (2) the transition dynamics P(s′ | s, ·) is decomposable with respect to
the setNC of this G, i.e., P(s′ | s,a) =

∑
i∈NC

Fi(s
′ | s, ai) for a set of functions {Fi(s

′ | s, ·)}i∈NC

if NC ̸= ∅, or P(s′ | s,a) = Fo(s
′ | s) for some constant function (of a) Fo(s

′ | s) if NC = ∅.
Moreover, an MG qualifies as a zero-sum NMG if and only if it satisfies an additional condition: the
NG, characterized by (G,A, (ri,j(s))(i,j)∈EQ

), is a zero-sum NG for all s ∈ S. In the case of two
players, every (zero-sum) Markov game becomes a (zero-sum) NMG.
Remark 1 (Stronger sufficient condition). We note that for an MG (N ,S,A,P, (ri)i∈N , γ), if
for every agent i, ri(s, ai, ·) is decomposable with respect to some Er ⊆ EQ, and P(s′ | s, ·) is
decomposable with respect to some NP ⊆ NC , then one can still prove the if part, i.e., there exists
some G = (N , EQ) such that the game is an NMG with respect to this G. See Figure 1 for the
illustration. This is because by our definition, being decomposable with respect to a subset implies
being decomposable with respect to a larger set, as one can choose the functions fi for the i in the
complement of the subset to be simply zero. We chose to state as in Proposition 1 just for the purpose
of presenting both the if and only if conditions in a concise and unified way.
Remark 2 (An alternative NMG definition). Another reasonable definition of NMG may be as
follows: if for any policy π, there exist a set of functions (Qπ

i,j)(i,j)∈EQ
and an undirected connected

graph G = (N , EQ) such that Qπ
i (s,a) =

∑
j∈EQ,i

Qπ
i,j(s, ai, aj) holds for every i ∈ N , s ∈ S,

a ∈ A. Note that such a definition can be useful in developing policy-based algorithms (while
Definition 1 is more amenable to developing value-based algorithms), e.g., policy iteration, policy
gradient, actor-critic methods, where the Q-value under certain policy π will appear in the updates
and may need to preserve certain decomposability structure, for any policy π encountered in the
algorithm updates. However, in this case, we cannot always guarantee the decomposability of
P(s′ | s, ·) or ri(s, ai, ·). For example, if we assume that ri(s,a) = 0 for every i ∈ N , s ∈ S , a ∈ A,
then Qπ

i (s,a) =
∑

j∈EQ,i
0 and thus Qπ

i (s, ai, ·) is always decomposable regardless of P(s′ | s,a).
However, interestingly, we can show that the decomposability of the transition dynamics and the
reward function as in Proposition 1 can still be guaranteed, as long as some degenerate cases as
above do not occur. In particular, if there exist no i ∈ N and s ∈ S such that Qπ

i (s,a) is a constant
function of a for any π, then the results in Proposition 1 and hence after still hold. We defer a detailed
discussion on this alternative definition to Appendix B.
Remark 3 (Implication of decomposable transition dynamics). For an MG to be an NMG, by Propo-
sition 1 the transition dynamics should be decomposable, i.e., P(· | s,a) =

∑
j∈NC

Fj(· | s, aj) or
P(· | s,a) = Fo(s

′ | s). We first focus on the discussion of the former case. Define wj(s, aj) :=∑
s′∈S Fj(s

′ | s, aj). If we fix the value of s and a−j , then wj(s, aj) has to be the same for dif-
ferent values of aj due to the fact

∑
j∈NC

wj(s, aj) = 1. Also note that by definition, wj(s, aj)

does not depend on the choice of this fixed a−j . Therefore, such a wj(s, aj) can be written as
wj(s), where wj(s) =

∑
s′∈S Fj(s

′ | s, aj) for all aj ∈ Aj . We can thus rewrite (Fj)j∈NC
us-

ing some actual probability distributions (Pj)j∈NC
, such that if wj(s) ̸= 0, then we rewrite Fj

as Fj(s
′ | s, aj) = wj(s)

Fj(s
′ | s,aj)

wj(s)
= wj(s)Pj(s

′ | s, aj), and if wj(s) = 0, we rewrite Fj as
Fj(s

′ | s, aj) = wj(s)Pj(s
′ | s, aj) for an arbitrary probability distribution Pj(· | s, aj). Notice that∑

s′∈S Pj(s
′ | s, aj) = 1 for any j ∈ NC . Then, the decomposable transition dynamics can be repre-

sented as P(· | s,a) =
∑

j∈NC
wj(s)Pj(· | s, aj), i.e., an ensemble of the transition dynamics that is

only controlled by single controllers. The model’s transition dynamics thus act according to the follow-
ing two steps: (1) sampling the controller according to the distribution Multinomial

(
(wi(s))i∈NC

)
,

and (2) transitioning the state following the sampled controller’s dynamics. Such a model has also
been investigated under the name of transition dynamics with additive structures in [33]. Note that
our model is more general and thus covers the single-controller MG setting [34], where there is only
one agent controlling the transition dynamics at all states. It also covers the setting of turn-based
MGs [34], where in each round, depending on the current state s, the transition dynamics is by turns
affected by only one of the agents. This can be captured by the proper choice of (wi(s))i∈NC

) that
takes value 1 only for one agent at each state s (while takes value 0 for all other non-controller agents
at each state s). Additionally, the second case where P(· | s,a) = Fo(s

′ | s) corresponds to the one
with no ensemble of controller agents.
Proposition 2 (Decomposition of (QV

i )i∈N ). For an infinite-horizon γ-discounted NMG with
G = (N , EQ) such that NC ̸= ∅, if we know that P(s′ | s,a) =

∑
i∈NC

Fi(s
′ | s, ai), and
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Figure 1: Relationship between Er, ENP ,connected, and EQ. Here, we define ENP ,connected :=
{(i, j) | i ∈ NP or j ∈ NP , i ̸= j}. ri(s, ai, ·) is decomposable with respect to Er,i for all i ∈ N ,
and P(s′ | s, ·) is decomposable with respect to NP (See Remark 1). The transition dynamics P is
expressed as the ensemble of controllers in the set NP = {5} while the NC in this case is {1, 5}.

ri(s,a) =
∑

j∈EQ,i
ri,j(s, ai, aj) for some {Fi}i∈NC

and {ri,j}(i,j)∈EQ
, then the QV

i,j given in
Definition 1 can be represented as

QV
i,j(s, ai, aj) = ri,j(s, ai, aj) +

∑
s′∈S

γ
(
111(j ∈ NC)Fj(s

′ | s, aj) + 111(i ∈ NC)λi,j(s)Fi(s
′ | s, ai)

)
V (s′)

for any non-negative (λi,j(s))(i,j)∈EQ
such that

∑
j∈EQ,i

λi,j(s) = 1, for all i ∈ N and s ∈ S.
We call it the canonical decomposition of {QV

i }i∈N when QV
i,j can be represented as above with

λi,j(s) = 1/|EQ,i| for j ∈ EQ,i. The case with NC = ∅ is deferred to Appendix B.

We introduce this canonical decomposition since the representation of QV
i,j is in general not unique,

and we may use this canonical form to simplify the algorithm design later.

3.2 Examples of multi-player (zero-sum) NMGs
We now provide several examples of (multi-player) MGs with networked separable interactions here
and in Section B.5.

Example 1 (Markov fashion games). Fashion games are an intriguing class of games [25, 26, 27]
that plays a vital role not only in Economics theory but also in practice. A fashion game is a networked
extension of the Matching Pennies game, in which each player has the action space Ai = {−1,+1},
which means light and dark color fashions, respectively, for example. There are two types of players:
conformists (c), who prefer to conform to their neighbors’ fashion (action), and rebels (r), who prefer
to oppose their neighbors’ fashion (action). Such interactions with the neighbors are exactly captured
by polymatrix games. We denote the interaction network between players as G = (N , E).
Such a game naturally involves the following state transition dynamics: we introduce the state
s ∈ S = Z by setting s0 = 0 and st+1 ∼ st + Unif((at,c)c∈C), which indicates the fashion trend
where C ⊆ N is the set of influencers. The fashion trend favors either light or dark colors if s ≥ 0 or
s < 0, respectively. We can think of dynamics as the impact of the influencers on the fashion trend at
time t. For each (s,a), the reward function for player i, depending on whether she is a conformist or a
rebel, are defined as rc,i(s,a) =

∑
j∈Ei

rc,i,j(s, ai, aj) =
∑

j∈Ei
( 1
|Ei|111(sgn(s) = ai)+111(ai = aj))

and rr,i(s,a) =
∑

j∈Ei
rr,i,j(s, ai, aj) =

∑
j∈Ei

( 1
|Ei|111(sgn(s) ̸= ai) + 111(ai ̸= aj)), respectively.

This is an NMG as defined in Definition 1. Moreover, if the conformists and rebels constitute a
bipartite graph, i.e., the neighbors of a conformist are all rebels and vice versa, it becomes a multi-
player constant-sum MG with networked separable interactions, and we can subtract the constant
offset to make it a zero-sum NMG.

3.3 Relationship between CCE and NE in zero-sum NMGs
A well-known property for zero-sum NGs is that marginalizing a CCE leads to a NE, which makes it
computationally tractable to find the NE [23, 24]. We now provide below a counterpart in the Markov
game setting, and provide a more detailed statement of the result in Appendix B.
Proposition 3. Given an ϵ-approximate Markov CCE of an infinite-horizon γ-discounted zero-sum
NMG, marginalizing it at each state results in an (n+1)

(1−γ) ϵ-approximate Markov NE of the zero-sum
NMG. The same argument also holds for the finite-horizon episodic setting with (1− γ)−1 being
replaced by H .
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This result holds for both stationary and non-stationary ϵ-approximate Markov CCEs. We defer the
proof of Proposition 3 to Appendix B. This proposition suggests that if we can have some algorithms
to find an approximate Markov CCE for a zero-sum NMG, we can obtain an approximate Markov NE
by marginalizing the approximate CCE at each state. We also emphasize that the Markovian property
of the equilibrium policies is important for the result to hold. As a result, the learning algorithm in
[30], which learns an approximate Markov non-stationary CCE with polynomial time and samples,
may thus be used to find an approximate Markov non-stationary NE in zero-sum NMGs. However,
as the focus of [30] was the more challenging setting of model-free learning, the complexity therein
has a high dependence on the problem parameters, and the algorithm can only find non-perfect
equilibria. When it comes to (perfect) equilibrium computation, one may exploit the multi-player
zero-sum structure of zero-sum NMGs, and develop more natural and faster algorithms to find a
Markov non-stationary NE. Moreover, when it comes to stationary equilibrium computation, even
Markov CCE is not tractable in general-sum cases [30, 29]. Hereafter, we will focus on approaching
zero-sum NMGs from these perspectives.

4 Hardness for Stationary CCE Computation
Given the results in Section 3.3, it seems tempting and sufficient to compute the Markov CCE of the
zero-sum NMG. Indeed, computing CCE (and thus NE) in zero-sum polymatrix games is known to
be tractable [23, 24]. It is thus natural to ask: Is finding Markov CCE computationally tractable?
Next, we answer the question with different answers for finding stationary CCE (in infinite-horizon
γ-discounted setting) and non-stationary CCE (in finite-horizon episodic setting), respectively.

For two-player infinite-horizon γ-discounted zero-sum MGs, significant progress in computing/learn-
ing the (Markov) stationary NE has been made recently [35, 36, 37, 38, 39, 40, 41, 42]. On the
other hand, for multi-player general-sum MGs, recent results in [30, 29] showed that computing
(Markov) stationary CCE can be PPAD-hard and thus believed to be computationally intractable. We
next show that this hardness persists in most non-degenerate cases even if one enforces the zero-sum
and networked interaction structures in the multi-player case. We state the formal result as follows,
whose detailed proof is available in Section C.
Theorem 1. There is a constant ϵ > 0 for which computing an ϵ-approximate Markov perfect
stationary CCE in infinite-horizon 1

2 -discounted zero-sum NMGs, whose underlying network structure
contains either a triangle or a 3-path subgraph, is PPAD-hard. Moreover, given the PCP for PPAD
conjecture [43], there is a constant ϵ > 0 such that computing even an ϵ-approximate Markov
non-perfect stationary CCE in such zero-sum NMGs is PPAD-hard.

Proof Sketch of Theorem 1. Due to space constraints, we focus on the case with three players, and
the underlying network structure has a triangle subgraph. Proof for the 3-path case is similar and can
be found in Section C. We will show that for any general-sum two-player turn-based MG (A), the
problem of computing its Markov stationary CCE, which is inherently a PPAD-hard problem [30], can
be reduced to computing the Markov stationary CCE of a three-player zero-sum MG with a triangle
structure networked separable interactions (B). Consider an MG (A) with two players, players 1 and
2, and reward functions r1(s, a1, a2) and r2(s, a2, a1), where ai is the action of the i-th player and
ri is the reward function of the i-th player. The transition dynamics is given by P(s′ | s, a1, a2). In
even rounds, player 2’s action space is limited to Noop2, and in odd rounds, player 1’s action space
is limited to Noop1, where Noop is an abbreviation of “no-operation”, i.e., the player does not affect
the transition dynamics or the reward in that round. We denote player 1’s action space in even rounds
as A1,even and player 2’s action space in odd rounds as A2,odd, respectively.

Now, we construct a three-player zero-sum NMG. with a triangle network structure. We set the
reward function as r̃i(s,a) =

∑
j ̸=i r̃i,j(s, ai, aj) and r̃i,j(s, ai, aj) = −r̃j,i(s, aj , ai). The reward

functions are designed so that r̃i,j = −r̃j,i for all i, j, r̃1,2 + r̃1,3 = r1, and r̃2,1 + r̃2,3 = r2, where
r1, r2 are the reward functions in game (A), by introducing a dummy player, player 3. In even
rounds, player 2’s action space is limited to Noop2, and in odd rounds, player 1’s action space is
limited to Noop1. Player 3’s action space is always limited to Noop3 in all rounds. The transition
dynamics is defined as P̃(s′ | s, a1, a2, a3) = P(s′ | s, a1, a2), since a3 is always chosen from Noop3.
In other words, player 3’s action does not affect the rewards of the other two players, nor the transition
dynamics, and players 1 and 2 will receive the reward as in the two-player turn-based MG. Also, note
that due to the turn-based structure of the game (A), the transition dynamics satisfy the decomposable
condition in our Proposition 1, and it is thus a zero-sum NMG. In fact, turn-based dynamics can be
represented as an ensemble of single controller dynamics, as we have discussed in Section 3.
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Figure 2: (Left, Middle): PPAD-hardness reduction visualization of EQ. (Right): A star-shaped
zero-sum NMG.

Note that the new game (B) is still a turn-based game, and thus the Markov stationary CCE is the
same as the Markov stationary NE. Also, note that by construction, the equilibrium policies of players
1 and 2 at the Markov stationary CCE of the game (B) constitute a Markov stationary CCE of the
game (A). If the underlying network is more general than a triangle, but contains a triangle subgraph,
we can specify the reward and transition dynamics of these three players as above, and specify all
other players to be dummy players, whose reward functions are all zero, and do not affect the reward
functions of these three players, nor the transition dynamics. This completes the proof.

Figure 2 briefly explains how we may reduce the equilibrium computation problem of (A) to that
of (B). In fact, a connected graph that does not contain a subgraph of a triangle or a 3-path has to
be a star-shaped network (Proposition 7), which is proved in Section C. Hence, by Theorem 1, we
know that in the infinite-horizon discounted setting, finding Markov stationary NE/CE/CCE is a
computationally hard problem unless the underlying network is star-shaped. This may also imply that
learning Markov stationary NE in zero-sum NMGs, e.g., using natural dynamics like fictitious play to
reach the NE, can be challenging, unless in the star-shaped case. In turn, one may hope fictitious-play
dynamics to converge for star-shaped zero-sum NMGs. We instantiate this idea next in Section 5.
Furthermore, in light of Theorem 1, we will shift gear to computing Markov non-stationary NE by
utilizing the structure of networked separable interactions, as to be detailed in Section 6.

5 Fictitious-Play Property
In this section, we study the fictitious-play property of multi-player zero-sum games with networked
separable interactions, for both the matrix and Markov game settings. Following the convention in
[8], we refer to the games in which fictitious-play dynamics converge to the NE as the games that
have the fictitious-play property. We defer the matrix game case results to Section D, where we have
also established convergence of the well-known variant of FP, smooth FP [7], in zero-sum NGs.
Echoing the computational intractability of computing CCE of zero-sum NMG unless the underlying
network structure is star-shaped in the infinite-horizon discounted setting (c.f. Theorem 1), we
now consider the FP property in such games. Note that by Proposition 1, EQ is a star-shape if and
only if the reward structure is a star shape and NC = {1}, where player 1 is the center of the star
(Figure 2), or there are only two players in zero-sum NMG. There is already existing literature for the
latter case [15, 16], so we focus on the former case, which is a single-controller case where player 1
controls the transition dynamics, i.e., P(s′ | s,a) = P1(s

′ | s, a1) for some P1. We now introduce the
fictitious-play dynamics for such zero-sum NMGs.
Each player i first initializes her beliefs of other players’ policies as uniform distributions, and also
initializes her belief of the Q-value estimates with arbitrary values. Then, at iteration k, player i
takes the best-response action based on her belief of other players’ policies (π̂(k)

−i (s
(k))), and their Q

beliefs Q̂(k)
i (s(k),a):

a
(k)
i ∈ argmax

ai∈Ai

Q̂
(k)
i (s(k), eai , π̂

(k)
−i (s

(k))).

Then, player i implements the action a
(k)
i , observes other players’ actions a

(k)
−i , and updates her

beliefs as follows: for each player i ∈ N , she updates her belief of the opponents’ policies as

π̂
(k+1)
−i (s) = π̂

(k)
−i (s) + 111(s = s(k))αN(s)(e

a
(k)
−i
− π̂

(k)
−i (s))

for all s ∈ S , with stepsize αN(s) ≥ 0 where N(s) is the visitation count for the state s; then if i = 1,
this player 1 updates the belief of Q1,j for all j ∈ N/{1} and her own Q̂1(s,a) for all s ∈ S as
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Q̂
(k+1)
1,j (s, a1, aj) = Q̂

(k)
1,j (s, a1, aj)

+ 111(s = s(k))βN(s)
(
r1,j(s, a1, aj) + γ

∑
s′∈S

P1(s
′ | s, a1)
n− 1

· V̂ (k)
1 (s′)− Q̂

(k)
1,j (s, a1, ai)

)
,

which is based on the canonical decomposition given in Proposition 2, where V̂
(k)
1 (s) =

maxa1∈A1
Q̂

(k)
1 (s, ea1

, π̂
(k)
−1 (s)), and βN(s) ≥ 0 is the stepsize. The agent then updates

Q̂
(k+1)
1 (s,a) =

∑
j∈N/{1} Q̂

(k+1)
1,j (s, a1, aj), for all s ∈ S,a ∈ A. Otherwise, if i ̸= 1, then

player i updates the belief of her Q̂i,1(s,a) for all s ∈ S,a ∈ A as

Q̂
(k+1)
i,1 (s, ai, a1) = Q̂

(k)
i,1 (s, ai, a1)

+ 111(s = s(k))βN(s)
(
ri,1(s, ai, a1) + γ

∑
s′∈S

P1(s
′ | s, a1) · V̂ (k)

i (s′)− Q̂
(k)
i,1 (s, ai, a1)

)
,

where V̂
(k)
i (s) = maxai∈Ai

Q̂
(k)
i (s, eai

, π̂
(k)
−i (s)), and we let Q̂(k+1)

i (s,a) = Q̂
(k+1)
i,1 (s, ai, a1) for

these i ̸= 1. The overall dynamics are summarized in Algorithm 4, which resembles the FP dynamics
for two-player zero-sum [16] and identical-interest [19] MGs. Now we are ready to present the
convergence guarantees.

Assumption 1. The sequences of step sizes
{
αk ∈ (0, 1]

}
k≥0

and
{
βk ∈ (0, 1]

}
k≥0

satisfy the
following conditions: (1)

∑∞
k=0 α

k =∞,
∑∞

k=0 β
k =∞, and limk→∞ αk = limk→∞ βk = 0; (2)

limk→∞
βk

αk = 0, indicating that the rate at which the beliefs about Q-functions are updated is slower
than the rate at which the beliefs about policies are updated.

Theorem 2. Suppose Assumption 1 holds and Algorithm 4 visits every state infinitely often with
probability 1. Then, for a star-shaped multi-player zero-sum NMG, the belief (π̂(k))k≥0 converges to
a Markov stationary NE and the belief (Q̂(k))k≥0 converges to the corresponding NE value of the
zero-sum NMG with probability 1, as k →∞.

We defer the proof to Section D.2 due to space constraints. Note that to illustrate the idea, we only
present the result for the model-based case, i.e., when the transition dynamics P is known. With this
result, it is direct to extend to the model-free and learning case, where P is not known [16, 19, 17],
still using the tool of stochastic approximation [44]. See Section D for more details.

Remark 4 (Challenges for analyzing general cases). One might ask why we had to focus on a
star-shaped structure. First, for general networked structures, even in the matrix-game case, it is
known that the NE values of a zero-sum NG may not be unique [24]. Hence, suppose one performs
Nash-value iteration, i.e., solving for the NE of the stage game and conducting backward induction,
this value iteration process does not converge in general as the number of backward steps increases,
since the solution at each stage is not even unique, and there may not exist a unique fixed point. This
is in stark contrast to the max and maxmin operators in the value iteration updates for single-player
and two-player zero-sum cases, respectively. By exploiting a star-shaped structure, we managed
to reformulate a minimax optimization problem when solving each stage game, which makes the
corresponding value iteration operator contracting, and thus iterating it infinitely converges to the
unique fixed point. Second, suppose there exists some other network structure (other than star-shaped
ones) that also leads to a contracting value iteration operator, then for a fixed constant γ, the fixed
point (which corresponds to the Markov stationary CCE/NE of the zero-sum NMG) becomes unique
and can be computed efficiently, which contradicts our hardness result in Theorem 1. Indeed, it
was the exclusion of a star-shaped structure in Theorem 1 that inspired us to consider this structure
in proving the convergence of FP dynamics. That being said, we note that having a contracting
value iteration operator is only a sufficient condition for the FP dynamics to converge. It would be
interesting to explore other structures that enjoy the FP property for reasons beyond this contraction
property. We leave this as an immediate future work.

Next, we present another positive result in light of the hardness in Theorem 1, regarding the computa-
tion of non-stationary equilibria in multi-player zero-sum NMGs.
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6 Non-Stationary NE Computation

We now focus on computing an (approximate) Markov non-stationary equilibrium in zero-sum
NMGs. In particular, we show that when relaxing the stationarity requirement, not only CCE, but NE,
can be computed efficiently. Before introducing our algorithm, we first recall the folklore result that
approximating Markov non-stationary NE in infinite-horizon discounted settings can be achieved by
finding approximate Markov NE in finite-horizon settings, with a large enough horizon length (c.f.
Proposition 10). Hence, we will focus on the finite-horizon setting from now on.

Before delving into the details of our algorithm, we introduce the notation Qh,i(s) and Qh(s) for
h ∈ [H], i ∈ N , s ∈ S as follows:

Qh,i(s) := (Qh,i,1(s), . . . , Qh,i,i−1(s),0, Qh,i,i+1(s) . . . , Qh,i,n(s)) ∈ R|Ai|×
∑

i∈N |Ai|

Qh(s) := ((Qh,1(s))
⊺, (Qh,2(s))

⊺, . . . , (Qh,n(s))
⊺)⊺ ∈ R

∑
i∈N |Ai|×

∑
i∈N |Ai|.

Here, Qh,i,j represents an estimate of the equilibrium value function with canonical decomposition
(Proposition 2). Hereafter, we similarly define the notation of Qπ

h,i and Qπ
h. Our algorithm is based

on value iteration, and iterates three main steps from h = H to 1 as follows: (1) Q-value computation:
compute Qh,i,j , which estimates the equilibrium Q-value with a canonical decomposition form; in
particular, when NC ̸= ∅, Qh,i,j is updated for all s ∈ S, (i, j) ∈ EQ, ai ∈ Ai, and aj ∈ Aj :

Qh,i,j(s, ai, aj) = rh,i,j(s, ai, aj) +
∑
s′∈S

(
1

|EQ,i|
111(i ∈ NC)Fh,i(s

′ | s, ai) + 111(j ∈ NC)Fh,j(s
′ | s, aj)

)
Vh+1,i(s

′
),

(2) Policy update: update πh(s) with an NE-ORACLE: finding (approximate)-NE of some zero-sum
NG (G,A, (Qh,i,j(s))(i,j)∈EQ

) for all s ∈ S , and (3) Value function update: compute Vh,i, which esti-
mates the equilibrium value function as follows for all s ∈ S, i ∈ N : Vh,i(s) = π⊺

h,i(s)Qh,i(s)πh(s).
The overall procedure is summarized in Algorithm 6.

NE-ORACLE and iteration complexity. The NE-ORACLE in Algorithm 6 can be instantiated by
several different algorithms that can find an NE in a zero-sum NG. Depending on the algorithms, the
convergence guarantees can be either in terms of average-iterate, best-iterate, or last-iterate. Note that
for algorithms with average-iterate convergence, one may additionally need to marginalize the output
joint policy, i.e., the approximate CCE, and combine them as a product policy that is an approximate
NE (Proposition 6). For those with best-/last-iterate convergence, by contrast, the best-/last-iterate is
already in product form, and one can directly output it as an approximate NE. Moreover, last-iterate
convergence is known to be a more favorable metric than the average-iterate one in learning in games
[45, 46, 47, 48, 49], which is able to characterize the day-to-day behavior of the iterates and implies
the stability of the update rule. Hence, one may prefer to have last-iterate convergence for solving
zero-sum N(M)Gs. To this end, two algorithmic ideas may be useful: adding regularization to the
payoff matrix [39, 42, 50, 51, 52], and/or using the idea of optimism [47, 36, 53]. Recent results
[54, 51] have instantiated the ideas of optimism-only and optimism + regularization, respectively, for
best-/last-iterate convergence in zero-sum polymatrix games. We additionally established results for
the idea of regularization-only in obtaining last-iterate convergence in these games. Specifically, we
propose to study the vanilla Multiplicative Weight Update (MWU) algorithm [55] in the regularized
zero-sum NG, as tabulated in Algorithm 9. We have also introduced a variant with diminishing
regularization, and summarize the update rule in Algorithm 10.

Given the results above, aggregating ϵ-approximate NE for the zero-sum NGs
(G,A, (Qh,i,j(s))(i,j)∈EQ

) for all h ∈ [H], i ∈ N , s ∈ S provides an Hϵ-approximate NE
for the corresponding zero-sum NMG. We have the following formal result.
Proposition 4. Suppose that for all h ∈ [H], i ∈ N , s ∈ S,
NE-ORACLE(G,A, (Qh,i,j(s))(i,j)∈EQ

) provides an ϵh,s-approximate NE for the zero-
sum NG (G,A, (Qh,i,j(s))(i,j)∈EQ

) in Algorithm 6. Then, the output policy π in Algo-
rithm 6 is an (

∑
h∈[H] maxs∈S ϵh,s)-approximate NE for the corresponding zero-sum NMG

(G = (N , EQ),S,A, H, (Ph)h∈[H], (rh,i,j(s))(i,j)∈EQ,s∈S).

The proof of Proposition 4 is deferred to Section F. In light of Proposition 4 and Table 1, we obtain
Table 2, which summarizes the iteration complexities required to find an ϵ-NE for zero-sum NMGs,
with different NE-ORACLE subroutines. Note that the iteration complexities are all polynomial
in H,n, |S|, and inherit the order of dependencies on ϵ from Table 1 for the matrix-game case. In
particular, Algorithm 6 with the OMWU in [51] yields the fast rate of Õ(1/ϵ) for the last iterate.
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