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Abstract

The development of efficient machine learning models for molecular systems
representation is becoming crucial in scientific research. We introduce Tensor-
Net, an innovative O(3)-equivariant message-passing neural network architecture
that leverages Cartesian tensor representations. By using Cartesian tensor atomic
embeddings, feature mixing is simplified through matrix product operations. Fur-
thermore, the cost-effective decomposition of these tensors into rotation group
irreducible representations allows for the separate processing of scalars, vectors,
and tensors when necessary. Compared to higher-rank spherical tensor models,
TensorNet demonstrates state-of-the-art performance with significantly fewer pa-
rameters. For small molecule potential energies, this can be achieved even with
a single interaction layer. As a result of all these properties, the model’s com-
putational cost is substantially decreased. Moreover, the accurate prediction of
vector and tensor molecular quantities on top of potential energies and forces is
possible. In summary, TensorNet’s framework opens up a new space for the design
of state-of-the-art equivariant models.

1 Introduction

Interatomic potential modeling using neural networks is an emerging research area that holds great
promise for revolutionizing molecular simulation and drug discovery pipelines [1; 2; 3; 4]. The
conventional trade-off between accuracy and computational cost can be bypassed by training models
on highly precise data [5; 6; 7; 8]. Current state-of-the-art methodologies rely on equivariant
graph neural networks (GNNs) [9; 10] and message-passing neural network (MPNNs) frameworks
[11; 12], where internal atomic representations incorporate well-defined transformation properties
characteristic of physical systems. The integration of equivariant features into neural network
interatomic potentials has led to remarkable improvements in accuracy, particularly when using
higher-rank irreducible representations of the orthogonal group O(3)—which encompasses reflections
and rotations in 3D space—in the form of spherical tensors [13; 14]. Although lower-rank Cartesian
representations (scalars and vectors) have been employed [15; 16], their success has been limited
compared to state-of-the-art spherical models [17; 18; 19]. MPNNs typically necessitate a substantial
number of message-passing iterations, and models based on irreducible representations are generally
computationally demanding due to the need to compute tensor products, even though some successful
alternative has been put forward [20].

The pursuit of computationally efficient approaches for incorporating higher-rank equivariance
is essential. In this paper, we introduce a novel O(3)-equivariant architecture that advances the
integration of Cartesian representations by utilizing Cartesian rank-2 tensors, represented as 3x3
matrices. We demonstrate that this method achieves state-of-the-art performance comparable to
higher-rank spherical models while having a reduced computational cost. This efficiency is realized
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through the cheap decomposition of Cartesian rank-2 tensors into their irreducible components
under the rotation group and the ability to mix features using straightforward 3x3 matrix products.
Additionally, our model requires fewer message-passing steps and eliminates the need for explicit
construction of many-body terms. The architecture also facilitates the direct prediction of tensor
quantities, enabling the modeling of molecular phenomena where such quantities are relevant. In
summary, we propose an alternative framework for developing efficient and accurate equivariant
models.

2 Background and related work

Equivariance. A function f between two vector spaces X and Y , f : X → Y , is said to be
equivariant to the action of some abstract group G if it fulfills

DY [g]f(x) = f(DX [g]x), (1)

for all elements g ∈ G and x ∈ X , where DX [g] and DY [g] denote the representations of g in X and
Y , respectively. Equivariant neural networks used in neural network potentials focus on equivariance
under the action of translations and the orthogonal group O(3) in R3, the latter one being comprised
by the rotation group SO(3) and reflections, and regarded as a whole as the Euclidean group E(3).

Cartesian tensors and irreducible tensor decomposition. Tensors are algebraic objects that
generalize the notion of vectors. In the same way, as vectors change their components with respect to
some basis under the action of a rotation R ∈ SO(3), v′ = Rv, a rank-k Cartesian tensor T can be
(very) informally regarded as a multidimensional array with k indices, where each index transforms
as a vector under the action of a rotation. In particular, a rank-2 tensor transformation under a rotation
can be written in matrix notation as T ′ = R TRT, where RT denotes the transpose of the rotation
matrix R. In this paper, we will restrict ourselves to rank-2 tensors. Moreover, any rank-2 tensor X
defined on R3 can be rewritten in the following manner [21]

X =
1

3
Tr(X)Id +

1

2
(X −XT) +

1

2
(X +XT − 2

3
Tr(X)Id), (2)

where Tr(X) =
∑

i Xii is the trace operator and Id is the identity matrix. The first term is
proportional to the identity matrix, the second term is a skew-symmetric contribution, and the last
term is a symmetric traceless contribution. It can be shown that expression (2) is a decomposition into
separate representations that are not mixed under the action of the rotation group [21]. In particular,
the first component IX ≡ 1

3Tr(X)Id has only 1 degree of freedom and is invariant under rotations,
that is, it is a scalar; the second term AX ≡ 1

2 (X −XT) has 3 independent components since it is a
skew-symmetric tensor, which can be shown to rotate as a vector; and SX ≡ 1

2 (X+XT− 2
3Tr(X)Id)

rotates like a rank-2 tensor and has 5 independent components, since a symmetric tensor has six
independent components but the traceless condition removes one degree of freedom. In terms of
representation theory, the 9-dimensional representation (a 3x3 matrix) has been reduced to irreducible
representations of dimensions 1, 3, and 5 [21]. We will refer to X as a full tensor and to the
components IX , AX , SX as scalar, vector, and tensor features, respectively.

Message passing neural network potentials. Message-passing neural networks (MPNNs) have
been successfully applied to the prediction of molecular potential energies and forces [11]. Atoms
are represented by graph nodes, which are embedded in three-dimensional Euclidean space, and
edges between nodes are built according to their relative proximity after the definition of some cutoff
radius. The neural network uses atomic and geometric information, such as distances, angles or
relative position vectors, to learn useful node representations by recursively propagating, aggregating,
and transforming features from neighboring nodes [22; 23; 15]. In the case of neural network
potentials, after several rounds of message passing and feature transformations, node features are
mapped to single per-atom scalar quantities which are atomic contributions to the total energy of the
molecule. These energy contributions depend in a very complex way on the states of other atoms,
and therefore MPNNs can be regarded as some learnable approximation to the many-body potential
energy function. However, these neural networks have typically needed a substantially large amount
of message-passing steps (up to 6 in some cases) [16; 17].

Equivariant models. Initially, since the potential energy is a scalar quantity, atomic features were
built using geometric information which is invariant to translations, reflections, and rotations, such as
in SchNet [22], DimeNet [24; 25], PhysNet [26], SphereNet [27] and GemNet [23]. Nevertheless,
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it has been shown that the inclusion of equivariant internal features leads to substantially better
performances and data efficiency [14; 28]. In equivariant GNNs, internal features transform in a spec-
ified way under some group action. Molecules are physical systems embedded in three-dimensional
Euclidean space, and their properties display well-defined behaviors under transformations such as
translations, reflections, and rotations. Therefore, when predicting molecular properties, the group of
interest is the orthogonal group in three dimensions O(3), that is, rotations and reflections of the set
of atoms in 3D space.

In models such as NewtonNet [29], EGNN [30], PaiNN [15], the Equivariant Transformer [16] and
SAKE [31], Cartesian vector features are used on top of invariant features. These vector features are
built using relative position vectors between input atoms, in such a way that when the input atomic
Cartesian coordinates r are transformed under the action of some R ∈ O(3) represented by a 3x3
matrix, r→ Rr, internal vector features and vector outputs v transform accordingly, v→ Rv. Other
models such as Cormorant [13], Tensor Field Networks [32], NequIP [17], Allegro [18], BOTNet
[19] and MACE [20], work directly with internal features that are irreducible representations of the
group O(3), which can be labeled by some l ∈ N (including l = 0), and with dimensions 2l+ 1. The
representations l = 0 and l = 1 correspond to scalars and vectors, respectively. In this case, under
a transformation R ∈ O(3) of the input coordinates r → Rr, internal features hlm(r) transform
as hlm(Rr) =

∑
m′ Dl

m′m(R) hlm′(r), where Dl
m′m(R) ∈ R(2l+1)×(2l+1) is an order l Wigner

D-matrix. In this case, features are rank-l spherical tensors or pseudotensors, depending on their
parity. The decomposition of a Cartesian tensor described in (2) and the irreducible representations in
terms of spherical tensors are directly related by a change of basis [21]. To generate new features
that satisfy O(3)-equivariance, these are built by means of tensor products involving Clebsch-Gordan
coefficients and parity selection rules. In particular, models with features l > 1 such as NequIP,
Allegro, BOTNet, and MACE have achieved state-of-the-art performances in benchmark datasets in
comparison to all other MPNNs. However, the computation of tensor products in most of these models
containing higher-rank tensors and pseudotensors can be expensive, especially when computing them
in an edge-wise manner.

3 TensorNet’s architecture

3.1 Operations respecting O(3)-equivariance

In this work, we propose the use of the 9-dimensional representation of rank-2 tensors (3x3 matrices).
TensorNet operations are built to satisfy equivariance to the action of the orthogonal group O(3):
equivariance under O(3) instead of the subgroup of rotations SO(3) requires the consideration of
the differences between tensors and pseudotensors. Tensors and pseudotensors are indistinguishable
under rotations but display different behaviors under parity transformation, i.e. a reflection of the
coordinate system through the origin. By definition, scalars, rank-2 tensors and in general all tensors
of even rank do not flip their sign, and their parity is said to be even; on the contrary, vectors and
tensors of odd rank have odd parity and flip their sign under the parity transformation. Pseudoscalars,
pseudovectors, and pseudotensors have precisely the opposite behavior. Necessary derivations for the
following subsections can be found in the Appendix (section A.2).

Composition from irreducible representations. The previously described irreducible decomposi-
tion of a tensor in Eq. 2 is with respect to the rotation group SO(3). Building a tensor-like object
that behaves appropriately under rotations can be achieved by composing any combination of scalars,
vectors, tensors, and their parity counterparts. However, in neural network potential settings, the
most direct way to produce tensors is by means of relative position vectors and, in general, it is
preferred for the neural network to be able to predict vectors rather than pseudovectors. One has the
possibility to initialize full tensor representations from the composition of scalars, vectors encoded
in skew-symmetric matrices, and symmetric traceless tensors. For instance, if one considers some
vector v = (vx, vy, vz), one can build a well-behaved tensor X under rotations by composing
X = I +A+ S,

I = f(||v||)Id, A =

 0 vz −vy

−vz 0 vx

vy −vx 0

 , S = vvT − 1

3
Tr(vvT)Id, (3)
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where f is some function and vvT denotes the outer product of the vector with itself. In this case,
under parity the vector transforms as v→ −v, and it is explicit that I and S remain invariant, while
A→ −A = AT, and the full tensor X transforms as X = I +A+ S → X ′ = I +AT + S = XT,
since I and S are symmetric matrices. Therefore, one concludes that when initializing the skew-
symmetric part A from vectors, not pseudovectors, parity transformation produces the transposition
of full tensors.

Invariant weights and linear combinations. One can also modify some tensor X = I +A+ S
by multiplying invariant quantities to the components, X ′ = fII + fAA+ fSS, where fI , fA and
fS can be constants or invariant functions. This modification of the tensor does not break the tensor
transformation rule under the action of rotations and preserves the parity of the individual components
given that fI , fA and fS are scalars (learnable functions of distances or vector norms, for example),
not pseudoscalars. Also, from this property and the possibility of building full tensors from the
composition of irreducible components, it follows that linear combinations of scalars, vectors, and
tensors generate new full tensor representations that behave appropriately under rotations. Regarding
parity, linear combinations preserve the original parity of the irreducible components given that all
terms in the linear combination have the same parity. Therefore, given a set of irreducible components
Ij , Aj , Sj with j ∈ {0, 1, ..., n− 1}, one can build full tensors X ′

i

X ′
i =

n−1∑
j=0

wI
ijIj +

n−1∑
j=0

wA
ijAj +

n−1∑
j=0

wS
ijSj , (4)

where wI
ij , w

A
ij , w

S
ij can be learnable weights, in which case the transformation reduces to the

application of three different linear layers without biases to inputs Ij , Aj , Sj .

Matrix product. Consider two tensors, X and Y , and some rotation matrix R ∈ SO(3). Under the
transformation R, the tensors become RXRT and RY RT. The matrix product of these tensors gives
a new object that also transforms like a tensor under the transformation, XY → RXRTRY RT =
RXR−1RY RT = R(XY )RT, since for any rotation matrix R, RT = R−1. Taking into account
their irreducible decomposition X = IX + AX + SX and Y = IY + AY + SY , the matrix
product XY consists of several matrix products among rotationally independent sectors (IX +
AX + SX)(IY +AY + SY ). These products will contribute to the different parts of the irreducible
decomposition XY = IXY +AXY + SXY . Therefore, one can regard the matrix product as a way
of combining scalar, vector, and tensor features to obtain new features. However, when assuming
that the skew-symmetric parts are initialized from vectors, this matrix product mixes components
with different parities, and resulting components IXY , AXY , SXY would not have a well-defined
behavior under parity (see Appendix, section A.2). To achieve O(3)-equivariance, we propose the
use of the matrix products XY + Y X . Under parity X → XT, Y → Y T, and one can show that

IX
TY T+Y TXT

= IXY+Y X , AXTY T+Y TXT

= −AXY+Y X , SXTY T+Y TXT

= SXY+Y X , (5)

that is, the scalar and symmetric traceless parts have even parity, and the skew-symmetric part has
odd parity. The irreducible decomposition of the expression XY + Y X preserves the rotational and
parity properties of the original components and, therefore, it is an O(3)-equivariant operation. We
finally note that one can produce O(3)-invariant quantities from full tensor representations or their
components by taking their Frobenius norm Tr(XTX) = Tr(XXT) =

∑
ij |Xij |2.

3.2 Model architecture

In this work we propose a model that learns a set of Cartesian full tensor representations X(i) (3x3
matrices) for every atom (i), from which atomic or molecular properties can be predicted, using
as inputs atomic numbers zi and atomic positions ri. We mainly focus on the prediction potential
energies and forces, even though we provide in Section 4 experiments demonstrating the ability of
TensorNet to accurately predict up to rank-2 physical quantities. Atomic representations X(i) can
be decomposed at any point into scalar, vector and tensor contributions I(i), A(i), S(i) via (2), and
TensorNet can be regarded as operating with a physical inductive bias akin to the usual decomposition
of interaction energies in terms of monopole, dipole and quadrupole moments [13]. We refer the
reader to Figure 1 and the Appendix (section A.1) for diagrams of the methods and the architecture.

Embedding. By defining a cutoff radius rc, we obtain vectors rij = rj − ri between central atom
i and neighbors j within a distance rc. We initialize per-edge scalar features using the identity
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matrix I
(ij)
0 = Id, and per-edge vector and tensor features using the normalized edge vectors

r̂ij = rij/||rij || = (r̂xij , r̂
y
ij , r̂

z
ij). We create a symmetric traceless tensor from the outer product

of r̂ij with itself, S(ij)
0 ≡ r̂ij r̂

T
ij − 1

3Tr(r̂ij r̂
T
ij)Id, and vector features are initialized by identifying

the independent components of the skew-symmetric contribution with the components of r̂ij as
denoted in (3), getting for every edge (ij) initial irreducible components I

(ij)
0 , A

(ij)
0 , S

(ij)
0 . To

Figure 1: Key steps, from top to bottom, in the embedding and interaction modules for some central
atom i and neighbors j and k found within the cutoff radius. a) Relative position vectors are used to
initialize edge-wise tensor components, modified using edge-wise invariant functions, and summed to
obtain node-wise full tensors. b) Node full tensors are decomposed and weighted with edge invariant
functions to obtain pair-wise messages, and summed to obtain node-wise aggregated messages, which
will interact with receiving node’s full tensors via matrix product.

encode interatomic distance and atomic number information in the tensor representations we use an
embedding layer that maps the atomic number of every atom zi to n invariant features Zi, and expand
interatomic distances rij to d invariant features by means of an expansion in terms of exponential
radial basis functions

eRBF
k (rij) = exp (−βk(exp(−rij)− µk)

2), (6)
where βk and µk are fixed parameters specifying the center and width of radial basis function k. The
µ vector is initialized with values equally spaced between exp(−rc) and 1, and β is initialized as
(2d−1(1− exp (−rc)))

−2 for all k as proposed in [26]. After creating n identical copies of initial
components I(ij)0 , A

(ij)
0 , S

(ij)
0 (n feature channels), for every edge (ij) we map with a linear layer the

concatenation of Zi and Zj to n pair-wise invariant representations Zij , and the radial basis functions
are further expanded to n scalar features by using three different linear layers to obtain

f0
I = W I(eRBF(rij)) + bI , f0

A = WA(eRBF(rij)) + bA, f0
S = WS(eRBF(rij)) + bS , (7)
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X(ij) = ϕ(rij)Zij

(
f0
I I

(ij)
0 + f0

AA
(ij)
0 + f0

SS
(ij)
0

)
, (8)

where the cutoff function is given by ϕ(rij) =
1
2

(
cos

(πrij
rc

)
+ 1

)
when rij ≤ rc and 0 otherwise.

That is, n edge-wise tensor representations X(ij) are obtained, where the channel dimension has not
been written explicitly. Then, we get atom-wise tensor representations by aggregating all neighboring
edge-wise features. At this point, the invariant norms ||X|| ≡ Tr(XTX) of atomic representations
X(i) are computed and fed to a normalization layer, a multilayer perceptron, and a SiLU activation to
obtain three different O(3)-invariant functions per channel,

f
(i)
I , f

(i)
A , f

(i)
S = SiLU(MLP(LayerNorm(||X(i)||))), (9)

which, after the decomposition of tensor embeddings into their irreducible representations, are then
used to modify component-wise linear combinations to obtain the final atomic tensor embeddings

X(i) ← f
(i)
I W II(i) + f

(i)
A WAA(i) + f

(i)
S WSS(i). (10)

Interaction and node update. We start by normalizing each node’s tensor representation X(i) ←
X(i)/(||X(i)|| + 1) and decomposing this representation into scalar, vector, and tensor features.
We next transform these features I(i), A(i), S(i) by computing independent linear combinations,
Y (i) = W II(i)+WAA(i)+WSS(i). In parallel, edge distances’ radial basis expansions are fed to a
multilayer perceptron and a SiLU activation to transform them into tuples of three invariant functions
per channel weighted with the cutoff function ϕ(rij),

f
(ij)
I , f

(ij)
A , f

(ij)
S = ϕ(rij)SiLU(MLP(eRBF(rij))). (11)

At this point, after decomposition of node features Y (i), we define the messages sent from neighbors
j to central atom i as M (ij) = f

(ij)
I I(j) + f

(ij)
A A(j) + f

(ij)
S S(j), which get aggregated into M (i) =∑

j∈N (i) M
(ij). We use the irreducible decomposition of matrix products Y (i)M (i) + M (i)Y (i)

between node embeddings and aggregated messages to generate new atomic scalar, vector, and tensor
features. New features are generated in this way to guarantee the preservation of the original parity
of scalar, vector, and tensor features. These new representations I(i), A(i), S(i) are individually
normalized dividing by ||I(i) +A(i) + S(i)||+ 1 and are further used to compute independent linear
combinations to get Y (i) ← W II(i) +WAA(i) +WSS(i). A residual update ∆X(i) for original
embeddings X(i) is computed with the parity-preserving matrix polynomial ∆X(i) = Y (i)+(Y (i))

2
,

to eventually obtain updated representations X(i) ← X(i) +∆X(i).

Scalar output. The Frobenius norm Tr(XTX) of full tensor representations and components in
TensorNet is O(3)-invariant. For molecular potential predictions, total energy U is computed from
atomic contributions U (i) which are simply obtained by using the concatenated final norms of every
atom’s scalar, vector, and tensor features ||I(i)||, ||A(i)||, ||S(i)||,

U (i) = MLP(LayerNorm(
[
||I(i)||, ||A(i)||, ||S(i)||

]
)), (12)

obtaining forces via backpropagation.

Vector output. Since interaction and update operations preserve the parity of tensor components, the
skew-symmetric part of any full tensor representation X in TensorNet is guaranteed to be a vector, not
a pseudovector. Therefore, from the antisymmetrization AX , one can extract vectors v = (vx, vy, vz)
by means of the identification given in (3).

Tensor output. Taking into account that rank-2 tensors have even parity and the skew-symmetric
part A in TensorNet is a vector, not a pseudovector, one might need to produce pseudovector
features before rank-2 tensor predictions can be built by combining irreducible representations. This
can be easily done by obtaining two new vector features with linear layers, A(1) = W (1)A and
A(2) = W (2)A, and computing 1

2 (A
(1)A(2) − (A(1)A(2))

T
), which is skew-symmetric, rotates like

a vector, and is invariant under parity, the simultaneous transposition of A(1) and A(2).

4 Experiments and results

We refer the reader to the Appendix (section A.3) for further training, data set and experimental
details.
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QM9: Chemical diversity. To assess TensorNet’s accuracy in the prediction of energy-related
molecular properties with a training set of varying chemical composition we used QM9 [33]. We
trained TensorNet to predict: U0, the internal energy of the molecule at 0 K; U , the internal energy
at 298.15 K; H , the enthalpy, also at 298.15 K; and G, the free energy at 298.15 K. Results can be
found in Table 1, which show that TensorNet outperforms Allegro [18], and MACE [34] on U0, U
and H . Remarkably, this is achieved with 23% of Allegro’s parameter count. Furthermore, TensorNet
uses only scalar, vector and rank-2 tensor features, as opposed to Allegro, which uses also their parity
counterparts, and without the need of explicitly taking into account many-body terms as done in
MACE.

Table 1: QM9 results. Mean absolute error on energy-related molecular properties from the QM9
dataset, in meV, averaged over different splits. Parameter counts for some models are found between
parentheses.

Property DimeNet++
[25]

ET
[16]

PaiNN
[15]

Allegro
(17.9M)[18]

MACE
[34]

TensorNet
(4.0M)

U0 6.3 6.2 5.9 4.7 4.1 3.9(1)
U 6.3 6.3 5.7 4.4 4.1 3.9(1)
H 6.5 6.5 6.0 4.4 4.7 4.0(1)
G 7.6 7.6 7.4 5.7 5.5 5.7(1)

rMD17: Conformational diversity. We also benchmarked TensorNet on rMD17 [35], the revised
version of MD17 [36; 37], a data set of small organic molecules in which energies and forces were
obtained by running molecular dynamics simulations with DFT. We report the results in Table 2. In
the case of energies, TensorNet with two interaction layers (2L) is the model that achieves state-of-
the-art accuracy for the largest number of molecules (6 out of 10), outperforming all other spherical
models for benzene, with a parameter count of 770k. Energy errors are also within the range of
other spherical models, except for ethanol and aspirin, and reach state-of-the-art accuracy for the
case of toluene, with just one interaction layer (1L) and a parameter count of 535k. Force errors for
2L are also mostly found within the ranges defined by other spherical models, except for ethanol,
aspirin, and salicylic acid, in which case these are slightly higher. However, for one interaction layer,
force errors are increased and in most cases found outside of the range of accuracy of the other
spherical models. We note that the smallest spherical models have approximately 2.8M parameters,
and therefore TensorNet results are achieved with reductions of 80% and 70% in the number of
parameters for 1L and 2L, respectively. Also, TensorNet is entirely based at most on rank-2 tensors.

SPICE, ANI1x, COMP6: Compositional and conformational diversity. To obtain general-
purpose neural network interatomic potentials, models need to learn simultaneously compositional
and conformational degrees of freedom. In this case, data sets must contain a wide range of molecular
systems as well as several conformations per system. To evaluate TensorNet’s out-of-the-box
performance without hyperparameter fine-tuning, we trained the light model with two interaction
layers used on rMD17 on the SPICE [38] and ANI1x [39; 40] data sets using the proposed Equivariant
Transformer’s SPICE hyperparameters [41] (for ANI1x, in contrast to the SPICE model, we used
32 radial basis functions instead of 64, and a cutoff of 4.5Å instead of 10Å), and further evaluated
ANI1x-trained models on the COMP6 benchmarks [39].

For SPICE, with a maximum force filter of 50.94 eV/Å≈ 1 Ha/Bohr, TensorNet’s mean absolute error
in energies and forces are 25.0 meV and 40.7 meV/Å, respectively, while the Equivariant Transformer
achieves 31.2 meV and 49.3 meV/Å. In this case, both models used a cutoff of 10Å. Results for
ANI1x and model evaluations on COMP6 are found in Table 3. We note that for ANI1x training,
which contains molecules with up to 63 atoms, TensorNet used a cutoff of 4.5Å. The largest rMD17
molecule is aspirin with 21 atoms. The light TensorNet model shows better generalization capabilities
across all COMP6 benchmarks.

Scalar, vector and tensor molecular properties for ethanol in a vacuum. We next tested TensorNet
performance for the simultaneous prediction of scalar, vector, and tensor molecular properties:
potential energy, atomic forces, molecular dipole moments µ, molecular polarizability tensors α, and
nuclear-shielding tensors σ, for the ethanol molecule in vacuum [15; 42]. We trained TensorNet to
generate atomic tensor representations that can be used by different output modules to predict the
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Table 2: rMD17 results. Energy (E) and forces (F) mean absolute errors in meV and meV/Å,
averaged over different splits.

Molecule TensorNet
1L (535k)

TensorNet
2L (770k)

NequIP
[17]

Allegro
[18]

BOTNet
[19]

MACE
[20]

Aspirin E 2.7 2.4 2.3 2.3 2.3 2.2
F 10.2(2) 8.9(1) 8.2 7.3 8.5 6.6

Azobenzene E 0.9 0.7 0.7 1.2 0.7 1.2
F 3.8 3.1 2.9 2.6 3.3 3.0

Benzene E 0.03 0.02 0.04 0.3 0.03 0.4
F 0.3 0.3 0.3 0.2 0.3 0.3

Ethanol E 0.5 0.5 0.4 0.4 0.4 0.4
F 3.9(1) 3.5 2.8 2.1 3.2 2.1

Malonaldehyde E 0.8 0.8 0.8 0.6 0.8 0.8
F 5.8(1) 5.4 5.1 3.6 5.8 4.1

Naphthalene E 0.3 0.2 0.9 0.2 0.2 0.5
F 1.9 1.6 1.3 0.9 1.8 1.6

Paracetamol E 1.5 1.3 1.4 1.5 1.3 1.3
F 6.9 5.9(1) 5.9 4.9 5.8 4.8

Salicylic acid E 0.9 0.8 0.7 0.9 0.8 0.9
F 5.4(1) 4.6(1) 4.0 2.9 4.3 3.1

Toluene E 0.3 0.3 0.3 0.4 0.4 0.5
F 2.0 1.7 1.6 1.8 1.9 1.5

Uracil E 0.5 0.4 0.4 0.6 0.4 0.5
F 3.6(1) 3.1 3.1 1.8 3.2 2.1

Table 3: ANI1x and COMP6 results. Energy (E) and forces (F) mean absolute errors in meV and
meV/Å for Equivariant Transformer and TensorNet models trained on ANI1x and evaluated on the
ANI1x test set and the COMP6 benchmarks, averaged over different training splits. 43 meV = 1
kcal/mol.

Model ANI1x ANI-MD GDB7-9 GDB10-13 DrugBank Tripeptides S66x8

ET E 21.2 249.7 17.8 51.0 95.5 57.9 30.7
F 42.0 50.8 29.2 57.4 47.7 37.9 19.0

TensorNet
E 17.3 69.9 14.3 36.0 42.4 40.0 27.1
F 34.3 35.5 23.1 41.9 32.6 26.9 14.3

desired properties. The specific architecture of these output modules can be found in the Appendix
(section A.3).

Table 4: Ethanol in vacuum results. Mean absolute error for the prediction of energies (E), forces
(F), dipole moments (µ), polarizabilities (α), and chemical shifts for all elements (σall), averaged
over different splits, with corresponding units between parentheses.

Model E
(kcal/mol)

F
(kcal/mol/Å)

µ
(D)

α
(Bohr3)

σall

(ppm)
PaiNN [15] 0.027 0.150 0.003 0.009 -

FieldSchNet [42] 0.017 0.128 0.004 0.008 0.169
TensorNet 0.008(1) 0.058(3) 0.003(0) 0.007(0) 0.139(4)

Results from Table 4 show that TensorNet can learn expressive atomic tensor embeddings from which
multiple molecular properties can be simultaneously predicted. In particular, TensorNet’s energy and
force errors are approximately a factor of two and three smaller when compared to FieldSchNet [42]
and PaiNN [15], respectively, while increasing the prediction accuracy for the other target molecular
properties, with the exception of the dipole moment.
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Equivariance, interaction and cutoff ablations. TensorNet can be straightforwardly modified
such that features are SO(3)-equivariant and scalar predictions are SE(3)-invariant by modifying
the matrix products in the interaction mechanism. An interaction product between node features
and aggregated messages 2Y (i)M (i), instead of Y (i)M (i) + M (i)Y (i), gives vector and tensor
representations which are combinations of even and odd parity contributions. We refer the reader
to the Supplementary Material for detailed derivations. Furthermore, the norms Tr(XTX) used to
produce scalars will only be invariant under rotations, not reflections. This flexibility in the model
allows us to study the changes in prediction accuracy when considering O(3) or SO(3) equivariant
models. We also evaluated the impact on accuracy for two rMD17 molecules, toluene and aspirin,
when modifying the receptive field of the model by changing the cutoff radius and the number of
interaction layers, including the case of using the embedding and output modules alone, without
interaction layers (0L), with results in Table 5.

Table 5: Equivariance, interaction and cutoff ablations results. Energy (E) and force (F) mean
absolute errors in meV and meV/Å for rMD17 toluene and aspirin, averaged over different splits,
varying the number of interaction layers, the cutoff radius, and the equivariance group.

TensorNet0L TensorNet1L TensorNet2L TensorNet1L TensorNet2L
O(3) O(3) O(3) SO(3) SO(3)

Molecule 4.5Å 9Å 4.5Å 9Å 4.5Å 9Å 4.5Å 4.5Å

Toluene E 3.3 2.0 0.33 0.36 0.26 0.32 0.50 0.42
F 15.7 11.5 2.0 2.2 1.7 2.0 2.9 2.4

Aspirin E 9.8 7.8 2.7 2.9 2.4 2.8 3.7 3.4
F 32.7 28.3 10.1 11.0 8.9 10.5 13.1 11.8

The inclusion or exclusion of equivariance and energy invariance under reflections has a significant
impact on accuracy. The consideration of the full orthogonal group O(3), and therefore the physical
symmetries of the true energy function, leads to higher accuracy for both energy and forces. Fur-
thermore, the use of interaction products produces a drastic decrease in errors (note that TensorNet
1L 4.5Å and TensorNet 0L 9Å have the same receptive field). In line with rMD17 results, a second
interaction layer in the case of rc = 4.5Å gives an additional but more limited improvement in both
energy and force errors. For forces, the use of a second interaction layer with rc = 9Å encompassing
the whole molecule provides a smaller improvement when compared to rc = 4.5Å. We note that for
0L, when the model can be regarded as just a learnable aggregation of local atomic neighborhoods,
TensorNet with both cutoff radii achieves for aspirin (the rMD17 molecule on which the model
performs the worst) lower mean absolute errors than ANI (16.6 meV and 40.6 meV/Å) [7; 43] and
SchNet (13.5 meV and 33.2 meV/Å) [22; 44].

Computational cost. We found that TensorNet exhibits high computational efficiency, even higher
than an equivariant model using Cartesian vectors such as the Equivariant Transformer [16] in some
cases. We provide inference times for single molecules with varying numbers of atoms in Table 6,
and in Table 7 we show training steps per second when training on the ANI1x data set, containing
molecules with up to 63 atoms.

For molecules containing up to∼200 atoms, TensorNet 1L and 2L are faster or similar when compared
to the ET, even when its number of message passing layers is reduced (ET optimal performance for
MD17 was achieved with 6 layers, found to be one of the fastest neural network potentials in the
literature [16; 45]), meaning that energy and forces on these molecules can be predicted with rMD17
state-of-the-art TensorNet models with a lower or similar computational cost than the reduced ET.
For larger molecules with thousands of atoms, TensorNet 2L becomes significantly slower. However,
TensorNet 1L, which still exhibits remarkable performance on rMD17 (see Table 1), performs on par
the reduced ET in terms of speed even for Factor IX, containing 5807 atoms. For training on ANI1x,
TensorNet 1L and 2L are faster or comparable to the ET up to a batch size of 64, being the speed
for the 2L model being significantly slower for a batch size of 128. Nevertheless, the model with 1
interaction layer is still comparable to the reduced ET.

TensorNet’s efficiency is given by properties that are in contrast to state-of-the-art equivariant
spherical models. In particular, the use of Cartesian representations allows one to manipulate full
tensors or their decomposition into scalars, vectors, and tensors at one’s convenience, and Clebsch-
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Table 6: Inference time. Inference time for energy and forces for single molecules (batch size of 1),
in ms, on an NVIDIA GeForce RTX 4090.

Molecule N TensorNet 0L TensorNet 1L TensorNet 2L ET 4L ET 5L
Alanine dipeptide 22 10.0 22.1 26.5 27.2 29.0

Chignolin 166 10.4 22.5 26.9 26.8 28.9
DHFR 2489 27.3 66.9 106.7 52.4 67.7

Factor IX 5807 53.1 149.8 248.6 110.6 136.4

Table 7: Training speed. Number of batch training steps per second for ANI1x dataset on an NVIDIA
GeForce RTX 4090.

Batch size TensorNet 0L TensorNet 1L TensorNet 2L ET 4L ET 5L
32 20.5 13.2 10.1 9.5 8.4
64 19.1 12.9 9.1 9.4 8.3

128 17.3 8.9 5.9 9.1 8.0

Gordan tensor products are substituted for simple 3x3 matrix products. As detailed in the model’s
architecture, state-of-the-art performance can be achieved by computing these matrix products after
message aggregation (that is, at the node level) and using full tensor representations, without having
to individually compute products between different irreducible components. When considering an
average number of neighbors per atom M controlled by the cutoff radius and the density, given that
matrix products are performed after aggregation over neighbors, these do not scale with M . This is
in contrast to spherical models, where tensor products are computed on edges, and therefore display a
worse scaling with the number of neighbors M , that is, a worse scaling when increasing the cutoff
radius at fixed density. Also, the use of higher-order many-body messages or many message-passing
steps is not needed.

5 Conclusions and limitations

We have presented TensorNet, a novel O(3)-equivariant message-passing architecture leveraging
Cartesian tensors and their irreducible representations. We showed that even though the model is
limited to the use of rank-2 tensors, in contrast to other spherical models, it achieves state-of-the-art
performance on QM9 and rMD17 with a reduced number of parameters, few message-passing steps,
and it exhibits a low computational cost. Furthermore, the model is able to accurately predict vector
and rank-2 tensor molecular properties on top of potential energies and forces. Nevertheless, the
prediction of higher-rank quantities is directly limited by our framework. However, given the benefits
of the formalism for the construction of a machine learning potential, TensorNet can be used as an
alternative for the exploration of the design space of efficient equivariant models. TensorNet can be
found in https://github.com/torchmd/torchmd-net.
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A Appendix

A.1 Architecture diagrams

\

(a) Embedding (b) Interaction and node update

Figure A.1: Diagrams of the embedding and interaction and node update modules in TensorNet,
descibed in Section 3.2. Models are built from an initial embedding module, the concatenation of
several interaction layers, and the output module. The dotted line in Interaction and node update
indicates the point where, after node level transformations, neighboring atom’s features are used to
create messages.

A.2 Proofs and derivations

Parity and interaction products

Consider some tensor X , with its corresponding decomposition IX +AX + SX and initialized as
in TensorNet (see Section 3.2), that is, with vector features obtained directly by the identification
of vector components with matrix entries (3). When considering the parity transformation, the
components of the vector used to build the initial features flip sign, and for any full tensor initialized
in this way

X = IX +AX + SX → X ′ = IX −AX + SX = XT. (A.1)

Consider now another tensor Y = IY +AY +SY initialized in the same way, and the product XY =
(IX+AX+SX)(IY +AY +SY ). One can compute the resulting decomposition IXY = 1

3Tr(XY )Id,
AXY = 1

2 (XY − (XY )T) = 1
2 (XY − Y TXT) and SXY = 1

2 (XY + (XY )T − 2
3Tr(XY )Id) =

1
2 (XY + Y TXT − 2

3Tr(XY )Id) from the individual decompositions of X and Y . Taking into
account that transposition is equivalent to sign reversal of skew-symmetric components, one obtains
after some matrix algebra
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IXY =
1

3

(
Tr(IXIY +AXAY + SXSY )︸ ︷︷ ︸

scalar

+Tr(AXSY + SXAY )︸ ︷︷ ︸
=0

+

+Tr(IXSY + SXIY + IXAY +AXIY )︸ ︷︷ ︸
=0

)
Id, (A.2)

AXY = IXAY +AXIY +
1

2
(AXSY − (AXSY )T) +

1

2
(AY SX − (AY SX)T)︸ ︷︷ ︸

vector

+

+
1

2
(AXAY − (AXAY )T) +

1

2
(SXSY − (SXSY )T)︸ ︷︷ ︸

pseudovector

, (A.3)

SXY = IXIY − 1

3
Tr(IXIY )Id︸ ︷︷ ︸
=0

+

+
1

2
(AXSY + (AXSY )

T − 2

3
Tr(AXSY )Id) +

1

2
(SXAY + (SXAY )

T − 2

3
Tr(SXAY )Id)︸ ︷︷ ︸

pseudotensor

+ I
X
S

Y
+ S

X
I
Y

+
1

2
(A

X
A

Y
+ (A

X
A

Y
)
T −

2

3
Tr(A

X
A

Y
)Id) +

1

2
(S

X
S

Y
+ (S

X
S

Y
)
T −

2

3
Tr(S

X
S

Y
)Id)︸ ︷︷ ︸

tensor

,

(A.4)

where we have made explicit that the product XY gives rise to both even parity (transposing AX

and AY does not flip the sign of the expression) and odd parity (transposing AX and AY does flip
the sign of the expression) skew-symmetric and symmetric traceless contributions. However, when
considering XY + Y X , one gets

IXY+Y X =
1

3

(
Tr(2IXIY +AXAY + (AXAY )

T
+ SXSY + (SXSY )

T
)︸ ︷︷ ︸

scalar

)
Id (A.5)

AXY+Y X = 2IXAY + 2AXIY + (AXSY − (AXSY )
T
) + (AY SX − (AY SX)

T
)︸ ︷︷ ︸

vector

+

+
1

2
(AXAY −AY AX +AY AX −AXAY )︸ ︷︷ ︸

=0

+

+
1

2
(SXSY − SY SX + SY SX − SXSY )︸ ︷︷ ︸

=0

, (A.6)

that is, the undesired pseudovector contributions cancel out. For the symmetric traceless part
pseudotensor contributions also cancel out, getting eventually

SXY+Y X = 2IXSY + 2SXIY + (AXAY + (AXAY )
T − 2

3
Tr(AXAY )Id)+

+(SXSY + (SXSY )
T − 2

3
Tr(SXSY )Id), (A.7)

which has even parity. These results can be summarized as expression (5) in the main text

IX
TY T+Y TXT

= IXY+Y X , AXTY T+Y TXT

= −AXY+Y X , SXTY T+Y TXT

= SXY+Y X .
(A.8)
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Invariance of Frobenius norm

The Frobenius norm of some tensor representation X in TensorNet is invariant under the full
orthogonal group O(3). This follows from the cyclic permutation invariance of the trace. As
previously shown, parity induces the transposition of X , which amounts to a cyclic permutation of the
matrix product inside the trace operator, Tr(XTX) = Tr(XXT). When considering some rotation
R, Tr(XTX) → Tr((RXRT)T(RXRT)) = Tr(RXTRTRXRT) = Tr(RXTR−1RXRT) =
Tr(RXTXRT) = Tr(XTXRTR) = Tr(XTXR−1R) = Tr(XTX).

O(3) to SO(3) symmetry breaking

The embedding module in TensorNet always produces irreducible representations that are scalars,
vectors and tensors, that is, it preserves the parity of the initial components. As previously shown,
the computation of the Frobenius norm is O(3)-invariant in this case, making the normalization
an operation that also preserves initial parities, since it can be regarded as the modification of the
irreducible representations by means of invariant weights. However, depending on the interaction
product, O(3)-equivariance can be broken to SO(3)-equivariance in the first interaction layer.

Input irreducible representations for the first interaction layer, which are the outputs of the embedding
module, have a well-defined parity. The first normalization that takes place makes use of the Frobenius
norm, which at this point is O(3)-invariant, giving O(3)-equivariant representations with the desired
parity. Nevertheless, if one considers an interaction product proportional to Y (i)M (i) and computes
its irreducible decomposition to generate new features, skew-symmetric and symmetric traceless
representations will receive both even and odd parity contributions, as proved above (expressions A.3
and A.4). At this point, one can write some node’s full tensor embedding X as

X = I +A+ +A− + S+ + S−, (A.9)

where + and − denote even and odd parity, respectively. After obtaining new features through the
interaction product, another normalization takes place. The computation of the Frobenius norm
Tr(XTX) with current node representations X used to normalize features is no longer O(3)-invariant.
One can write

Tr(XTX) = Tr((I +A+ +A− + S+ + S−)
T
(I +A+ +A− + S+ + S−)) =

= Tr((I −A+ −A− + S+ + S−)(I +A+ +A− + S+ + S−)), (A.10)

where we have made use of the symmetry or skew-symmetry of the matrices under transposition, and
considering the action of parity A− → −A−, S− → −S−,

Tr((I −A+ +A− + S+ − S−)(I +A+ −A− + S+ − S−)), (A.11)

which is manifestly different from A.10 and cannot be reduced to a cyclic permutation of A.10.
Thus, the Frobenius norm of representations X at this point of the architecture is not invariant
under parity, and therefore normalization amounts to the modification of components with weights
1/(||X||+ 1) which are not invariant under the full O(3), but just under SO(3). From this moment,
all features generated in TensorNet will no longer be O(3)-equivariant, but SO(3)-equivariant, and
the computation of any Frobenius norm (such as the one used in the scalar output module to predict
energies) will only be SO(3)-invariant.

A.3 Data sets and training details

TensorNet was implemented within the TorchMD-NET framework [41], using PyTorch 1.11.0 [46],
PyTorch Geometric 2.0.3 and PyTorch Lightning 1.6.3.

QM9

The QM9 [33; 47] data set consists of 130,831 optimized structures of molecules that contain up to 9
heavy elements from C, N, O and F. On top of the structures, several quantum-chemical properties
computed at the DFT B3LYP/6-31G(2df,p) level of theory are provided. To be consistent with
previous work, we used 110,000 structures for training, which were shuffled after every epoch, 10,000
for validation and the remaining ones were used for testing. We used four random splits, initializing
the model with different random seeds. Reported results are the average errors and the standard
deviation between parentheses of the last significant digit over these splits.
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Models trained with QM9 had 3 interaction layers, 256 hidden channels, used 64 non-trainable radial
basis functions and a cutoff of 5Å. The MLP for the embedding part had 2 linear layers, mapping
256 hidden channels as [256, 512, 768], with SiLU activation. The MLPs in the interaction layers
had 3 linear layers, mapping the 64 radial basis functions as [64, 256, 512, 768], also with SiLU
non-linearities. The scalar output MLP mapped [768, 256, 128, 1] with SiLU activations, giving an
atomic contribution to the energy which is added to the atomic reference energies from the data set.
All layers were initialized using default PyTorch initialization, except for the last two layers of the
output MLP which were initialized using a Xavier uniform distribution and with vanishing biases.
Layer normalizations used the default PyTorch parameters. For training, we used a batch size of
16, an initial learning rate of 1e-4 which was reached after a 1000-step linear warm-up, the Adam
optimizer with PyTorch default parameters and the MSE loss. The learning rate decayed using an
on-plateau scheduler based on the validation MSE loss, with a patience of 15 and a decay factor of
0.8. We did not use an exponential moving average for the validation loss. Inference batch size was
128. Training automatically stopped when the learning rate reached 1e-7 or when the validation MSE
loss did not improve for 150 epochs. We used gradient clipping at norm 40. Training was performed
on two NVIDIA GeForce RTX 3090 with float32 precision.

rMD17

The rMD17 [35] data set contains 100,000 recomputed structures of 10 molecules from MD17
[36; 37], a data set of small organic molecules obtained by running molecular dynamics simulations.
The DFT PBE/def2-SVP level of theory, a very dense DFT integration grid and a very tight SCF
convergence were used for the recomputations. We used 950 and 50 random conformations for
training and validation, respectively, and evaluated the error on all remaining conformations. We
used five random splits, initializing the model with different random seeds. Reported results are the
average errors and the standard deviation between parentheses (when different from zero) of the last
significant digit over these splits.

Models trained with rMD17 had 1 and 2 interaction layers, 128 hidden channels, used 32 non-trainable
radial basis functions and a cutoff of 4.5Å. The MLP for the embedding part had 2 linear layers,
mapping 128 hidden channels as [128, 256, 384], with SiLU activation. The MLPs in the interaction
layers had 3 linear layers, mapping the 32 radial basis functions as [32, 128, 256, 384], also with
SiLU non-linearities. The scalar output MLP mapped [384, 128, 64, 1] with SiLU activations, giving
an atomic contribution to the energy which after addition for all atoms is scaled by the training data
standard deviation and shifted with the training data mean. All layers were initialized using default
PyTorch initialization, except for the last two layers of the output MLP which were initialized using a
Xavier uniform distribution and with vanishing biases. Layer normalizations used the default PyTorch
parameters. For training, we used a batch size of 8, an initial learning rate of 1e-3 which was reached
after a 500-step linear warm-up, the Adam optimizer with PyTorch default parameters and weighted
MSE losses of energy and forces with both weights equal to 0.5. The learning rate decayed using an
on-plateau scheduler based on the total weighted validation MSE losses, with a patience of 25 and
a decay factor of 0.8. We used an exponential moving average for the energy MSE validation loss
with weight 0.99. Inference batch size was 64. Training automatically stopped when the learning rate
reached 1e-8 or when the total weighted validation MSE losses did not improve for 300 epochs. We
used gradient clipping at norm 40. Training was performed on a single NVIDIA GeForce RTX 2080
Ti with float32 precision.

SPICE

SPICE [38] is a data set with an emphasis on the simulation of the interaction of drug-like small
molecules and proteins. It consists of a collection of dipeptides, drug-like small molecules from
PubChem, solvated aminoacids, monomer and dimer structures from DES370K and ion pairs, with
a varying number of systems and conformations in each subset, and computed at the ωB97M-
D3BJ/def2-TZVPPD level of theory. After filtering molecules containing forces higher than 50.94
eV/Å ≈ 1 Hartree/Bohr, SPICE (v 1.1.3) contains approximately 1M data points. We used three
random 80%/10%/10% training/validation/test splits, initializing the model with different random
seeds. Reported results are the average errors over these splits.

Models trained with SPICE had 2 interaction layers, 128 hidden channels, used 64 non-trainable
radial basis functions and a cutoff of 10Å. The MLP for the embedding part had 2 linear layers,
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mapping 128 hidden channels as [128, 256, 384], with SiLU activation. The MLPs in the interaction
layers had 3 linear layers, mapping the 64 radial basis functions as [64, 128, 256, 384], also with
SiLU non-linearities. The scalar output MLP mapped [384, 128, 64, 1] with SiLU activations, giving
an atomic contribution to the energy, which after addition for all atoms, the model was trained to
match the reference energy of the molecule with subtracted atomic reference energies. All layers were
initialized using default PyTorch initialization, except for the last two layers of the output MLP which
were initialized using a Xavier uniform distribution and with vanishing biases. Layer normalizations
used the default PyTorch parameters. For training, we used a batch size of 16, an initial learning
rate of 1e-4 which was reached after a 500-step linear warm-up, the Adam optimizer with PyTorch
default parameters and weighted MSE losses of energy and forces with both weights equal to 0.5.
The learning rate decayed using an on-plateau scheduler based on the total weighted validation MSE
losses, with a patience of 5 and a decay factor of 0.5. We did not use an exponential moving average
for the validation loss. Training automatically stopped when the learning rate reached 1e-7 or when
the total weighted validation MSE losses did not improve for 50 epochs. Inference batch size was 16.
We used gradient clipping at norm 100. Training was performed on 4 NVIDIA GeForce RTX 2080
Ti with float32 precision. The Equivariant Transformer model used for comparison purposes had 4
interaction layers, used 64 non-trainable radial basis functions, 8 attention heads and a cutoff of 10Å.

ANI1x, COMP6

ANI1x [39; 40] was built using an involved active learning process on the ANI1 data set, giving
approximately 5M data points containing organic molecules composed of C, N, O and H. The COMP6
[39] is a benchmarking data set consists of five benchmarks (GDB07to09, GDB10to13, Tripeptides,
DrugBank, and ANI-MD) that cover broad regions of organic and biochemical space containing
also the elements C, N, O and H, and a sixth one from the previously existing S66x8 noncovalent
interaction benchmark. Energies and forces for all non-equilibrium conformations presented were
computed at ωB97x59/6-31G(d) level of theory. We trained the model on ANI1x by using three
random 80%/10%/10% training/validation/test splits, initializing the model with different random
seeds. Reported results on ANI1x and COMP6 are the average errors over these splits.

Models trained with ANI1x had 2 interaction layers, 128 hidden channels, used 32 non-trainable
radial basis functions and a cutoff of 4.5Å. The MLP for the embedding part had 2 linear layers,
mapping 128 hidden channels as [128, 256, 384], with SiLU activation. The MLPs in the interaction
layers had 3 linear layers, mapping the 64 radial basis functions as [64, 128, 256, 384], also with
SiLU non-linearities. The scalar output MLP mapped [384, 128, 64, 1] with SiLU activations, giving
an atomic contribution to the energy, which after addition for all atoms, the model was trained to
match the reference energy of the molecule with subtracted atomic reference energies. All layers were
initialized using default PyTorch initialization, except for the last two layers of the output MLP which
were initialized using a Xavier uniform distribution and with vanishing biases. Layer normalizations
used the default PyTorch parameters. For training, we used a batch size of 64, an initial learning
rate of 1e-4 which was reached after a 1000-step linear warm-up, the Adam optimizer with PyTorch
default parameters and weighted MSE losses of energy and forces with weights 1 and 100. The
learning rate decayed using an on-plateau scheduler based on the total weighted validation MSE
losses, with a patience of 4 and a decay factor of 0.5. We did not use an exponential moving average
for the validation loss. Training automatically stopped when the learning rate reached 1e-7 or when
the total weighted validation MSE losses did not improve for 30 epochs. Inference batch size was 64.
We used gradient clipping at norm 100. Training was performed on 4 NVIDIA GeForce RTX 2080
Ti with float32 precision. The Equivariant Transformer [16] model used for comparison purposes had
4 interaction layers, used 64 non-trainable radial basis functions, 8 attention heads and a cutoff of 5Å.

Scalar, vector and tensor properties of ethanol

We used the reference data for ethanol in vacuum provided together with the FieldSchNet paper
[42; 47], in which energies, forces, molecular dipole moments, polarizability tensors and nuclear
shielding tensors were computed with the PBE0 functional. To be consistent with results from
FieldSchNet [42] and PaiNN [15], 8000 conformations for training and 1000 for both validation and
testing were considered. We used three random splits, initializing the model with different random
seeds. Reported results are the average errors and the standard deviation between parentheses of the
last significant digit over these splits.
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As mentioned in the main text, after generating atomic full tensor embeddings X(i), we used different
output modules to process their decompositions I(i), A(i), S(i) and predict the desired properties.
Energies and forces were predicted as described in the scalar output subsection. For the remaining
properties:

Molecular dipole moments were predicted by identifying the n skew-symmetric parts A(i) with n
vectors v(i) and mapping with a first linear layer these n vectors to n/2 vectors, and then with a
second linear layer from n/2 vectors to a single vector µ(i) per atom. In parallel, the norms ||A(i)||
are fed to a two-layer MLP with SiLU activation to obtain a single scalar per atom ||µ(i)||. Then, the
molecular dipole moment prediction is obtained by summing over all atoms µ =

∑
(i) ||µ(i)||µ(i).

For the prediction of polarizability tensors we used only I(i) and S(i) to directly enforce their
symmetry. We fed these components to two sets of two linear layers, to produce two distinct single
atomic predictions α

(i)
I and α

(i)
S . Simultaneously, the norms ||I(i) + S(i)|| were processed by a

two-layer MLP with SiLU activation to produce two scalars per atom ||α(i)
I || and ||α(i)

S ||. Then,
polarizability was predicted by adding all per-atom contributions α =

∑
(i) ||α

(i)
I ||α

(i)
I + ||α(i)

S ||α
(i)
S .

Eventually, for the prediction of nuclear shielding tensors, we generated a pseudovector skew-
symmetric contribution per atom A

(i)
p as described in the Tensor output subsection. We applied

three sets of two linear layers to the components I(i), A(i)
p , S(i) to obtain three single predictions

per atom σ
(i)
I , σ

(i)
Ap

, σ
(i)
S . The norms ||I(i) + A

(i)
p + S(i)|| were fed to a two-layer MLP to give

three scalars per atom ||σ(i)
I ||, ||σ

(i)
Ap
||, ||σ(i)

S ||, used to predict per-atom nuclear shieldings as σ(i) =

w(i)(||σ(i)
I ||σ

(i)
I + ||σ(i)

Ap
||σ(i)

Ap
+ ||σ(i)

S ||σ
(i)
S ), where w(i) are element-dependent weights. We used

wC = 1/0.167, wO = 1/0.022, wH = 1 to account for the different magnitudes of the nuclear
shielding tensors, as suggested in [42].

Models trained with ethanol in vacuum had 2 interaction layers, 128 hidden channels, used 32
non-trainable radial basis functions and a cutoff of 4.5Å. The MLP for the embedding part had 2
linear layers, mapping 128 hidden channels as [128, 256, 384], with SiLU activation. The MLPs
in the interaction layers had 3 linear layers, mapping the 32 radial basis functions as [32, 128,
256, 384], also with SiLU non-linearities. The scalar output MLP mapped [384, 128, 64, 1] with
SiLU activations, giving an atomic contribution to the energy which after addition for all atoms is
scaled by the training data standard deviation and shifted with the training data mean, on top of
vector and tensor predictions obtained as described above. All layers were initialized using default
PyTorch initialization, except for the last two layers of the output MLP which were initialized
using a Xavier uniform distribution and with vanishing biases. Layer normalizations used the
default PyTorch parameters. For training, we used a batch size of 8, an initial learning rate of 1e-3
without warm-up, the Adam optimizer with PyTorch default parameters and weighted MSE losses of
energy, forces, dipole moments, polarizabilities and nuclear shieldings, with weights of 0.5×(627.5)2,
0.5×(1185.82117)2 (the squared conversion factors from Ha to kcal/mol and Ha/Bohr to kcal/mol/Å),
100, 100 and 100, respectively. The learning rate decayed using an on-plateau scheduler based on
the total weighted validation MSE losses, with a patience of 30 and a decay factor of 0.75. We
used an exponential moving average for the energy MSE validation loss with weight 0.99. Training
automatically stopped when the learning rate reached 1e-8 or when the total weighted validation
MSE losses did not improve for 300 epochs. Inference batch size was 64. We used gradient clipping
at norm 100. Training was performed used the original data atomic units, performing unit conversion
at test stage, using two NVIDIA GeForce RTX 2080 Ti with float32 precision. Errors in chemical
shifts were computed as MAEs of mean traces of predicted and target nuclear shielding tensors.

Equivariance, interaction and cutoff ablations

We used the rMD17 data set and training details for both aspirin and toluene, varying only the number
of layers, the cutoff radius and the interaction products, as detailed in the experiment. We used three
random splits, initializing the model with different random seeds. Reported results are the average
errors over these splits.
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Computational cost

TorchScript code optimization and PyTorch (2.0) compilation were not used for the experiments. For
TensorNet, we used the model with rMD17 architectural specifications. The ET used 128 hidden
channels, 32 radial basis functions and 8 attention heads. For inference time, we used the blocked
autorange benchmarking functionality in PyTorch with a minimum runtime of 10. For training step
and epoch timings, we waited until the value stabilized. All experiments were performed with float32
precision.
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