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Abstract

Gradual Domain Adaptation (GDA), in which the learner is provided with ad-
ditional intermediate domains, has been theoretically and empirically studied in
many contexts. Despite its vital role in security-critical scenarios, the adversarial
robustness of the GDA model remains unexplored. In this paper, we adopt the
effective gradual self-training method and replace vanilla self-training with adver-
sarial self-training (AST). AST first predicts labels on the unlabeled data and then
adversarially trains the model on the pseudo-labeled distribution. Intriguingly, we
find that gradual AST improves not only adversarial accuracy but also clean accu-
racy on the target domain. We reveal that this is because adversarial training (AT)
performs better than standard training when the pseudo-labels contain a portion of
incorrect labels. Accordingly, we first present the generalization error bounds for
gradual AST in a multiclass classification setting. We then use the optimal value of
the Subset Sum Problem to bridge the standard error on a real distribution and the
adversarial error on a pseudo-labeled distribution. The result indicates that AT may
obtain a tighter bound than standard training on data with incorrect pseudo-labels.
We further present an example of a conditional Gaussian distribution to provide
more insights into why gradual AST can improve the clean accuracy for GDA.

1 Introduction

The key assumption of classical machine learning—that training and test data come from the same
distribution—may not always hold in many real-world applications [15]. A data distribution typically
evolves due to changes in conditions: for example, changing weather in vehicle identification [14],
sensor aging in sensor measurement [43], the evolution of road conditions in self-driving [6], etc.
To address this problem, Unsupervised Domain Adaptation (UDA) has been developed to train a
model that performs well on an unlabeled target domain by leveraging labeled data from a similar yet
distinct source domain.

Various works in UDA [5, 53, 34] theoretically demonstrate that the generalization error can be
controlled by the domain discrepancy. Hence, the domain shift between the source domain and
the target domain is expected to be small [15]. However, in some applications, the domain shift is
substantial, leading to a sharp drop in the performance of the UDA method [26]. Furthermore, since
changes in real-world data are more often gradual than abrupt [16], there are many intermediate
domains between the source domain and the target domain. To get a better solution to the gradually
shifting data, some recent works have focused on the Gradual Domain Adaptation (GDA) problem,
where the learner is additionally provided with unlabeled intermediate domains. The large gap
between the source and target domains is then divided up into multiple small shifts between the
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intermediate domains. Recently, the celebrated work [26] proposes gradual self-training, which
iteratively applies the self-training method to adapt the model along the intermediate domains.
Empirically, the gradual self-training method greatly improves the target domain’s accuracy compared
to the traditional direct domain adaptation. After that, remarkable theoretical [45] and algorithmic
[10, 1] advances have been achieved in GDA. However, the adversarial robustness of the GDA model
remains unexplored, despite its vital role in security-critical scenarios. Adversarial robustness refers
to the invariance of a model to small perturbations of its input [39], while adversarial accuracy refers
to a model’s prediction accuracy on adversarial examples generated by an attacker. Numerous works
[33, 41, 49] have shown that very small perturbations, even those imperceptible to humans, can
successfully deceive deep neural network (DNN) models, resulting in erroneous predictions.

One popular and effective method of improving robustness is Adversarial Training (AT), which adds
adversarial examples to the training data. Due to the lack of labels in the target domain, it is difficult to
directly generate adversarial examples. Accordingly, this paper replaces self-training with Adversarial
Self-Training (AST), which first generates pseudo-labels on the unlabeled data and then adversarially
trains the model based on these pseudo-labeled data. We conduct comprehensive experiments to
validate the effectiveness of gradual AST in Section 3. Compared to the gradual self-training method,
the proposed gradual AST method delivers a great improvement in adversarial accuracy, from 6.00%
to 90.44% on the Rotating MNIST dataset. More interestingly, we find that the clean accuracy of
gradual AST on the target domain also increases from 90.06% to 97.15%. This is a surprising result,
since many prior works [52, 38] demonstrate that AT may hurt generalization; in other words, there
is a trade-off between clean accuracy and adversarial accuracy. We then empirically investigate the
reason why AST improves clean accuracy in GDA and find that the adversarially trained model has
better clean accuracy than the standardly trained model when the generated pseudo-labels contain a
proportion of incorrect labels.

In Section 4, we present novel generalization error bounds for the proposed gradual AST. The results
show that if we have a model f with low adversarial margin loss on the source domain and the
distribution shifts slightly, gradual AST can generate a new model f ′ that is also adversarially robust
on the target domain. To explain why gradual AST achieves better clean accuracy than vanilla gradual
self-training, we use the optimal value of the Subset Sum Problem [3] to bridge the standard error on
a real distribution and the adversarial error on a pseudo-labeled distribution. The result shows that
AT may yield a tighter generalization guarantee than standard training on pseudo-labeled training
data. We further provide an example of a conditional Gaussian distribution to illustrate why AT
outperforms standard training when a proportion of the labels in the training data are incorrect.

We summarize our contributions as below:

• We are the first to apply the AST method in GDA. The proposed gradual AST method can
not only improve the adversarial robustness but also the clean accuracy for GDA, which
is an appealing and nontrivial result, considering that many prior works demonstrate that
adversarial training may hurt generalization.

• We empirically explore the reason for the improvements in clean accuracy and find that
adversarial training performs better than standard training when the pseudo-labeled training
set contains a proportion of incorrect labels.

• From the theoretical perspective, we provide the generalization error bounds for gradual
AST, which explain why the trained model is adversarially robust on the target domain.
We provide an error bound and a toy example of Gaussian distribution to provide some
intuitions for the improvements in clean accuracy.

2 Preliminaries

2.1 Multiclass Classification Learning Framework

Let Z = X × Y be a measurable instance space, where X and Y denote the input space and label
space, respectively. The input space X is a subset of a d-dimensional space, X ⊆ Rd. In this
work, we focus on multiclass classification, and the label space Y is {1, . . . , k}, where k is the
number of classes. Following the notations used in [5], a domain is envisioned as a tuple ⟨P, hP ⟩,
consisting of a distribution P on input space X and a labeling function hP : X → Y . In practice,
the true distribution P is unknown to the learner, which has access only to the training data S drawn

2



independent and identically distributed (i.i.d.) according to the true distribution P . We use P̂ to
denote the empirical distribution of P according to the training data S. Moreover, following the
notations used in [35], we consider the class F = {f : X → Rk} of scoring functions f . We
use fy(x) to indicate the output of f associated with the data point x on the y-th dimension; the
output indicates the confidence of the prediction. The label with the largest score is the predicted
label of x. We use HF = {hf (·) = argmax

y∈Y
fy(·) : f ∈ F} to denote the labeling function

class induced by F . The expected risk and the empirical risk of a classifier h ∈ H with respect
to a labeling function h′ on distribution P are defined as RP (h, h

′) ≜ E
x∼P

1[h(x) ̸= h′(x)] and

RP̂ (h, h
′) ≜ E

x∼P̂
1[h(x) ̸= h′(x)], respectively, where 1 is the indicator function. We use RP (h)

and RP̂ (h) to abbreviate RP (h, hP ) and RP̂ (h, hP ) respectively. Furthermore, the 0-1 loss is non-
differentiable and cannot be minimized directly. Thus, a margin theory for multiclass classification
was developed by [25], that replaces the 0-1 loss with the margin loss. The margin of a scoring function
f ∈ F for labeled data (x, y) is defined as ρf (x, y) ≜ fy(x)−max

y′ ̸=y
fy′(x). And the expected margin

loss of a scoring function f ∈ F with respect to another scoring function f ′ ∈ F on distribution
P is defined as R(ρ)

P (f, f ′) ≜ E
x∼P

Θρ ◦ ρf (x, hf ′(x)), where Θρ(m) = min{1,max{0, 1−m/ρ}}

is the ramp loss. Similarly, we use R
(ρ)
P (f) and R

(ρ)

P̂
(f) to abbreviate R

(ρ)
P (f, fP ) and R

(ρ)

P̂
(f, fP )

respectively. Note that RP (hf , hf ′) ≤ R
(ρ)
P (f, f ′), since the 0-1 loss is upper bounded by the margin

loss.

2.2 Gradual Domain Adaptation

Under the standard GDA settings [26, 45], the learner is sequentially trained on T + 1 domains
with gradual shifts. The corresponding data distributions are P0, P1, . . . , PT , where P0 is the
distribution of the source domain, PT is the distribution of the target domain, and P1, . . . , PT−1

are the distributions of the intermediate domains. For simplicity, we assume that the number of
data points in each domain is the same: namely, each domain t has a set of n data drawn i.i.d.
from Pt, denoted as St. Recently, [26] proposes a gradual self-training method for GDA, which
successively applies self-training to each of the intermediate domains. The self-training method
adapts a pre-trained model trained on the previous domain to the current domain using unlabeled
data drawn from the current distribution. Specifically, given a pre-trained model f and an unlabeled
data set S, the model first predicts the labels of the unlabeled data, then trains f with empirical risk
minimization (ERM) over these pseudo-labeled data, i.e.,

f ′ = ST (f, S) = argmin
f ′∈F

R
(ρ)

P̂
(f ′, f) = argmin

f ′∈F

1

n

∑
xi∈S

Θρ ◦ ρf ′(xi, hf (xi)).

In gradual self-training, the model is first pre-trained on the labeled source domain and then succes-
sively self-trained on the unlabeled dataset of each of the intermediate domains, i.e.,

ft = ST (ft−1, St), t ∈ {1, . . . , T}.

Since the domain shifts between the consecutive domains are assumed to be small [10, 26, 45], the
accuracy of the pseudo-labels is expected to be high at each step. The gradual self-training method
aims to output a final trained classifier hfT with low expected risk in the target domain.

2.3 Adversarial Self-Training

Given a classifier hf and a data point (x, y), we can generate the corresponding adversarial example
(xadv, y) by adversarially perturbing x in a small neighborhood Bϵ(x) of x, as follows: xadv =

argmaxx′∈Bϵ(x) Θρ ◦ ρf (x′, y). In this paper, we focus on the ℓq adversarial perturbation Bϵ(x) ≜
{x′ ∈ X : ∥x′ − x∥q ≤ ϵ, q ≥ 1}, which is referred to as ℓq-attack in the AT context and
has been widely studied in existing works. Given a vector x ∈ Rd, we define the ℓq-norm of x

as ∥x∥q ≜
(∑d

i=1 |x(i)|q
)1/q

, for q ∈ [1,∞), where x(i) is the i-th dimension of x; for q =

∞, we define ∥x∥∞ ≜ max
1≤i≤d

|x(i)|. Similar to the definition of the standard risk RP (h, h
′), we
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define the adversarial risk on distribution P for any two classifiers h, h′ as follows: R̃P (h, h
′) ≜

E
x∼P

max
∥δ∥q≤ϵ

1[h(x + δ) ̸= h′(x)]. We also define the expected adversarial margin loss for any two

scoring functions f, f ′ on distribution P as follows:

R̃
(ρ)
P (f, f ′) ≜ E

x∼P
max

∥δ∥q≤ϵ
Θρ ◦ ρf (x+ δ, hf ′(x)). (1)

Although the expected adversarial margin loss is asymmetrical, it satisfies the triangle inequality (see
proof in Appendix A.1). The empirical adversarial risk and the empirical adversarial margin loss
can be defined similarly. We use R̃

(ρ)
P (f) and R̃

(ρ)

P̂
(f) to abbreviate R̃

(ρ)
P (f, fP ) and R̃

(ρ)

P̂
(f, fP )

respectively. To train a robust model with resistance to the adversarial examples, AT aims to find
a classifier hf that yields the minimal adversarial margin loss, i.e., argmin

f∈F
R̃

(ρ)

P̂
(f). However, we

cannot adversarially train the model directly on the unlabeled target domain because the conventional
AT method requires labeled data. Instead, we adapt the self-training method to the adversarial
self-training (AST) method by generating adversarial examples over the pseudo-labels, i.e.,

f ′ = AST (f, S) = argmin
f ′∈F

R̃
(ρ)

P̂
(f ′, f) = argmin

f ′∈F

1

n

∑
xi∈S

max
∥δi∥q≤ϵ

Θρ ◦ ρf ′(xi + δi, hf (xi)).

3 Empirical Exploration

In this section, we propose a gradual AST method to improve adversarial robustness. Surprisingly,
we find that the gradual AST improves not only adversarial robustness but also clean accuracy. Our
code is available at https://github.com/whustone007/AST_GDA.

Datasets. We run experiments on two datasets that are widely used in GDA [26, 45]. Rotating
MNIST is a semi-synthetic dataset generated by rotating each MNIST image at an angle between
0 and 60 degrees. The 50,000 training set images are divided into three parts: a source domain of
5000 images (0-5 degrees), 21 intermediate domains of 42,000 images (5-60 degrees), and a set of
validation data. The rotating degree gradually increases along the domain sequence. The 10,000
test set images are rotated by 55-60 degrees, representing the target domain. Portraits [18] is a real
dataset consisting portraits of American high school students across a century. The model aims to
classify gender. The dataset is split into a source domain of the first 2000 images, seven intermediate
domains of the next 14,000 images, and a target domain of the next 2000 images.

Methods. The standard gradual self-training method [26] successively adapts the model to the
next domain via self-training. To improve the adversarial robustness, we replace the vanilla self-
training with AST. We implement multiple gradual AST methods with different starting domains
τ ∈ {0, . . . , T + 1} where we begin to use AST, i.e.,

ft =

{
ST (ft−1, St), 1 ≤ t ≤ τ − 1

AST (ft−1, St), τ ≤ t ≤ T

In particular, if τ = 0, then the model is adversarially trained throughout; if τ = T + 1, then the
model is standardly trained throughout. Note that T = 21 in Rotating MNIST and T = 7 in Portraits.

Implementation Details. We implement our methods using PyTorch [37] on two Nvidia GeForce
RTX 3090 Ti GPUs. Following [26], we use a 3-layer convolutional network with dropout (0.5) and
BatchNorm on the last layer. We use mini-batch stochastic gradient descent (SGD) with momentum
0.9 and weight decay 0.001. The batch size is 32 and the learning rate is 0.001. We train the model
for 40 epochs in each domain. We set the radius of the bounded perturbation to be 0.1 [51] for
Rotating MNIST and 0.031 for Portraits. Following [33], we use PGD-20 with a single step size of
0.01 as the adversarial attacker.

3.1 Results

The results of the different methods on Rotating MNIST are shown in Figure 1(a). The numbers in
the abscissa represent different starting domains τ of various methods. From Figure 1(a), we can
see that the vanilla gradual self-training method (τ = 22) achieves a clean accuracy of 90.06% and
adversarial accuracy of 6.00% on the target domain. Notably, the gradual AST method that uses AST
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throughout (τ = 0) improves the adversarial accuracy to 83.54% (+77.54%). More interestingly,
we find that the clean accuracy is also slightly improved by 0.53%. Furthermore, the results of
varying the starting domains τ indicate that the performance will be further improved if we use
the vanilla self-training method for the first few domains and then use AST from an intermediate
domain. We utilize the validation set of the target domain to choose the optimal starting time τ .
Experimentally, the best choice of starting time for Rotating MNIST is τ = 9, which achieves clean
accuracy of 96.66% (+6.6%) and adversarial accuracy of 88.86% (+82.86%). We find that AST not
only improves adversarial robustness but also clean accuracy with a large step. The results of the
different methods on Portraits are shown in Figure 1(b). We find similar results to those on Rotating
MNIST: the vanilla gradual self-training method (τ = 22) achieves a clean accuracy of 82.03% and
adversarial accuracy of 40.23%, while the gradual AST method (τ = 0) improves the clean accuracy
by 2.73% and the adversarial accuracy by 37.40%. We provide more experimental results of different
ϵ, domain numbers, and neural networks in Appendix B.

3.2 Why Does Gradual AST Improve Clean Accuracy in GDA?

It is widely believed that AT would hurt generalization [52, 38] and decrease clean accuracy; thus
it is surprising that the proposed gradual AST method improves the clean accuracy of the trained
model in the GDA setting. In this section, we speculate on the reasons for this. Recently, some works
[39, 42] have revealed that an adversarially pre-trained model tends to improve the target model’s
accuracy in transfer learning. We accordingly investigate whether the adversarially trained model has
better clean accuracy on the next domain and thus generates more accurate pseudo-labels. However,
by comparing the gradual AST methods with τ = 0 and τ = 1 on Rotating MNIST, we find that
the model standardly trained on the source domain achieves a clean accuracy of 97.30% on the next
domain, while the model adversarially trained on the source domain achieves a clean accuracy of
96.95% on the next domain. On the other hand, given that the pseudo-labels contain a small portion
of incorrect labels, we wonder whether the adversarially trained model has better clean performance
than the standardly trained model if trained on such a noisy training set. Since we set a fixed random
seed for all gradual AST methods with varying starting domains, given a τ0 ∈ {0, . . . , T}, the gradual
AST method with τ = τ0 and that with τ = τ0 + 1 have the same training processes before domain
τ0 and the same pseudo-label set on domain τ0. The difference between the gradual AST method
with τ = τ0 and that with τ = τ0 + 1 is whether we adversarially train the model on the domain τ0.
We compare the clean accuracy of these two methods on domain τ0 in Figure 1(c). As we can observe
from the figure, the adversarially trained model (τ = τ0) has higher clean accuracy on domain τ0
than the standardly trained model (τ = τ0 + 1). Note that there are two exceptions in which AT hurts
clean performance when the accuracy of pseudo-labels is very high (τ0 = 0, 1), which explains why
using AST from an intermediate domain is better than using AST throughout. Besides, we find that
the adversarially trained model predicts more accurate pseudo-labels in the next domain than the
standardly trained model when the current training set contains a proportion of incorrect labels. We
then conclude that AT benefits the clean accuracy of GDA from two perspectives:

• For the intermediate domains, AT improves the accuracy of the pseudo-labels in the next
domain. So the learner can fine-tune the model on a more accurate dataset.

• For the target domain, when the pseudo-labels contain a proportion of incorrect labels,
the adversarially trained model has higher clean accuracy on the target domain than the
standardly trained model.

3.3 Sensitivity of Filtration Ratio ζ

Following the standard experimental strategy [26, 45], for each step of self-training, we filter out a
portion of images for which the model’s prediction is least confident. In Figure 1, the ratio ζ is set
to 0.1 as in the work of [26]. We further conduct more experiments with varying ζ. With smaller
ζ, more data will be included for the next domain’s training, but the accuracy of the pseudo-labels
will decrease. Due to the page limit, we attach the detailed results of methods with different values
of τ and ζ in Appendix B. We find that when ζ decreases, the performance of the standard gradual
self-training also decreases. However, the gradual AST method prefers smaller ζ even though more
incorrect pseudo-labels are included in the training set. For example, when we set ζ = 0.05, the
gradual AST with the optimal starting domain τ = 9 (chosen using the validation set) achieves clean
accuracy of 97.15% (+7.09%) and adversarial accuracy of 90.44% (+84.44%) on Rotating MNIST.
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Figure 1: (a) shows the results of gradual AST methods with varying starting domains on Rotating
MNIST. The abscissa indicates different methods with varying starting domains τ . The blue and
red bars represent the clean accuracy and adversarial accuracy respectively of the trained model on
the target domain. (b) shows the result of gradual AST methods with varying starting domains on
Portraits. (c) compares the effect of adversarial training and standard training under pseudo-labeled
distributions on Rotating MNIST. We use blue and red bars to represent the clean accuracy of the
standardly trained model and the adversarially trained model, respectively. The gray bar indicates the
correct rate of the pseudo-labels.

When we set ζ = 0.05, the gradual AST with the optimal starting domain τ = 1 achieves clean
accuracy of 86.04% (+4.01%) and adversarial accuracy of 77.25% (+37.02%) on Portraits.

3.4 Training with Labeled Intermediate Domains

In the setting of GDA, the learner is provided with unlabeled intermediate domains, and the model
predicts pseudo-labels on an unlabeled data set in each iteration. The pseudo-labels contain a small
proportion of incorrect labels, leading to performance degradation of the trained model. In this
section, we conduct experiments to investigate the optimal performance of the model trained with
ground-truth labels. In other words, the learner is provided with labeled intermediate data. Although
the learner has access to the ground-truth intermediate labels, we still retain the filtering process,
since we need to maintain the same data size to ensure fair comparison. We present the results of
the models with varying τ in Table 19 and Table 20 (due to space limitations, we attach the tables in
Appendix B). Since the results in Section 3.3 show that ζ = 0.05 is the optimal filtration ratio for
gradual AST methods, we set ζ = 0.05 in this section. From Table 19, we can see that if the learner
is provided with labeled intermediate domains, the vanilla gradual self-training method (τ = 22)
achieves clean accuracy of 98.44% on Rotating MNIST. Recall the results in Table 9 showing that
the proposed gradual AST method (τ = 9) achieves clean accuracy of 97.15%. The performance
(97.15%) of the proposed gradual AST is close to the optimal performance (98.44%) of the gradual
self-training where the learner is provided with labeled intermediate domains.

4 Theoretical Analysis

In this section, we theoretically analyze the experimental phenomena identified in Section 3 and
explain the efficacy of gradual AST. In Section 4.1, we provide the adversarial error bound for gradual
AST. In Section 4.2, we provide some theoretical insights about why AT outperforms standard
training. In Section 4.3, we further present an example of a conditional Gaussian distribution to
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show the error correction effect of AT on the incorrect labels. Our theory thus supports the excellent
performance of gradual AST shown in Section 3.

4.1 Generalization Error Bounds for Gradual AST

We introduce the Margin Disparity Discrepancy (MDD) to measure the domain shifts, as below.

Definition 4.1 (MDD [53]). Let P and Q be two distributions over X . Given a scoring function class
F and a specific scoring function f ∈ F , the MDD between P and Q is defined as

d
(ρ)
f,F (P,Q) ≜ sup

f ′∈F

(
R

(ρ)
Q (f ′, f)−R

(ρ)
P (f ′, f)

)
. (2)

When the domain shift is slight, the MDD between the domains is small. The MDD is well-defined
and can be empirically estimated by the training data [53], where the estimation error can be bounded
by Rademacher complexity. We next present the definition of Rademacher complexity, which is
widely used in generalization theory to measure the complexity of a hypothesis class.

Definition 4.2 (Rademacher Complexity [44]). Let G be a set of real-valued functions defined over
X . For a fixed collection S of n data points, the empirical Rademacher complexity of G is defined as

R̂S(G) ≜
2

n
E
ς

[
sup
g∈G

∑
xi∈S

ςig(xi)

]
.

The expectation is taken over ς = (ς1, . . . , ςn), where ςi, i ∈ {1, . . . , n}, are independent uniform
random variables taking values in {−1,+1}.

We next introduce an adversarial margin hypothesis class ρ̃FF .

Definition 4.3 (Adversarial Margin Hypothesis Class). Given a scoring function class F , the adver-
sarial margin hypothesis class is defined as

ρ̃FF ≜ {x 7→ max
∥δ∥q≤ϵ

ρf ′(x+ δ, hf (x)) : f, f
′ ∈ F}.

Having defined the Rademacher complexity and the MDD, we now focus on a pair of arbitrary
consecutive domains. The following result shows that AST returns a new model f ′ with bounded
adversarial margin loss if the domain shifts gradually. The proof can be found in Appendix A.2.

Theorem 4.4 (Adversarial Error Bound for AST). Let ⟨P, fP ⟩ and ⟨Q, fQ⟩ be two domains with
gradual shifts. Suppose we have a scoring function f pre-trained on domain ⟨P, fP ⟩, and a data
set S of n unlabeled data points drawn i.i.d. according to distribution Q. f ′ is the adapted scoring
function by generated by the AST algorithm over S, i.e., f ′ = AST (f, S). Then, for any α ≥ 0, the
following holds with probability of at least 1− α over data points S:

R̃
(ρ)
Q (f ′) ≤ R̃

(ρ)
P (f) + γ̃∗ + λ∗ + df,F (P,Q) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
,

where γ̃∗ = min
f ′∈F

R̃
(ρ)
Q (f ′, f) and λ∗ = min

f∈F

{
R

(ρ)
P (f) +R

(ρ)
Q (f)

}
.

Remark 4.5. Theorem 4.4 indicates that if we have a model f with low adversarial margin loss on
the domain ⟨P, fP ⟩ and the distribution shifts slightly, AST generates a new model f ′ that is also
adversarially robust on the domain ⟨Q, fQ⟩. The λ∗ term is widely used in domain adaptation theory
[5, 34] to implicitly characterize the conditional distribution shift. In the setting of GDA, we assume
that the domain shifts only slightly, i.e., λ∗ and df,F (P,Q) are relatively low.

Based on the error bounds for AST, we can apply this argument inductively and sum these error
differences along the domain sequence to obtain the following corollary. See proofs in Appendix A.3.

Corollary 4.6 (Error Bounds for Gradual AST). Given a sequence of domains ⟨Pt, fPt⟩, t ∈
{0, . . . , T} with gradual shifts, each intermediate domain has an unlabeled data set St drawn
i.i.d. from Pt. The model is successively trained by the AST method, i.e., ft = AST (ft−1, St), t ∈
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{1, . . . , T}. Then, for any α ≥ 0, the following holds with probability of at least 1 − α over data
points {St}Tt=1:

R̃PT
(hfT ) ≤ R̃

(ρ)
P0

(f0) +

T∑
t=1

κt +
2T

ρ
R̂S(ρ̃FF) + 6T

√
log 4T

α

2n
,

where κt = dft−1,F (Pt−1, Pt) + min
f∈F

R̃
(ρ)
Pt

(f, ft−1) + min
f∈F

{
R

(ρ)
P (f) +R

(ρ)
Q (f)

}
.

Remark 4.7. Our bound indicates that the adversarial risk on target domain can be controlled by the
adversarial margin loss on the source domain and the discrepancy [53] between the intermediate
domains. We also consider the standard risk and find that the standard risk of AST can be bounded
similarly. We provide the bounds in Appendix A.4.

Comparison with Previous Work. Both of the works of [26] and [45] focus on binary classification
and standard self-training, while our results non-trivially extend the error bounds into the setting
of adversarial GDA and multiclass classification. Furthermore, [26] sets linear hypotheses as their
training models, while we consider a more general hypothesis class that can be implemented by
neural networks. [45] makes an assumption that the new model can always fit the pseudo-labels
without error. As we can observe from the experiments, the training error tends to be small but never
equal to 0. Compared to [45], we don’t need the assumption, so our setting is more consistent with
real experiments.

4.2 Adversarial Training Improves Clean Accuracy for Self-Training

AT is generally considered harmful to the clean accuracy of the model [52, 38]. However, the
experimental results in Section 3 indicate that AT unexpectedly improves both the clean accuracy
and adversarial accuracy of the model trained on the pseudo-labels. In this section, we provide
some theoretical insights showing that when the training data contains a small portion of incorrect
labels, the adversarially trained model may have a tighter generalization guarantee than the standardly
trained model. Our theorem is based on the following optimization problem.

Definition 4.8. Given two fixed vectors p and p′ with all positive coordinates and a fixed N -
dimensional 0-1 vector e, i.e., e ∈ {0, 1}N . Π is a fixed subset of {1, . . . , N}. The variant of the
Subset Sum Problem [3] can be defined as follows:

min
ẽ∈{0,1}N

∣∣∣pT ẽ− p′
T
e
∣∣∣ , s.t. ẽi = ei,∀i ∈ {1, . . . , N}\Π.

We use Ψ∗(p′, p, e,Π) to denote the optimal value of the problem. Given two fixed vectors p′ and
e, the value of the term p′

T
e is therefore constant. The optimization problem can be viewed as

one of selecting a subset of p such that the sum of its elements is as close as possible to p′
T
e.

Intuitively, the set Π adjusts the difficulty of this optimization problem. For two sets Π1 ⊆ Π2, we
have Ψ∗(p′, p, e,Π1) ≥ Ψ∗(p′, p, e,Π2) since we can optimize ẽ on more coordinates.

With a little abuse of notations, in this subsection, we consider a discrete real distribution P and a
discrete noisy pseudo-labeled distribution Pη over X × Y . We denote the corresponding prob-
ability mass functions as p and pη respectively. p and pη can be viewed as two vectors, i.e.,
pi = p(xi, yi), (xi, yi) ∈ X × Y, i ∈ {1, . . . , |X × Y|}. The standard risk on the real data
distribution is defined as RP (h) =

∑
(x,y)∈X×Y p(x, y)1[h(x) ̸= y] and the adversarial risk on the

pseudo-labeled data distribution is defined as R̃Pη
(h) =

∑
(x,y)∈X×Y pη(x, y) max

∥δ∥q≤ϵ
1[h(x+δ) ̸= y].

The next result uses the optimal value Ψ∗(p, pη, e,Π) to bound the difference between these two
risks. The proof can be found in Appendix A.5.

Theorem 4.9. Given two distributions P and Pη over X × Y with the corresponding probability
mass vectors p and pη , the following bound holds for any classifier h ∈ HF :

RP (h) ≤ R̃Pη
(h) + Ψ∗(p, pη, e,Πϵ),

where e is the risk vector ei = 1[h(xi) ̸= yi], and Πϵ = {i : ∃ ∥δi∥q ≤ ϵ, h(xi + δi) ̸= h(xi)}.
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Figure 2: The visualization of the adversarially trained classifier for a conditional Gaussian distribu-
tion. AT consistently moves the threshold badv close to the optimal threshold b = 0, leading to better
generalization on the real data distribution. Best viewed in color.

By setting ϵ = 0, we can derive the error bound for standard training: RP (h) ≤ RPη
(h) +

Ψ∗(p, pη, e,Π0). By the definition of the set Πϵ, the larger the perturbation radius ϵ, the larger
the size of Πϵ, i.e., Π0 ⊆ Πϵ. We then have Ψ∗(p, pη, e,Πϵ) ≤ Ψ∗(p, pη, e,Π0). Theorem 4.9
implies that if the adversarial risk R̃Pη

(h) on the pseudo-labeled distribution is well controlled by
AT, then AT may yield a tighter generalization guarantee than standard training.

4.3 A Toy Example of a Conditional Gaussian Distribution

We further provide an example of a conditional Gaussian distribution to show the efficacy of AT
under incorrect pseudo-labels.
Example 4.10 (Conditional Gaussian Distribution). We consider the input space X = R and the
label space Y = {−1,+1}. For simplicity, we assume that the two classes have symmetrical
mean parameters {−µ,+µ} and the same standard deviations σ. The (µ, σ)-conditional Gaussian
distribution P can then be defined as a distribution over X × Y = R × {−1,+1}, where the
conditional distribution of X given Y is X|Y = y ∼ N (yµ, σ2) and the marginal distribution of
Y is PY ({−1}) = PY ({+1}) = 1/2. We consider a threshold hypothesis class, i.e., H ≜ {x 7→
sgn(x − b) : b ∈ R}, where sgn is the sign function. We denote the hypothesis with threshold b
as hb. In the setting of self-training, we have a labeling function hw, which is the model trained
on the previous domain. The threshold w ̸= 0, since there is a distribution shift. The function hw

assigns y = −1 to the data points where x < w and assigns y = +1 to the data points where x > w.
We denote the pseudo-labeled data distribution over X × Y as Pη. We use RPη (h) and R̃Pη (h)
to respectively denote the standard 0-1 risk and adversarial 0-1 risk on the pseudo-labeled data
distribution Pη . We assume |w| ≪ µ and ϵ ≪ µ, since the domain shift is slight and the adversarial
perturbation is subtle. We also assume µ > σ, which means that most samples can be well separated.
The learner is provided with infinite samples. Under these assumptions, we provide the following
results to demonstrate the efficacy of AT. The proof can be found in Appendix A.6.
Theorem 4.11. For the real data distribution P defined in Example 4.10, the optimal classifier
that minimizes the standard risk RP (h) and adversarial risk R̃P (h) is h0(·) = sgn(·). For the
pseudo-labeled distribution Pη defined in Example 4.10, the standardly trained classifier hstd that
minimizes the standard risk RPη

(h) is hstd = hw; the adversarially trained classifier hadv that
minimizes the adversarial risk R̃Pη

(h) has the following corresponding threshold badv ,

badv =

{
w + ϵ, if w < −ϵ

0, if − ϵ < w < ϵ
w − ϵ, if w > ϵ

Remark 4.12. Theorem 4.11 shows that the adversarially trained model hadv consistently moves the
threshold close to the optimal threshold b = 0, leading to a smaller generalization error. We visually
represent the adversarially trained model in Figure 2.

5 Related Work

Self-Training. A series of works have achieved significant progress using self-training in semi-
supervised learning [29, 40] and domain adaptation [56]. The recent work [9] has proposed robust
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self-training (RST) to leverage additional unlabeled data for robustness [2, 36]. While RST [9]
focuses on utilizing additional unlabeled data drawn from the same distribution to improve adversarial
robustness, our work investigates the different effects of vanilla self-training and adversarial self-
training on clean accuracy.

Gradual Domain Adaptation. Unlike the UDA problem, GDA has intermediate domains between
the source domain and target domain of UDA. Some works [22, 17, 48] propose various algorithms
to handle these evolving domains in a computer vision context. The recent work [26] adopts the
self-training method and proposes gradual self-training, which iteratively adapts the model along the
domain sequence. Moreover, [26] provides the first learning theory for GDA and investigates when
and why the gradual structure helps. [45] further improves the generalization error bound in [26] and
reveals the influence of the number of intermediate domains on the error bound. [10] investigates a
more difficult setting in which the learner is provided with a set of unordered intermediate data. The
authors propose TDOL, a framework that generates synthetic domains by indexing the intermediate
data. However, the aforementioned works pay insufficient attention to the adversarial robustness of
the model in a GDA context. In the field of UDA, the work of [11] constructs synthetic intermediate
domains by creating Grassmannian manifolds between the source and the target. Another line of work
instead uses a generative network, such as a cycle generative adversarial network [23], to generate
the intermediate data.

Adversarial Training. After [41] shows that DNNs are fragile to adversarial attacks, a large amount
of works have proposed various attack methods [33, 27, 8] and defense methods [47, 19, 51, 31,
20, 24, 30]. Adversarial training [19] is one of the popular and effective methods that improves
adversarial robustness by adding adversarial examples to the training dataset. From the theoretical
perspective, some works focus on the sample complexity [50, 54, 12] and the generalization of
adversarial training. [32] investigates the trade-off between robustness and fairness. [46, 55] study
adversarial robustness under self-supervised learning.

6 Conclusion

In this work, we empirically demonstrate that gradual AST improves both the clean accuracy and the
adversarial accuracy of the GDA model. We reveal that the reason for this performance improvement
is that AT outperforms standard training when the training data contains incorrect pseudo-labels. We
first provide generalization error bounds for gradual AST in a multiclass setting. We then construct
the Subset Sum Problem to connect the adversarial error and the standard error, providing theoretical
insights into the superiority of AST in GDA. The example of conditional Gaussian distribution is
further provided to give additional insights into the efficacy of AT on pseudo-labeled training data.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 61976161,
the Fundamental Research Funds for the Central Universities under Grant 2042022rc0016.

References
[1] Samira Abnar, Rianne van den Berg, Golnaz Ghiasi, Mostafa Dehghani, Nal Kalchbrenner, and

Hanie Sedghi. Gradual domain adaptation in the wild: When intermediate distributions are
absent. arXiv preprint arXiv:2106.06080, 2021.

[2] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth,
and Pushmeet Kohli. Are labels required for improving adversarial robustness? In NeurIPS,
pages 12192–12202, 2019.

[3] Jonathan Allcock, Yassine Hamoudi, Antoine Joux, Felix Klingelhöfer, and Miklos Santha.
Classical and quantum algorithms for variants of subset-sum via dynamic programming. In
European Symposium on Algorithms, pages 6:1–6:18, 2022.

[4] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3:463–482, 2002.

10



[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine Learning,
79:151–175, 2010.

[6] Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to continuously
shifting domains. In ICLR, 2018.

[7] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[8] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
In SP, pages 39–57, 2017.

[9] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, and Percy Liang. Unlabeled
data improves adversarial robustness. In NeurIPS, pages 11190–11201, 2019.

[10] Hong-You Chen and Wei-Lun Chao. Gradual domain adaptation without indexed intermediate
domains. In NeurIPS, pages 8201–8214, 2021.

[11] Zhen Cui, Wen Li, Dong Xu, Shiguang Shan, Xilin Chen, and Xuelong Li. Flowing on
riemannian manifold: Domain adaptation by shifting covariance. IEEE Transactions on
Cybernetics, 44:2264–2273, 2014.

[12] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of
adversaries. In NeurIPS, pages 228–239, 2018.

[13] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[14] Özgür Erkent and Christian Laugier. Semantic segmentation with unsupervised domain adapta-
tion under varying weather conditions for autonomous vehicles. IEEE Robotics and Automation
Letters, 5:3580–3587, 2020.

[15] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R. Arabnia. A brief review of
domain adaptation. arXiv preprint arXiv:2010.03978, 2020.

[16] Ali Farshchian, Juan Alvaro Gallego, Joseph Paul Cohen, Yoshua Bengio, Lee E. Miller, and
Sara A. Solla. Adversarial domain adaptation for stable brain-machine interfaces. In ICLR,
2019.

[17] Michael Gadermayr, Dennis Eschweiler, Barbara Mara Klinkhammer, Peter Boor, and Dorit
Merhof. Gradual domain adaptation for segmenting whole slide images showing pathological
variability. In ICISP, pages 461–469, 2018.

[18] Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, Crystal Lee, Philipp Krähenbühl, and
Alexei A. Efros. A century of portraits: A visual historical record of american high school
yearbooks. IEEE Transactions on Computational Imaging, 3:421–431, 2017.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In ICLR, 2015.

[20] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
Timothy A. Mann. Improving robustness using generated data. In NeurIPS, pages 4218–4233,
2021.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[22] Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adaptation for
evolving visual domains. In CVPR, pages 867–874, 2014.

[23] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh,
and Ming-Hsuan Yang. Progressive domain adaptation for object detection. In CVPR, pages
749–757, 2020.

11



[24] Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ODE with lyapunov-
stable equilibrium points for defending against adversarial attacks. In NeurIPS, pages 14925–
14937, 2021.

[25] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the
generalization error of combined classifiers. The Annals of Statistics, 30:1–50, 2002.

[26] Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain
adaptation. In ICML, pages 5468–5479, 2020.

[27] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In ICLR, 2017.

[28] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and
processes, volume 23. 1991.

[29] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML, page
896, 2013.

[30] Boqi Li and Weiwei Liu. WAT: improve the worst-class robustness in adversarial training. In
AAAI, pages 14982–14990, 2023.

[31] Xiyuan Li, Zou Xin, and Weiwei Liu. Defending against adversarial attacks via neural dynamic
system. In NeurIPS, 2022.

[32] Xinsong Ma, Zekai Wang, and Weiwei Liu. On the tradeoff between robustness and fairness. In
NeurIPS, 2022.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

[34] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning
bounds and algorithms. In COLT, 2009.

[35] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
Adaptive computation and machine learning. MIT Press, 2012.

[36] Amir Najafi, Shin-ichi Maeda, Masanori Koyama, and Takeru Miyato. Robustness to adversarial
perturbations in learning from incomplete data. In NeurIPS, pages 5542–5552, 2019.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, pages 8024–8035, 2019.

[38] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi, and Percy Liang. Adversar-
ial training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

[39] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do
adversarially robust imagenet models transfer better? In NeurIPS, 2020.

[40] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. pages 596–608, 2020.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[42] Francisco Utrera, Evan Kravitz, N. Benjamin Erichson, Rajiv Khanna, and Michael W. Mahoney.
Adversarially-trained deep nets transfer better: Illustration on image classification. In ICLR,
2021.

12



[43] Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A Ryan, Margie L Homer, and
Ramón Huerta. Chemical gas sensor drift compensation using classifier ensembles. Sensors
and Actuators B: Chemical, 166:320–329, 2012.

[44] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
2019.

[45] Haoxiang Wang, Bo Li, and Han Zhao. Understanding gradual domain adaptation: Improved
analysis, optimal path and beyond. In ICML, pages 22784–22801, 2022.

[46] Zekai Wang and Weiwei Liu. Robustness verification for contrastive learning. In ICML, pages
22865–22883, 2022.

[47] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training. In ICML, pages 36246–36263, 2023.

[48] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adversarial domain adaptation
for continually changing environments. In ICRA, pages 4489–4495, 2018.

[49] Jingyuan Xu and Weiwei Liu. On robust multiclass learnability. In NeurIPS, 2022.

[50] Dong Yin, Kannan Ramchandran, and Peter L. Bartlett. Rademacher complexity for adversari-
ally robust generalization. In ICML, volume 97, pages 7085–7094, 2019.

[51] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I.
Jordan. Theoretically principled trade-off between robustness and accuracy. In ICML, pages
7472–7482, 2019.

[52] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan S.
Kankanhalli. Attacks which do not kill training make adversarial learning stronger. In ICML,
pages 11278–11287, 2020.

[53] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael I. Jordan. Bridging theory and
algorithm for domain adaptation. In ICML, pages 7404–7413, 2019.

[54] Zhengyu Zhou and Weiwei Liu. Sample complexity for distributionally robust learning under
chi-square divergence. Journal of Machine Learning Research, pages 1–27, 2023.

[55] Xin Zou and Weiwei Liu. Generalization bounds for adversarial contrastive learning. Journal
of Machine Learning Research, pages 114:1–114:54, 2023.

[56] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized
self-training. In ICCV, pages 5982–5991, 2019.

13


	Introduction
	Preliminaries
	Multiclass Classification Learning Framework
	Gradual Domain Adaptation
	Adversarial Self-Training

	Empirical Exploration
	Results
	Why Does Gradual AST Improve Clean Accuracy in GDA?
	Sensitivity of Filtration Ratio 
	Training with Labeled Intermediate Domains

	Theoretical Analysis
	Generalization Error Bounds for Gradual AST
	Adversarial Training Improves Clean Accuracy for Self-Training
	A Toy Example of a Conditional Gaussian Distribution

	Related Work
	Conclusion
	Theory
	Triangle Inequality of the Expected Adversarial Margin Loss
	Proofs of Theorem 4.4
	Proofs of Corollary 4.6
	Standard Error Bounds for AST
	Proofs of Theorem 4.9
	Proofs of Theorem 4.11

	Additional Experiments
	Results of Methods with Varying Perturbation Radius 
	Results of Methods with Varying Domain Numbers
	Results of Methods on Varying Neural Networks
	Results of Methods with Varying Filtration Ratios 
	Training with Labeled Intermediate Domains
	Visualization of the Filter




