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In the supplementary material, we provide:

• Detailed proof of theoretical results (mentioned in the CosNet analysis part of the main
paper).

• More explaination of the initialization scheme (mentioned in the complex-valued spectral
kernel network part of the main paper)

• More details of the experiment and ablation studies (mentioned in the ablation study part of
the main paper).

1 Proof of Theoretical Results

In this section, we collect the proof of the error bound omitted from the main paper. Before the proof,
we introduce the necessary preliminary knowledge and notations.

Foundation setting The proposed network with L layers consists of two modules, i.e. SKMG
module and CSKE module. The SKMG module includes 1 layer and CSKE model includes L− 1
layers. The input X ∈ Rdx×n has n samples and each sample xi is dx-dimension.

For the SKMG module, the weight matrix of the first linear transformation is denoted as

Ω1 =

ω
ω′

ω
ω′

 ∈ R4d0×dx

, where ω,ω′ ∈ Rd0×dx

. The second weight matrix is Ω2 =

[
1√
4d0

Id0
1√
4d0

Id0 0 ∗ J 0 ∗ J
0 ∗ J 0 ∗ J 1√

4d0
Id0

1√
4d0

Id0

]
∈ R2d0×4d0

, where Id0 ∈ Rd0×d0

is the identity ma-

trix and J ∈ Rd0×d0

is a matrix of ones. The output of this module is denoted as X0 ∈ Rd0×n.

For the CSKE module, the input is denoted as X l−1 with dl−1-dimension and the output is denoted
as X l in the lth layer. Note that: X1 = X0, d1 = d0, which means the output of the SKMG module
is used as the input of CSKE module. The weight matrix of lth (2 ≤ l ≤ L) layer is denoted as

Wl =

[
cos(Al) −sin(Al)

sin(Al) cos(Al)

]
∈ R2dl×2dl−1

,

where Al ∈ Rdl×dl−1

.

Definition 1. (ϵ-net) A’s subset Ã is an ϵ-net of A under the metric d if for any a ∈ A there exists
ã ∈ Ã that d(a, ã) ≤ ϵ.
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Definition 2. (covering number) The covering number Nd(A, ϵ) is the size of the smallest ϵ-net of A.

Lemma 1. (Maury’s sparsification lemma Pisier). Fix Hilbert space H with norm || · ||. Let U ∈ H
be given with representation U =

∑d
i=1 αiVi, where Vi ∈ H and α = [α1, α2, ..., αd] ∈ Rd

≥0\{0}.

Then for any positive integer k, there exists a choice of non-negative integers (k1, ..., kd),
∑d

i=1 ki =
k, such that

||U − ||α||1
k

d∑
i=1

kiVi||2 ≤ ||α||1
k

d∑
i=1

αi||Vi||2 ≤ ||α||21
k

max
i

||Vi||2.

Proof. Set β = ||α||1, and let (B1,B2, ...,Bk) denote k iid random variables where P (B1 =

βVi) =
αi

β . Define B = 1
k

∑k
i=1 Bi, whereby

E[B] = E[
1

k

k∑
i=1

Bi] =
1

k
E[kB1] = E[B1] =

d∑
i=1

(βVi)
αi

β
=

d∑
i=1

αiVi = U .

Consequently,

E[||U −B||2] = 1

k2
E[||

d∑
i=1

(U −Bi)||2] =
1

k2
E[
∑
i

||U −Bi||2 +
∑
i̸=j

< U −Bi,U −Bj >]

=
1

k
E[||U −B1||2] =

1

k
(E[||B1||2]− ||U ||2) ≤ 1

k
E[||B1||2]

=
1

k

d∑
i=1

αi

β
||βVi||2 =

β

k

d∑
i=1

αi||Vi||2

≤ β2

k
max

i
||Vi||2.

By the probabilistic method, there exists intergers (j1, .., jk) ∈ {1, .., d}k and an assignment B̃i =

βVji and B̃ = 1
k

∑k
i=1 B̃i such that

||U − B̃||2 ≤ E[||U −B||2].

The result now follows by defining integers (k1, ..., kd) according to ki =
∑k

l=1 I[jl=i], where I(·)
denotes the indicator function.

Corollary 1. Fix Hilbert space H with norm || · ||. Let U ∈ H be given with representation
U =

∑d
i=1 αiVi, where Vi ∈ H and α = [α1, α2, ..., αd] ∈ Rd

≥0\{0}. Then for any positive integer

k and for any m ≥ αi(∀i), there exists a choice of non-negative integers (k1, ..., kd),
∑d

i=1 ki = k
such that

||U − m

k

d∑
i=1

kiVi||2 ≤ m

k

d∑
i=1

αi||Vi||2 ≤ m2

k
max

i
||Vi||2.

Proof. Following the proof of Lemma 1 with β = m, the result is trivial.

Corollary 2. For set A = {
∑d

i=1 αiVi|α ∈ Rd
≥0\{0}, ||α||1 ≤ α̃} ∈ conv(V1,V2, ...,Vd), its

covering number satisfies Nd(A, ϵ) ≤ dk and ln(Nd(A, ϵ)) ≤ k ln(d), where k is an integer and
k ≥ α̃2

ϵ2 maxi ||Vi||2.
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Proof. For any U ∈ A, there exist α satisfying U =
∑d

i=1 αiVi. Since ||α||1 ≤ α̃, by Corollary 1,
for a fixed positive integer k satisfying k ≥ α̃2

ϵ2 maxi ||Vi||2, there exists a choice of non-negative
integers (k1, ..., kd),

∑d
i=1 ki = k, such that

||U − α̃

k

d∑
i=1

kiVi||2 ≤ α̃

k

d∑
i=1

αi||Vi||2 ≤ α̃2
1

k
max

i
||Vi||2 ≤ ϵ2.

By Definition 1, { α̃
k

∑d
i=1 kiVi|ki(i = 1, .., d),

∑d
i=1 ki = k} is a ϵ-net of A. With ki being

non-negative integers and
∑d

i=1 ki = k, the cardinality of this set satisfies

|{ α̃
k

d∑
i=1

kiVi}| ≤ dk.

By Definition 2, Nd(A, ϵ) ≤ dk and ln(Nd(A), ϵ)) ≤ k ln(d), where k is an integer and k ≥
α̃2

ϵ2 maxi ||Vi||2.

Lemma 2. For the non-empty set A ⊂ Rn, define a projection f(a) =


σ(a1)
σ(a2)

...
σ(an)

, where a ∈ A,

a =


a1
a2
...
an

, σ is a function. And the distance metric of this space is defined by p-norm. If σ is

l-Lipschitz and Ã is a ϵ-net of A, then f(Ã) is a ϵ-net of f(A).

Proof. Denote the distance metric in the space as d(a,a′) = ||a− a′||p.

Since Ã is a ϵ-net of A, then for any a ∈ A, there exists ã ∈ Ã satisfying that d(a, ã) ≤ ϵ.

For any f ∈ f(A), there exists a ∈ A so that f(a) = f and corresponding ã that f̃ = f(ã) ∈ f(Ã)
and d(a, ã) ≤ ϵ. Then,

d(f , f̃) = d(f(a), f(ã)) = (

n∑
i=1

(σ(ai)− σ(ãi))
p)1/p = ld(a, ã) ≤ lϵ ≜ ϵ′.

Corollary 3. Following the definitions in Lemma 2, if there exists a covering number for set A, then
Nd(f(A), ϵ′) ≤ Nd(A, ϵ̂).

Proof. Assume Ã is an ϵ-net of A.

By Lemma 2, f(Ã) is an ϵ-net of Ã.

By Definition 2, since the cardinality: |f(Ã)| ≤ |Ã|, so Nd(f(A), ϵ′) ≤ Nd(A, ϵ).

Theorem 1. Denote the covering number of set S as Nd(S, ϵ). X ∈ Rdx×n is the input of n samples
and each sample is dx-dimensioned. X l ∈ Rdl×n is the input of layer l (l > 1) and W l is the weight
matrix of layer l (l ≥ 2). The other notations remain the same as mentioned above. For different
layers, their covering numbers satisfy that

1. In the first layer (i.e., the SKMG module), Nd(Ω
1X, ϵ) ≤ (4d0dx)k, where k ≥

||Ωij ||21
ϵ2 max

i,j
||xij ||2.
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2. In layer l (l > 1) (i.e., the CSKE module), Nd(W
lX l−1, ϵ) ≤ (2dldl−1 + 1)k, where

k ≥ ||Aij ||21
ϵ2

π
2 d

l||X l−1||21.

Proof. Part 1

We denote Pkq ∈ Rd0×dx

as a matrix where only the element of row k column q is 1, other element
is 0. Trivially, any Ω1 ∈ R4d0×dx

can be written as:

Ω1 = α
∑

1≤k≤d0,1≤q≤dx

±

 Pkq

0 ∗ J
Pkq

0 ∗ J

±

0 ∗ JPkq

0 ∗ J
Pkq

 .

For simplicity, denote the 4d0dx components shown above as {Vi}4d
0dx

i=1 , then Ω1 =
∑4d0dx

i=1 αiVi,

where α ∈ Rd
≥0\{0}. And Ω1X =

∑4d0dx

i=1 αiViX =
∑4d0dx

i=1 αiV
′
i , where V ′

i = ViX .

By Corollary 2, Nd(ΩX, ϵ) ≤ (4d0dx)k, where k ≥ ||Ωij ||21
ϵ2 max

i,j
||xij ||2.

Part 2

To analyze the covering number of W lX l−1, first begin with the covering number of BlX l−1, and
Bl is defined as

Bl =

[
Al Al + π

2 ∗ J
Al − π

2 ∗ J Al

]
.

We rewrite Bl as

Bl = α(
∑

1≤k≤dl,1≤q≤dl−1

±
[
Pkq Pkq

Pkq Pkq

]
) + 1 ·

[
0 ∗ J π

2 ∗ J
−π

2 ∗ J 0 ∗ J

]
,

where Pkq is in Rdl×dl−1

.

For simplicity, denote the 2dldl−1 + 1 components shown above as {Vi}2d
ldl−l+1

i=1 , then

Bl =
∑2dldl−1+1

i=1 αlVi, where α ∈ Rd
≥0\{0}. And B1X l =

∑2dldl−1+1
i=1 αiViX

l−1 =∑2dldl−1+1
i=1 αiV

′
i , where V ′

i = ViX
l.

If Vi is in the form of
[
Pkq Pkq

Pkq Pkq

]
, then

||V ′
i ||1 ≤ max1≤k≤dl−12

n∑
j=1

|X l−1
kj +X l−1

k+dl−1,j
|.

If Vi is in the form of
[

0 ∗ J π
2 ∗ J

−π
2 ∗ J 0 ∗ J

]
, then

||V ′
i ||1 ≤ π

2
dl

n∑
j=1

[|
dl−1∑
k=1

X l−1
kj |+ |

2di−1∑
k=di−1+1

X l−1
kj |] ≤ π

2
dl||X l−1||1.

In summary, since π
2 d

l||X l−1||1 > max1≤k≤dl−12
∑n

j=1 |X
l−1
kj + X l−1

k+dl−1,j
|, by Corollary 2,

Nd(B
lX l−1, ϵ) ≤ (2dldl−1 + 1)k, where k ≥ ||Aij ||21

ϵ2
π
2 d

l||X l−1||21.

Since W l = cos(Bl), by Corollary 3, Nd(B
lX l−1, ϵ) ≤ (2dldl−1 + 1)k, where k ≥

||Aij ||21
ϵ2

π
2 d

l||X l−1||21.

Then we introduce two important lemmas about Rademacher complexity and empirical Rademacher
complexity respectively.
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Lemma 3. Mohri et al. [2018] Let F|S be a real-valued function class taking values in [0, 1] given
the dataset S, and assume that 0 ∈ F|S . Then the Rademacher complexity given the dataset S
satisfies that

R(F|S) ≤ inf
α>0

(
4α√
n
+

12

n

∫ √
n

α

√
lnNd(F|S , ϵ, || · ||2)dϵ).

Lemma 4. Mohri et al. [2018] Let L : X × Y → R be an Lp loss function bounded by M > 0, F
be the hypothesis set, family G = {(x,y) → L(F (x),y) : F ∈ F}, then for any δ, with probability
at least 1− δ, the following inequality holds:

E(x,y)∼D[(L(F (x),y)] ≤ 1

n

n∑
i=1

l(F (xi),yi) + 2R̂S(G) + 3M

√
ln( 2δ )

2n
.

where R̂S(G) is the empirical Rademacher complexity of the family G given the dataset S.

Lemma 5. Let (ϵ1, ..., ϵL) be given, along with operator norm bounds (c1, .., cL). Suppose the
matrix Θ = (Ω1,Ω2,W 2, ..,WL) lie within B1 × B2 × ... × BL+1 where Bl are arbitrary
classes with the property that each W l ∈ Bl has sup||x||≤1||W lx|| = cl. Lastly, let data X be
given with ||X||1 ≤ B.Then, letting τ =

∑
j≤L ϵj

∏L
l=j+1 cl, the neural network hypothesis space

HX = {FΘ(X)|Θ ∈ B1 ×B2 × ...×BL+1} has covering number bound

Nd(HX , τ, | · |L) ≤
L∏

l=1

sup
(Ω1.Ω2,W 2,..,WL),∀j<i

Nd({W lF(Ω1,Ω2,W 2,...,WL(X))}, ϵl, || · ||l+1).

Proof. It is proved by mathematical induction. Inductively construct covers Cl of
Ω1X, ...,WLXL−1.

• When l = 1, since Ω2 is fixed once the output dimension is chosen, it is trivial that the
lemma holds.

• When l = 2

Denote C1 as an ϵ-net of Ω1X , then

|C1| ≤ Nd({Ω1X : Ω1 ∈ B1}, ϵ1, || · ||2) ≜ N1.

For a fixed C ∈ C1, there exists an ϵ-net G(C) that

|G(C)| ≤ Nd({Ω2(σ(Ω1X)) : Ω2 ∈ B2}, ϵ2, || · ||2) ≜ N2.

Set C2 = ∪C∈C1
G(C), then C2 is an ϵ-net of {Ω2(σ(Ω1X)) : Ω2 ∈ B2}.

Then, |C2| ≤ N1N2.

And for any X0 ∈ Ω2(σ(Ω1X)), there exists X̂0 ∈ C2 that:

|X0 − X̂0| = |Ω2(σ(Ω1(X)))−
̂

Ω2(σ(Ω̃1(X)))|

≤ |Ω2(σ(Ω1(X)))−Ω2(σ(Ω̃1(X)))|+ |Ω2(σ(Ω̃1(X)))−
̂

Ω2(σ(Ω̃1(X)))|

≤ |Ω2||σ(Ω1(X))− σ(Ω̃1(X))|+ ϵ2
≤ c2ϵ1 + ϵ2.

Note that X̂0 =
̂

Ω2(σ(Ω̃1(X))) is in an ϵ-net of Ω2(σ(Ω̃1(X))), and σ(Ω̃1(X)) is in an
ϵ-net of σ(Ω1(X)).

The lemma holds under this condition.
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• Assume the lemma holds when 1 ≤ l < L.

• When l = L, use the same notation as above, set CL+1 = ∪C∈CL
G(C), then |CL+1| ≤∏L

l=1 Nl.

And for any XL, there exists X̂L ∈ CL+1 that:

|XL − X̂L| = |WLXL−1 −
̂

WLX̃L+1|

≤ |WLXL−1 −WLX̃L−1|+ |WLX̃L−1 −
̂

WLX̃L−1|

≤ |WL||XL−1 − X̃L−1|+ ϵL+1

≤ cL(
∑
j≤i

ϵj

L−1∏
l=j+1

cl) + ϵL

=
∑
j≤L

ϵj

L∏
l=j+1

cl.

Note that X̂L =
̂

WLX̃L−1 is in an ϵ-net of WLX̃L−1, and X̃L−1 is in an ϵ-net of XL−1.

By induction, the lemma holds.

Theorem 2. Let S = {(x1,y1), (x2,y2), ..., (xn,yn)} be a sample data of size n from distri-
bution D. Given the weight matrices defined before (Ω1,Ω2,W 2, ...,WL), and they satisfy
that ||W l|| ≤ cl(l > 2), ||Ω1|| ≤ a1, ||Ω2|| ≤ c1, ||Al|| ≤ bl, ||X||1 ≤ B, dl ≤ W and
T = (

∑L
l=2(

bl
cl
)2/3)3/2

∏L
l=1 cl. And the loss function L(F (x),y) ≤ M . Then, with the probability

at least 1− δ, the proposed network F satisfy:

E(x,y)∼D[(L(FΘ(x),y)] ≤ 1

n

n∑
i=1

L(FΘ(xi),yi)

+O(
8M

n3/2
+M

√
ln(1/δ)

n
+ ln(n)

√
ln(W )W ||X0||2T 2 + ln(W )a21||X||2

n
).

Proof. Follow the notaion above, by Lemma 5 and Theorem 1, the covering number of the whole
network has:

ln(Nd(HX , τ, | · |L+1)) ≤
L∑

l=1

sup
(Ω1.Ω2,W 2,..,W j),∀j<l

ln(Nd({W lFΩ1,Ω2,W 2,...,W l−1(X)}, ϵl, || · ||l+1)).

≤
L∑

l=1

sup
(Ω1.Ω2,W 2,..,WL),∀j<l

ln(2dldl−1 + 1)kl + ln(4d0dx)k0,

where, kl is an integer and satisfies that kl ≥ ||Aij ||21
ϵ2l

π
2 d

l||X l−1||21, k0 ≥ ||Ωij ||21
ϵ2 max

i,j
||xij ||2. And

||X l|| = ||W lX l−1|| ≤ ||W l||||X l−1|| ≤ ... ≤
l∏

j=1

||W j || ||X0||.

In order to satisfy that τ < ϵ, set

ϵi =
αiϵ∏
j>i cj

, αi =
1

α
(
bi
ci
)2/3, α =

L∑
i=1

(
bi
ci
)2/3.

Then, by Lemma 5

τ =
∑
j≤L

ϵj

L∏
l=j+1

cl =

L∑
j=1

αiϵi = ϵ.
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And

ln(Nd(HX , τ, | · |L+1)) ≤
L∑

l=1

ln(2dldl−1 + 1) · b
2
l

ϵ2l

π

2
dl · ||X0||2

∏
j<l

c2j + ln(4d0dx)
a21
ϵ2

B2

=

L∑
l=1

ln(2dldl−1 + 1) · b2l
ϵ2c2l α

2
l

π

2
dl · ||X0||2

L∏
j=1

c2j + ln(4d0dx)
a21
ϵ2

B2

= ln(2W 2 + 1)
π

2ϵ2
W ||X0||2

L∑
l=1

b2l
c2l α

2
l

L∏
j=1

c2j + ln(4W 2)
a21
ϵ2

B2 (dl ≤ W )

= ln(2W 2 + 1)
π

2ϵ2
W ||X0||2(α)3

L∏
j=1

c2j + ln(4W 2)
a21
ϵ2

B2 ≜
R

ϵ2
.

Consider the class of networks F obtained by affixing the loss L(F (x), y) and L(F (x), y) ≤ M .
When L is fixed, the covering number of the obtained network F is not larger than the original
network.

Then, by Lemma 3

R(

F|S

M
) ≤ inf

α>0
(
4α√
n
+

12

n

∫ √
n

α

√
lnNd(

FΘ

M
, ϵ, || · ||2)dϵ) = inf

α>0
(
4α√
n
+

12

n

∫ √
n

α

√
lnN(

HX

M
,
τ

M
, || · ||2)dϵ)

≤ inf
α>0

(
4α√
n
+

12

n

∫ √
n

α

√
R

M2ϵ2
dϵ) = inf

α>0
(
4α√
n
+ ln(

√
n/α)

12
√
R

Mn
)

≤ 4

n3/2
+ ln(n3/2)

12
√
R

Mn
(α = 1/n)

=
4

n3/2
+ ln(n3/2)

12
√

ln(2W 2 + 1)π2W ||X0||2(α)3
∏L

l=1 c
2
l + ln(4W 2)a21B

2

Mn
.

And the empirical Rademacher complexities of F
M follows:

R̂S(
F
M

) = E
σ
[ sup

f
M ∈ F

M

1

n

n∑
i=1

σi
f(xi)

M
] =

1

M
E
σ
[sup
f∈F

1

n

n∑
i=1

σif(xi)] =
1

M
R̂S(F).

By Lemma 4

E(x,y)∼D[(L(FΘ(x),y)] ≤ 1

n

n∑
i=1

L(FΘ(xi),yi) + 2R̂S(F) + 3M

√
ln 2

δ

2n

≤ 1

n

n∑
i=1

L(FΘ(xi),yi) + 3M

√
ln 2

δ

2n
+

8M

n3/2

+ ln(n3/2)
24

√
ln(2W 2 + 1)π2W ||X0||2(α)3

∏L
l=1 c

2
l + ln(4W 2)a21B

2

n

≤ 1

n

n∑
i=1

L(FΘ(xi),yi)

+O(
8M

n3/2
+M

√
ln1/δ

n
+ ln(n)

√
ln(W )W ||X0||2T 2 + ln(W )a21||X||2

n
),

where T 2 = (α)3
∏L

l=1 c
2
l .

2 Initialization

As mentioned in the main paper, we initialize the complex-valued weight matrix as W = cos(A) +
isin(A). This design ensures CosNet retains the property of non-stationary spectral kernels and
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takes the relative distance of data in the complex number domain without increasing the number
of parameters. In this section, we further discuss the initialization, including non-stationary and
multi-kernel learning.

Non-stationary ensuring Compared with the CSKE module of CosNet, sampling stack the
complex-valued spectral kernel mapping in the neural networks cannot ensure that the model retains
the non-stationary of the spectral kernel. In this section, we explain that in a two-dimensional case.

For the complex-valued spectral mapping z =

[
cos(u11) + cos(u′

11)
cos(u21) + cos(u′

21)

]
+ i

[
sin(v11) + sin(v′11)
sin(v21) + sin(v′21)

]
∈

C2, following the commonly used setting, the weight matrix is defined as W = A + iB. The
complex-valued transformation with the matrix formula can be defined as:

Ψ(z) =

[
A −B
B A

]
∗
[
ℜ(z)
ℑ(z)

]
=

 a11 b11
a12 b12
−b11 a11
−b12 a12


⊤

∗

cos(u11) + cos(u′
11)

cos(u21) + cos(u′
21)

sin(v11) + sin(v′11)
sin(v21) + sin(v′21)


=

[
a11(cos(o11) + cos(o′11)) + a12(cos(u21) + cos(u′

21))− b11(sin(v11) + sin(v′11))− b12(sin(v21) + sin(v′21))
b11(cos(u11) + cos(u′

11)) + b12(cos(u21) + cos(u′
21)) + a11(sin(v11) + sin(v′11)) + a12(sin(v21) + sin(v′21))

]
,

Obviously, for a general non-stationary spectral kernel k(z, z′), it cannot be defined as the inner
product of two complex-valued mappings, Ψ(z) and Ψ(z′).

Multi-kernels learning In addition to the mentioned property in the main paper, our initialization
enables each unit can be considered a combination of multiple spectral kernels. In this section, we
explain that in two-dimensional complex input space.
Example 1. Let

z =

[
cos(u11) + cos(u′

11)
cos(u21) + cos(u′

21)

]
+ i

[
sin(v11) + sin(v′11)
sin(v21) + sin(v′21)

]
∈ C2

be a complex-valued vector. The complex-valued weight matrix is defined as W = cos(A)+ isin(A),
where A = [a11, a12] ∈ R1×2 is a real-valued matrix. The complex-valued mapping can be defined
as:

Ψ(z) = W ∗ z
= (cos(A) + isin(A))

∗ (
[
cos(u11) + cos(u′

11)
cos(u21) + cos(u′

21)

]
+ i

[
sin(v11) + sin(v′11)
sin(v21) + sin(v′21))

]
)

Without loss of generality, we formalize the complex-valued mapping as the following matrix notation:

Ψ(z) =

[
cos(A) −sin(A)
sin(A) cos(A)

]
∗
[
ℜ(z)
ℑ(z)

]

=

 cos(a11) sin(a11)
cos(a12) sin(a12)
−sin(a11) cos(a11)
−sin(a12) cos(a12)


⊤

∗

cos(u11) + cos(u′
11)

cos(u21) + cos(u′
21)

sin(u11) + sin(u′
11)

sin(u21) + sin(u′
21)


=

[
Ψa11,u11,u′

11
+Ψa12,u21,u′

21

Ψ′
a11,v11,v′

11
+Ψ′

a12,v21,v′
21

]
where Ψa11,u11,u′

11
= cos(a11 + u11) + cos(a11 + u′

11), Ψa12,u21,u′
21

= cos(a12 + u21) +
cos(a12 + u′

21), Ψ′
a11,v11,v′

11
= sin(a11 + v11) + sin(a11 + v′11), and Ψ′

a12,v21,v′
21

=

sin(a12 + v21) + sin(a12 + v′21).

We can observe that Ψa11,u11,u′
11

, Ψa12,u21,u′
21

, Ψ′
a11,v11,v′

11
, and Ψ′

a12,v21,v′
21

can be seen as two
separate parts of two different spectral kernel mappings. Hence, the proposed CosNet can be regarded
as a linear combination of different kernels (the number of kernels is restricted by the feature numbers),
which indicates that our method naturally has a close relation with multi-kernel learning.
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3 Experiment

In this section, we include more details of the experiment section in the main paper, including the
information on the involved datasets (shown in Table 1), the detailed setting for each dataset (shown
in Table 2), and extra experiments.

Table 1: The detailed information of the involved dataset. Specifically, the input size denotes
the number of time points and features for the time-series classification task and regression task,
respectively.

Dataset Type Input size Train.Data Test.Data Class

FordA Sensor 500 3601 1320 2
FordB Sensor 500 3636 810 2

PhalangesOutlinesCorrect Image 80 1800 858 2
Wine Spectro 234 57 54 2

ECG200 ECG 96 100 100 2
ECG5000 ECG 140 500 4500 5
Herring Image 512 64 64 2

Ham Spectro 431 109 105 2
ProximalPhalanxOutlineAgeGroup Image 80 400 139 6

Earthquakes Sensor 512 322 139 2
DistalPhalanxTW Image 80 400 139 6

Strawberry Spectro 235 613 370 2

power – 4 7654 1914 –
concreat – 8 824 206 –

yacht – 6 246 62 –

Table 2: The detailed settings on different datasets. Specifically, Init denotes that the weight matrix is
sampled from N (0, p). Networks denote the unified architecture, where, the first number is the input
size, the last number is the class, and the others denote the neuron numbers of the hidden layers.

Networks

FordA 500× 500× 256× 64× 2
FordB 500× 500× 256× 64× 2

PhalangesOutlinesCorrect 80× 80× 80× 64× 2
Wine 234× 234× 128× 64× 2

ECG200 96 ×96× 96× 32× 2
ECG5000 140× 140× 64× 32× 5
Herring 512× 512× 128× 64× 2

Ham 431× 431× 128× 64× 2
ProximalPhalanxOutlineAgeGroup 80× 80× 80× 32× 3

Earthquakes 512× 512× 128× 32× 2
DistalPhalanxTW 80× 80× 80× 32× 6

Strawberry 235× 235× 128× 32× 2

power 4× 4× 4× 4× 1
concreat 8× 8× 8× 4× 1

yacht 6× 6× 6× 3× 1

Image classification Addition to the time-squential data, complex-valued representation is com-
monly used in the image processing. The phase describes objects in an image in terms of edges,
shapes and their orientation. To explore the capability of CosNet on image-related tasks, we extend
CosNet to the convolutional neural networks (CNNs), namely complex-valued spectral convolutional
networks (CosCNet). Similar with CosNet, CosCNet also include two modules, including complex-
valued representation learning (CRL) module and complex-valued convolutional (CC) module. The
CRL module is used to transform the image in the real number domain to the complex number
domain, and the CC module is used to explore the inherently complex-valued representation and
further explore the detailed information of edges and shape.
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Table 3: Classification accuracy (%) under different hyper-parameters. The best results are highlighted
in bold.

lr init (p) SRFF DSKN DCN1 DCN2 ASKL CosNet

0.1 1 64 60.85 90.30 83.15 61.00 86.05
0.1 0.1 85.55 61.50 90.30 83.15 80.20 85.85
0.1 0.01 78.25 62.80 90.30 83.15 74.10 85.05

0.01 1 52.60 64.00 88.10 84.05 75.00 90.05
0.01 0.1 85.40 67.95 88.10 84.05 89.75 91.30
0.01 0.01 73.40 77.80 88.10 84.05 87.53 90.10

0.001 1 50.85 62.75 80.35 79.25 72.55 89.25
0.001 0.1 83.50 73.00 80.35 79.25 90.90 90.25
0.001 0.01 64.00 84.40 80.35 79.25 88.90 90.45

Specifically, the CRL module is defined as :

Φ(x) =

√
1

4M

[
(cos(Ω ∗ x) + cos(Ω′ ∗ x)) + i(sin(Ω ∗ x) + sin(Ω′ ∗ x))

]
,

and the convolution operation of CC module with the matrix notation is defined as:[
ℜ(Ψ(h))
ℑ(Ψ(h))

]
=

[
cos(A) −sin(A)
sin(A) cos(A)

]
∗
√

1

4M

[
cos(Ω ∗ x) + cos(Ω′ ∗ x)
sin(Ω ∗ x) + sin(Ω′ ∗ x)

]
,

where, Ω, Ω′, and A are filters. Moreover, the CosCNet with l layers is defined as:

CosCNet(x) = Ψl−1(. . .Ψ1(Φ1(x))).

Generalizaion of CosNet Furthermore, to evaluate the generalization of our CosNet, we explore
the influence of varying learning rates and distribution of weight matrics on the result based on
ECG200 dataset. The results are shown in Table 3 The results show the superior performance and
stability of our CosNet.
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