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Abstract

Kernel design is a pivotal but challenging aspect of time series analysis, espe-
cially in the context of small datasets. In recent years, Reservoir Computing (RC)
has emerged as a powerful tool to compare time series based on the underlying
dynamics of the generating process rather than the observed data. However, the
performance of RC highly depends on the hyperparameter setting, which is hard
to interpret and costly to optimize because of the recurrent nature of RC. Here,
we present a new kernel for time series based on the recently established equiva-
lence between reservoir dynamics and Nonlinear Vector AutoRegressive (NVAR)
processes. The kernel is non-recurrent and depends on a small set of meaningful
hyperparameters, for which we suggest an effective heuristic. We demonstrate
excellent performance on a wide range of real-world classification tasks, both
in terms of accuracy and speed. This further advances the understanding of RC
representation learning models and extends the typical use of the NVAR framework
to kernel design and representation of real-world time series data.

1 Introduction

Time series are arguably one of the most important types of data in the modern era (Hamilton,
2020) and ubiquitous both in scientific research (Strogatz, 2018) and practical applications (Zhang
et al., 2018; Zeroual et al., 2020). A key element in the design of most machine learning protocols
for time series is a quantification of similarity (Ding et al., 2008; Abanda et al., 2019; Echihabi
et al., 2020). This is especially true for kernel methods (Schölkopf et al., 2001), which search
for linear solutions after projecting the data into a higher (possibly infinite) dimensional space
and represent an effective alternative to non-linear models. The performance of kernel methods
is heavily impacted by the definition of a positive semi-definite (PSD) similarity function for the
type of data at hand, i.e., a kernel. However, their design is challenging for structured data such
as univariate (UTS) and multivariate time series (MTS), which exhibit temporal autocorrelation,
inter-attributes (or dimensions) dependencies and possibly a variety of temporal distortions and
misalignments (Paparrizos et al., 2020).

To overcome this, a promising approach is to identify and compare the underlying dynamics rather
than the raw observed data. Notably, kernels based on Reservoir Computing (RC) stand out in this
context (Chen et al., 2013; Bianchi et al., 2020). RC-based kernels use a randomized and untrained
layer of recurrently connected nodes (the reservoir) to map each time series into a rich dynamical
feature space. The similarity is then obtained by comparing individual readouts capturing dynamics.
In practice, RC is highly sensitive to a large set of hyperparameters having little interpretability, the
optimization of which is challenging for the comprehensive range of values.
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Recently, a theoretical work by Bollt (2021) has demonstrated that a simple RC can be formally
rewritten as a non-linear vector autoregressive (NVAR) model. In the NVAR framework, the reservoir
is replaced by a simple concatenation of the input series with time-delayed copies and nonlinear
functionals, such as products (Gauthier et al., 2021). This reduces the number of hyperparameters
and has proven to be very effective in chaotic systems forecasting (Shahi et al., 2022), as much to
earn the title of "Next-Generation Reservoir Computing". However, its applicability and performance
for real-world data and outside of forecasting dynamical systems are largely unexplored.

In this work, we investigate whether an NVAR process can replace a reservoir for kernel design and
if the extracted features are just as effective in comparing real-world time series data. We propose a
very efficient and effective NVAR kernel for UTS and MTS data. The main idea is as follows (Fig. 1).
First, we enrich each time series with lagged copies of itself and additional nonlinear terms, forming a
high-dimensional NVAR embedding. Then, we extract a linear parameterization of the time evolution
in the embedding space, representative of the underlying dynamics, analogously to RC representation
learning methods (Bianchi et al., 2020). Finally, these fitted parameters are used to compute the
similarity between the time series. Our main contributions branch out into different communities
investigating time series, namely, kernel design, RC and NVAR, bringing specific benefits to each of
them:

• From a kernel design perspective, we provide an NVAR kernel for UTS and MTS and a
general parameter setting based on simple heuristics. Based on our experiments on a wide
range of datasets, the proposed approach matches the state-of-the-art (SOTA) in terms of
accuracy and is considerably faster than SOTA, representing the best compromise between
accuracy and efficiency.

• From the perspective of RC, we advance its success for TS representation by incorporating
NVAR-made dynamics. The resulting model is more accurate, interpretable, and non-
recurrent, which overcomes difficulties in hyperparameter optimization and sheds light on
the potential RC performance.

• From an NVAR perspective, we extend the framework to real-world time series represen-
tation and kernels, well beyond the original work on forecasting synthetic, noise-free, and
chaotic dynamical systems (Gauthier et al., 2021).

• We establish a connection to Takens’ theorem (Takens, 1981) and the field of state space
reconstruction (Sauer et al., 1991), which theoretically underpin our approach, highlighting
a compelling avenue for the use of dynamical systems theory in machine learning.

1.1 Notation

Through the paper, we indicate variables as lowercase (x); constants as uppercase (X); vectors and
UTS as bold lowercase (x); matrices and MTS as bold uppercase X. An index between square
parenthesis x[n] indicates the n-th sample of a set. For an MTS X, the corresponding lower-case xt

indicates all dimensions at time stamp t while xd indicates dimension d at all timestamps.

2 Related methods

In this section, we provide a background on the previously proposed kernels for time series data,
grouped by category. Despite the abundance of time series similarity measures (Yang & Shahabi,
2004; Paparrizos & Gravano, 2015; Janati et al., 2020), we limit the discussion to PSD metrics.

Lock-step Lock-step approaches view time series as static vectors and directly use common
distance metrics (Cha, 2007). The PSD property is usually obtained by superposing a linear or radial
kernel (Schölkopf et al., 2002). This is very efficient, but ignores any temporal structure within the
series and is not applicable for different lengths.

Elastic Elastic measures account for time distortions (e.g. shifts) or different lengths between
sequences. Lu et al. (2008) proposed to interpolate the series and treat the problem as a distance
between curves. The Global Alignment Kernel (GAK) (Cuturi, 2011) and KDTW (Marteau &
Gibet, 2014) instead are built on the well-known Dynamic Time Warping (DTW) (Berndt & Clifford,
1994) and compute the similarity from the cost of one-to-many alignments between the series. The
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Shift-invariant kernel (SINK) (Paparrizos & Franklin, 2019) computes a cross-correlation similarity
in the Fourier domain. However, for the aforementioned methods, the computation of the pairwise
similarity is computationally expensive and does not account for the relations between different
attributes in the multivariate case.

Model-based Model-based kernels process the series with a probabilistic or deterministic model
and base the similarity on the extracted information. Such a model can be a single generative model,
as in the Fisher kernel (Jaakkola et al., 1999) or the probability product kernels (Jebara et al., 2004), or
a parameterized family of probability distributions, as in the autoregressive kernel (Cuturi & Doucet,
2011). Similarly to the latter, the Time Cluster Kernel (TCK) (Mikalsen et al., 2018) is obtained
from an ensemble of Gaussian mixture posteriors, sharing the same parametric form but trained on
different subsets of the dataset. Among non-probabilistic approaches, the Learned Pattern Similarity
(LPS) (Baydogan & Runger, 2016) uses an ensemble of regression trees to extract local patterns from
each series. The downside of all such methods comes from the specific functional form, which may
limit the generalizability of the extracted features. Ensemble methods are also unsuited for datasets
with few training samples.

Reservoir-based Reservoir Computing (RC) is a class of recurrent neural networks that keep
recurrent connections untrained in order to overcome the high cost of back-propagation through
time (Werbos, 1990) and the vulnerability to exploding and vanishing gradient (Pascanu et al., 2013).
Its simplest form, the Echo State Network (ESN) (Jaeger, 2001), is composed of three layers: an
input layer, a hidden layer of connected neurons (reservoir) and a readout layer:

input: ut = Winxt (1)

reservoir: rt = (1− α)rt−1 + αf(Art−1 + ut + ϵt) (2)

readout: yt = Woutrt + c (3)

where xt ∈ Rdx , ut ∈ Rdr and rt ∈ Rdr are, respectively, the input, its upscaling projection and
the reservoir states at time t (with dr ≫ dx and r0 := 0); 0 ≤ α ≤ 1 is the leak parameter; ϵt
is an additive noise and f is any non-linear activation function. The reservoir (A ∈ Rdr×dr ) and
the projection (Win ∈ Rdr×dx) matrices are kept untrained, while the readout (Wout ∈ Rdy×dr )
and the bias term (c) are learned by fitting the reservoir states to the output (yt ∈ Rdy ) via ridge
regression.

Despite their randomness, the reservoir states constitute a rich pool of heterogeneous features that give
complete knowledge of the underlying dynamical system generating the observed time series (Løkse
et al., 2017; Bianchi et al., 2020). In fact, as opposed to fitting a specific functional form, a solid
theoretical ground ensures the quality of the reservoir features (Hart et al., 2020; Gonon et al., 2023;
Gonon & Ortega, 2021; Hart et al., 2021). Nevertheless, performance is highly sensitive to the choice
of a large set of hyperparameters controlling the reservoir initialization and update (Lukoševičius,
2012). For instance, input scaling (||Win||) and spectral radius (ρ(A)) assure stable reservoir
dynamics (Gallicchio, 2019) and control the degree of injected nonlinearity. This is not easy to judge
and requires experienced insight into nonlinear dynamics. In general, the interpretation and setting
of ESN parameters is a complex task and, to this day, an active area of research (Dong et al., 2022;
Steiner et al., 2022; Zhang et al., 2022). Simple supervised optimization, such as cross-validation
(CV), is often prohibitive, as the optimization space is large and the recursive nature of the reservoir
forces the computation of Eq. 2 for the whole length of the series before assessing the performance
of one hyperparameter setting.

Regarding RC-based kernels, Chatzis & Demiris (2011) originally built a radial kernel directly on
top of the reservoir states. In Chen et al. (2013), all series are processed by a shared reservoir and
compared based on the respective readouts, which are individually trained on the one-step-ahead
prediction task (yt = xt+1). Finally, Bianchi et al. (2020) observed that more information is retained
by using yt = rt+1, and an effective kernel can be obtained by applying a radial function on the
vectorization of all the readout weights.
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Figure 1: Building of each representation vector in the NVAR kernel. The input series X is
concatenated with Rlag , which contains k lags of all input dimensions, and with Rnonlin, containing
products between dimensions of X and Rlag. Among all possible concatenation terms, only a
random subset of dimensions is considered. The readout then extracts the linear dynamics (Wout) of
the embedding states and the bias term (c) by performing a ridge regression fit along the temporal
dimension. These fit parameters are vectorized to form the representation.

3 Methodology

This section presents the main building blocks of NVAR models, followed by our proposal of an
NVAR-based kernel and a general setting for the hyperparameters that govern it.

3.1 The Nonlinear Vector AutoRegressive model

Recently, the work of Bollt (2021) has established a connection between the ESN architecture and
Nonlinear Vector AutoRegressive (NVAR) models. Under specific conditions, this takes the form of a
formal equivalence, where the coefficients of an NVAR process can be expressed in terms of A, Win

and Wout. By building on such equivalence, in Gauthier et al. (2021), the input layer (Eq. 1) and
the reservoir (Eq. 2) of an ordinary ESN are replaced with the deterministic operations that lead to a
feature matrix RNVAR. In detail, this is the result of concatenating three terms: the input series (X),
k lagged copies of the input, each of which is increasingly spaced by s time-stamps (Rlag), and all
possible products2 between lagged and unlagged dimensions, up to a polynomial order n (Rnonlin):

rlag,t =
[
xt−s ||xt−2s || ... ||xt−ks

]
rnonlin,t =

[
xt || rlag,t

]
⌈⊗⌉

[
xt || rlag,t

]
⌈⊗⌉ ... (n times)

RNVAR = X ||Rlag ||Rnonlin

(4)

where · || · is the column-wise concatenation and · ⌈⊗⌉ · performs the outer product and concatenates
all unique monomials.

This procedure is very efficient as it is non-recurrent and the size of RNVAR is usually smaller
than a typical reservoir. On top of that, it is determined by a small set of integer hyperparameters:
k, s and n. In principle, to sustain the equivalence to RC, an infinite amount of lags (k → ∞)
should be considered. Nevertheless, it has been observed that a small k with n = 2 can still perform
exceptionally well in typical dynamical systems forecasting tasks (Gauthier et al., 2021; Shahi et al.,
2022; Gauthier et al., 2022). However, applicability and performance of NVAR models beyond
forecasting yet remain largely unexplored, particularly in the context of representing and comparing
real-world time series data. In this regard, they present a promising solution to significantly enhance
RC representations and kernels.

3.2 NVAR kernel

We present here the NVAR kernel (NVARk), which integrates the NVAR framework with RC-based
kernel architectures. Given a pair of time series, X[i], X[j], with dimensionality dx of possibly
different lengths, NVARk operates in three steps, which we present in the following paragraphs.
Fig. 1 depicts a graphical reference, while Algorithm 1 explicits the algorithmic process.

2other forms of nonlinearity can be used depending on prior knowledge, but the polynomial functionals can
be motivated as universal approximators of dynamical systems (Franz & Schölkopf, 2006)
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Algorithm 1 NVAR kernel
input MTS list X[1 : N ], number of lags k, lag size s, embedding size d̄r

1: L = {(a, p) | a ∈ {1, ..., dx}, p = {1, ..., k}} (dimension a lagged p times)
2: P = {((a, p), (b, q)) | a, b ∈ {1, ..., dx}, p, q = {0, ..., k}} (all possible products)
3: samples← sample (d̄r − dx) elements from L ∪P at random
4: for i in [1 : N ] do
5: R[i]← X[i]
6: for elem in samples do
7: if elem = (a, p) is in L then
8: concatenate lag term: R[i]←

[
R[i] || xa

t−p×s[i]
]

9: end if
10: if elem = ((a, p), (b, q)) is in P then
11: concatenate nonlinear term: R[i]←

[
R[i] || xa

t−p×s[i] ∗ xb
t−q×s[i]

]
12: end if
13: end for
14: fit a linear model mapping rt−1[i] to rt[i]
15: vectorize fit parameters to obtain representation θ[i]
16: end for
17: for all representation pairs: Kij ← RBF(θ[i],θ[j])
output K

NVAR embeddings The general idea is to transform the time series using the NVAR map defined
by Eq. 4, with n = 2. However, for a given choice of the number of lags k, the resulting number
of additional dimensions scales with O(d2xk

2). For moderately high dx, this can result in high
collinearity and raise the curse of dimensionality in the following readout, making it slow and
inaccurate. It also limits the possible choices of k and, with it, the ability to capture longer-term
memory effects. The method, as it is, then only seems tractable in the context of dynamical systems,
where dx is usually very contained. To address this issue and make the method applicable to higher
dimensional datasets, we propose to concatenate just a random subsample of all possible dimensions:

RNVAR|d̄r
= X || r1 || r2 || ... || rd̄r−dx

(5)

with {ra}d̄r−dx
a=1 randomly sampled columns in [Rlag ||Rnonlin] with uniform probability and d̄r a

threshold hyperparameter (notation [i] is omitted for all terms and the same operations are applied to
time series [j]). This converts the deterministic NVAR map into a random feature map. We support
this choice in the following, by pointing out an unexplored connection of NVAR models to the theory
of state space reconstruction (SSR) (Kantz & Schreiber, 2004; Strogatz, 2018).

It is generally true that we can interpret the observed data as a realization of more complex underlying
dynamics (ϕ∗), acting on some unknown states (x∗): x∗t+1 = ϕ∗(x∗

t ). SSR focuses on using
the observed data (x) to construct embedded states (st) for which the dynamics is topologically
equivalent to ϕ∗, and thus a better representation of the underlying system (Casdagli et al., 1991).
In this regard, the celebrated Takens’ theorem (Takens, 1981) claims that a valid embedding, called
delay embedding (Packard et al., 1980), can be formed by concatenating the input with its lags
and, most importantly, guarantees that not all lags are needed, but only a sufficient number ℓ:
st = [xt, xt−s, xt−2s, ..., xt−ℓs]. More recently, the work of Deyle & Sugihara (2011) presented
a generalization of Takens’ theorem to multivariate inputs in which, to match ℓ, lags can be spread
over different observed dimensions and alternative functions of the input can also be considered. All
terms in the NVAR representation, i.e., lags and nonlinear terms, are reminiscent of this formulation,
hence our choice of not considering all terms, but posing instead an upper threshold on the number of
concatenation terms (Eq. 5).

This also allows for a different perspective on our approach. We can interpret RNVAR|d̄r
as an

attempt to create states for which the dynamics approximates the underlying one generating the data.
As there is generally a loss of information in the generation process, a comparison based on such
states would be more truthful than directly using the observed data. In practice, the presence of noise
separates us from obtaining such exact states (Casdagli et al., 1991) and places our method under the
field of embedology (Sauer et al., 1991), i.e., the building of delay-observation maps with special
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features, overcoming the sensitivity to noise in the original Takens’ formulation. This theoretical
framework is more extensively discussed in Appendix A.

An alternative to Eq. 5 would have been to generate the full NVAR representation followed by a
dimensionality reduction module as in Bianchi et al. (2020). In our preliminary evaluation, this
proved to be computationally more expensive and led to poorer performance, possibly because of the
dimensionality reduction not preserving the delay embedding structure.

Linear readout Individual linear readouts (Eq. 3) are trained by ridge regression to solve a one-
step-ahead prediction task on the same embedding states, i.e., using yt = rt+1. The parameters of
each model are then extracted and vectorized to obtain the representations θ[i] and θ[j]. This step
removes the dependence on the length of the TS, which means that the kernel can compare TS of
different lengths.

As the readout operates on the input concatenated with its lags and quadratic products, these rep-
resentation vectors can be interpreted as encapsulating statistics related to the auto-mutual and
mutual information within the dimensions of the input. In contrast, representations from RC methods
encompass hardly interpretable reservoir dynamics.

RBF aggregation Finally, a radial function is used to ensure the PSD property and form the kernel:

K(X[i],X[j]) = exp
{
−

∣∣∣∣θ[i]− θ[j]
∣∣∣∣2/ 2γ2

rbf

}
(6)

3.3 Hyperparameter setting

We display here the hyperparameters to construct NVARk and propose heuristic expressions.

Number of lags (k) and lag size (s) The parameters k and s play pivotal roles in the NVAR frame-
work (Eq. 4) and, consequently, in our approach. These key parameters are of clear interpretation: k
controls the number of lags and extends memory capacity, i.e., capturing significant dependencies
that extend further into the past; s controls the spacing between lags, which manages the temporal
resolution at which these dependencies are probed. In contrast, key RC parameters are arguably less
interpretable.

In Takens’ formulation, in the case of infinitely long, noise-free time series, there is no importance
bias towards any specific lag s, and their number k is the only relevant factor. This is often determined
using the False Nearest Neighbours algorithm (Kennel et al., 1992; Wallot & Mønster, 2018).
However, when dealing with limited noisy observations, the choice of s becomes equally critical
as it directly relates to the sampling frequency (Broomhead & King, 1986). In particular, using
too high a value would force a modeling of uncorrelated points while too low would model noise.
A correct choice of s instead allows for extracting seasonality or other relevant trends as well as
the underlying dynamics. In practice, for noisy systems, the choice of both k and s is inherently a
difficult problem due to the absence of clear theoretical guidelines (Tran & Hasegawa, 2019). Despite
that, interpretability can be exploited to propose task-dependent heuristics (Small & Tse, 2004), often
requiring a trade-off between redundancy and the irrelevance of concatenated features.

In this work, we propose two settings. The first is a rule of thumb and proceeds as follows. We first
apply a trend-filtering method to the time series, such as an ℓ1 trend (Kim et al., 2009) (this allows for
a choice of s that captures the temporal variability of the system rather than the superposed noise). We
then set the product k ·s as the average distance between peaks and hollows (dbp) (Kugiumtzis, 1996).
Finally, we balance the contributions by adopting s = k =

√
dbp. Alternatively, in a supervised

setting, both parameters are optimized by CV.

Polynomial order (n) The polynomial order controls the amount of non-linearity in the embedding.
As in most previous works, we found no need for further complexity than n = 2.

Embedding dimension (d̄r) In Takens’ formulation, an embedding size double the dimensionality
of the underlying manifold is sufficient for reconstructing the system dynamics. However, when
dealing with real-world data, this is unknown, and a trade-off must be struck between the omission
of relevant features and redundancy, which can increase collinearity and computation times. In
line with the scope of our work, we choose to give priority to a fair comparison with previous RC
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methods (Bianchi et al., 2020), which identify d̄r = 75 as an optimal dimensionality before the
readout. In Appendix C.1, we undertake a brief exploration to determine whether this value is also a
reasonable choice for NVAR embeddings. While we did not observe any redundancy in univariate
datasets, we did observe a performance drop after different d̄r for some multivariate datasets. The
study suggests 70 ≲ d̄r ≲ 100 as a suitable range.

Linear readout regularization (λridge) For the readout, we adopt the optimal regularization
(OCReP) proposed in Cancelliere et al. (2015), i.e., set λridge to the product between the minimum
and maximum singular value of RNVAR|d̄r

.

RBF lengthscale (γrbf ) We set the lengthscale in Eq. 6 to the median pairwise distance between
all the representations θ[i] in the training set.

3.4 Asymptotic complexity

NVARk is based on the individual representations of time series. Hence, the computationally intensive
step is performed only once per time series and results in O(N) complexity. This also implies that
the computation can be parallelized along N. This provides a significant computational advantage
over comparison-based kernels, which must perform expensive computations for all the relevant pairs
of series, i.e., O(N2).

In terms of scalability with the length of the series (T ), the advantage of NVAR over any recursive
RC approach is the critical difference in how the hidden states are created. Eq. 5 is not iterative and
only performs a fixed number d̄r − dx of concatenation operations, independent of the length of the
time series. In contrast, reservoir-based methods are limited by the expensive recursive update of
the reservoir state (Eq. 2), which is O(Td2r), where dr is the size of the reservoir (which is usually
quite large). As evidence, improving the scalability of the reservoir update is an active area of
research (Dong et al., 2020). The complexity of NVARk is limited to the only ridge regression of the
output layer. This corresponds to solving a linear system with T training examples and D features,
where D is at most d̄r. Such a system can usually be solved efficiently, e.g. by using LU (or Cholesky)
factorization in asymptotically O(T d̄2r).
As for the scalability with the dimensionality of the input series, all operations are bounded by d̄2r ,
which we treat as a constant and do not discuss complexity in connection to this parameter. Overall,
NVARk exhibits an asymptotic complexity at most O(NTd̄2r).

4 Experimental evaluation

In this section, we present an experimental demonstration of the performance of NVARk. In line
with the established literature (Cuturi, 2011; Cuturi & Doucet, 2011; Baydogan & Runger, 2016;
Paparrizos et al., 2020), our main evaluation consists of time series classification. In particular, we pair
different pre-computed kernel matrices with a Support Vector Machine (SVM) classifier (Steinwart &
Christmann, 2008), a popular kernel classification method that lies between simple linear models
and more advanced deep learning architectures. The evaluation is performed over 130 UTS datasets
from the UCR archive and 19 MTS datasets from the UEA archive (Bagnall A. & E.) (Appendix B.1)
and focuses on accuracy, execution time and scalability. In Appendix C.5, we present a snapshot of
kernel Principal Component Analysis (kPCA) for dimensionality reduction and visualization.

Performance of the proposed approach is investigated under two different hyperparameter settings.
We indicate with NVARk the setting in which k and s are determined by the general proposed rule
of thumb of Sec. 3.3. The maximum number of dimensions is set to d̄r = 75. As for the other
hyperparameters, we follow the setting given in Sec. 3.3. We instead indicate with NVARk* the
configuration in which k and s are optimized in a CV loop over a small grid. As the datasets cover a
wide range of series lengths, the CV grid is slightly adapted consequently (Appendix. B.2).

The comparison is performed against previously proposed kernels: the reservoir-model Echo State
Network (rmESN) (Bianchi et al., 2020) as the reservoir equivalent to our approach. We set D = 75
as the dimensionality before the linear readout. This allows us to directly compare the quality of the
extracted dynamic features with or without a reservoir; the Time Cluster Kernel (TCK) (Mikalsen
et al., 2018) as representative of model-based kernels and SOTA for MTS; the Shift-INvariant
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Kernel (SINK) (Paparrizos & Franklin, 2019) as representative of Fourier-based methods and SOTA
for UTS. A comparison with the Global Alignment Kernel (GAK) (Cuturi, 2011) is presented in
Appendix C.4. Guidelines in Appendix B.2 contain the hyperparameter settings and links to the code
implementations for NVARk and all the aforementioned baselines.

Despite the fact that some datasets in our benchmark can be also investigated using Deep Learning
(DL) methods (Ismail Fawaz et al., 2019), the use case for kernel methods is substantially different,
usually focused on small datasets, where the application of DL is not trivial. In particular, kernels can
compute the similarity between just two time series right away. Consequently, in the literature, kernels
are usually not directly tested against DL. Nevertheless, in our work, we compare to ESN-based
representations, which are known to be competitive with a variety of DL architectures (Bianchi et al.,
2020; Shahi et al., 2022). Thus, ESN can be seen as a proxy for more complex architectures.

As preprocessing, we apply zero-padding to match all series to the maximum length in each dataset
(to allow comparison with TCK) and follow the common practice of standardizing all series to zero
mean and unit variance. For each dataset-method pair, we allow for a maximum execution time of 20
hours.

4.1 SVM classification of UTS

We show here SVM classification for univariate datasets. SVM requires the setting of the hyperplane
regularization C, which we optimize in a CV loop from logarithmically spaced values in [10−3,103].
This is the only free parameter in all methods except NVARk*, in which it is jointly optimized with k
and s. For the CV loop, we adopt a 10-fold CV with the size of the validation set corresponding to
33% of the train set. SVM accuracy for each dataset is obtained by averaging 10 repetitions with
different seeds. Tab. 1 reports the average classification accuracy for all kernels within the presented
framework, as well as the relative ranking (individual results are reported in Appendix D). Overall,

Table 1: SVM classification of UTS datasets, performance metrics across 130 datasets.

NVARK* NVARK RMESN TCK SINK

AVERAGE SCORE 0.803 0.779 0.757 0.726 0.771
AVERAGE RANK / 2.14 2.62 2.85 2.20
N FIRST RANKED / 52 26 23 43
MEDIAN TIME (S) / DATASET 14.27 0.59 40.87 44.24 23.73

NVARk obtains very competitive results, with the highest average accuracy and rank. The case of
univariate datasets is a comfortable scenario for NVARk to operate in as, in most cases, all possible
terms in RNVAR can be considered without exceeding d̄r and the effect of collinearity is minimized.
NVARk and SINK appear indistinguishable under a Friedman + Nemenyi statistical test, which places
NVARk under the SOTA in terms of accuracy. Interestingly, the difference between NVARk and
rmESN is significant at the 95% level with p-valueNVARk−rmESN = 0.013. Results for NVARk* show
that the performance of NVARk can be very efficiently improved by a CV optimization of just the
two integer embedding hyperparameters.

4.2 Execution time and scalability

In terms of execution time, the scalability properties of NVARk (Sec. 3.4) manifest in exceptional
performance. In Fig. 2 (left) and Tab. 1 (last row), we compare running times to compute the train-
train and the train-test kernel matrices and observe that the improvement of NVARk is consistent
across datasets and baselines, with speedup factors up to ×103 in the high-T and high-N regimes.

Results for NVARk* can be achieved with a slowdown factor of ∼ 25 (parallelized grid search +
1 iteration with optimal parameters) with respect to the heuristic-based NVARk. Interestingly, for
113/130 datasets, NVARk* execution time is faster than a single iteration for rmESN.

For a study of the scaling, in Fig. 2 (middle, right) we progressively vary the length of the Abnormal-
Heartbeat dataset (by interpolation) and the number of training samples (by random sampling) in the
Crop dataset. Results show that NVARk performs exceptionally well in all regimes, while rmESN
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Figure 2: Left: For all univariate datasets, the plot shows the ratio between the execution time to
compute the train-train and train-test kernels of different methods and NVARk. Middle: Scalability
of kernels with the series length. Right: Scalability of kernels with the training size.

scales poorly with the length of the series and TCK and SINK with the size of the training sample.
NVARk, instead, is advantaged by its non-recursive structure and linear complexity in N .

4.3 SVM classification of MTS

We present here SVM classification over the 19 MTS datasets. We do not include SINK as there is no
extension or evaluation provided for MTS. Aside from that, the evaluation is conducted identically
to the univariate case. For multivariate datasets, we expect to drift away from the ideal operating

Table 2: SVM classification of MTS datasets. Average across 10 seeds. Best accuracy is in bold.

DATASET NVARK* NVARK RMESN TCK

SPOKENARABICDIG. 0.980±0.004 0.980±0.003 0.948±0.004 0.985±0.002

JAPANESEVOWELS 0.981±0.008 0.975±0.007 0.968±0.004 0.961±0.004

PENDIGITS 0.986±0.000 0.983±0.000 0.976±0.001 0.954±0.001

RACKETSPORTS 0.889±0.019 0.847±0.007 0.859±0.008 0.872±0.006

LSST 0.566±0.009 0.543±0.006 0.597±0.009 0.474±0.008

LIBRAS 0.972±0.000 0.900±0.000 0.824±0.010 0.793±0.010

FINGERMOVEMENTS 0.572±0.034 0.581±0.032 0.576±0.022 0.505±0.030

NATOPS 0.896±0.020 0.895±0.019 0.828±0.015 0.806±0.016

CHARACTERTRAJ. 0.982±0.000 0.915±0.008 0.987±0.002 0.974±0.002

ERING 0.898±0.021 0.864±0.025 0.814±0.014 0.957±0.005

BASICMOTIONS 1.000±0.000 0.938±0.027 0.995±0.011 1.000±0.000

ARTICULARYWORDREC. 0.978±0.008 0.976±0.005 0.986±0.006 0.983±0.003

EPILEPSY 0.986±0.000 0.986±0.000 0.971±0.005 0.947±0.005

UWAVEGESTURELIB. 0.946±0.003 0.939±0.011 0.862±0.007 0.868±0.007

SELFREGULATIONSCP1 0.746±0.017 0.688±0.032 0.769±0.019 0.827±0.007

SELFREGULATIONSCP2 0.566±0.017 0.567±0.028 0.511±0.027 0.488±0.014

CRICKET 0.979±0.010 0.986±0.000 0.982±0.006 0.958±0.000

STANDWALKJUMP 0.433±0.047 0.607±0.049 0.373±0.056 0.433±0.079

EIGENWORMS 0.944±0.009 0.950±0.012 0.939±0.013 0.594±0.000

AVERAGE SCORE 0.858 0.848 0.830 0.809
AVERAGE RANK / 1.68 2.05 2.26
N FIRST RANKED / 11 3 5
MEDIAN TIME (S) / DATASET 19.67 3.87 26.47 184.08

scenario of NVARk. In particular, all the possible dynamic features may not be equally effective
and, by randomly selecting a few, important correlations may be missed or spurious ones captured.
Despite that, the experiments in Tab. 2 show surprisingly good results, even for datasets for which
d̄r is just a fraction of all possible concatenation terms. We believe that this finding strengthens the
connection to the generalized Takens’ theorem. It is also interesting to notice good performance in
diverse cases of time series that do not immediately arise from dynamical systems. Exploring this
aspect constitutes interesting future works, e.g., time series representation learning and state space
reconstruction as a possible underpinning.
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Finally, we observe that the two hyperparameter configurations, NVARk* and NVARk, tend to be
ranked next to each other. This supports the quality of the proposed general setting, which allows the
kernel to extract meaningful features while preserving great computational efficiency.

4.4 Ablation study

In order to tease out which NVARk component is most important, we here present an ablation study.
We separately consider fitting the linear readout directly on the input time series (no concatenation),
sampling only linear terms from Eq. 5, and sampling only non-linear terms. This is an interesting
ablation study that, to the best of our knowledge, has not been investigated in previous works. Results
are presented in Tab. 3.

Table 3: Ablation study across 130 UCR univariate and 19 multivariate UEA datasets

no concat linear only non-linear only all balanced

SVM score for mean 0.536 0.707 0.764 0.779 0.779
univariate datasets std 0.010 0.008 0.006 0.006 0.006

SVM score for mean 0.765 0.840 0.840 0.848 0.849
multivariate datasets std 0.012 0.008 0.013 0.014 0.012

As a general trend, we observe that using all terms leads to the best results, followed by non-linear
only, linear only, and fitting directly on the input series. Note also that results are in line with our
interpretation using the generalized Taken’s theorem. For univariate datasets, linear only tends to
underperform, as the total number of concatenated dimensions is very small (equal to k) and may be
not sufficient in reconstructing the underlying manifold. In the multivariate case, the two variants
perform very similarly, as the lags of all attributes may already constitute a considerable pool of
terms.

To conclude, we consider an additional variant of Eq. 5 in which we first concatenate all the lag
terms, and then fill the remaining dimensions, up to d̄r, by sampling nonlinear terms. Interestingly,
for multivariate datasets, this leads to slightly better performance and a reduction in variance. We
believe this might eventually compensate for the imbalance between all possible linear and non-linear
terms, while also reducing the chance of adding noise from uncorrelated dimensions.

5 Conclusions

We have proposed a kernel for time series that integrates the NVAR framework into reservoir-
based kernel architectures. NVARk compares time series based on the linear dynamics of NVAR
embeddings, which are built from concatenating lags and nonlinear functionals to the original series.
In terms of accuracy, NVARk outperforms the corresponding RC architecture. Computationally, it is
exceptionally efficient and based on a few integer hyperparameters, which together allow for further
improvement of the results with simple supervised grid-based optimization.

As for future work directions, we believe it would be effective to target specific weaknesses of NVARk.
In particular, as the input dimensionality of the time series approaches the maximum embedding
dimension (d̄r), the proposed approach finds little margin for concatenating more lags and non-linear
terms. Such cases would require substantially increasing d̄r and, consequently, place excessive strain
on the linear readout, which inherently possesses limited expressive capacity. We then expect the
effectiveness of NVARk to decrease. To overcome this, one can consider replacing the random
sampling of dimensions with more refined strategies that prioritize the selection of meaningful terms.
Alternatively, it would be interesting to explore how different linear layers, e.g. Lasso, would perform
in this regime. Alongside these, different unsupervised strategies can be considered to learn optimal
values for the embedding parameters. In particular, we note an unexplored affinity with signature
transforms (Chevyrev & Kormilitzin, 2016), which we plan on deepening to infer optimal settings for
the maximum dimensionality of the NVAR embedding.
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Appendix

A Takens’ delay embeddings

This section introduces the field of state space reconstruction in dynamical system theory (Strogatz, 2018) and
deepens the theoretical interpretation of Sec. 3.2. As in Deyle & Sugihara (2011), we start by defining some key
concepts that might be useful to introduce the reader to the subject:

• a manifold is, intuitively, a generalized surface M ⊆ RN that locally looks like an Euclidean space.
More rigorously, locally diffeomorphic to some Rk;

• a dynamical system ϕ : M → M is a diffeomorphism defining, for discrete times, trajectories on a
manifold M;

• an embedding is a 1:1 smooth map f : M1 → M2 between two manifolds. Embeddings preserve
topological properties, e.g. resolves all trajectories without crossings, and geometrical invariants, such
as eigenvalues and fixed points;

• an observation function y : M → RD is any function that assigns a vector to each point on M.

It is generally true that we can imagine an observed MTS X ∈ RT×D as a realization of a more complex and
unknown smooth dynamical system ϕ∗, acting on states x∗ on an unknown manifold M∗:

x∗
t+1 = ϕ∗(x∗

t ) (7)

The observed and original values are related by an observation function y∗ : M∗ → RD that projects the
underlying states onto what we observe:

xt = y∗(x∗
t ) (+ ϵt ) (8)

This projection can drastically reduce the available information, but one can wonder to which extent it is possible
to recover the original system when only the observed vectors (xt) are accessible. We focus here on the state
reconstruction problem, which is that of finding a valid embedding f : M∗ → Rn of the original manifold M∗:

st = f(x∗
t ) (9)

This is, by using the observed states (xt), creating richer states (st) for which the dynamics is topologically
equivalent to the unknown ϕ∗. In fact, if f is an embedding, then smooth dynamics Φ is induced on the space of
reconstructed vectors:

Φ(st) = f ◦ ϕ∗ ◦ f−1(st) (10)
and is equivalent to ϕ∗. If we succeed, instead of the observed x, we can use the reconstructed vectors s as a
better representation of the underlying evolving system x∗.

Whitney’s theorem (Whitney, 1936) states the general result that every compact m-dimensional manifold admits
an embedding in R2m+1. For dynamical systems this means that, a set of 2m+ 1 observation functions, where
yk : M → R, is sufficient to construct a valid embedding:

st = [y1(x∗
t ), y2(x

∗
t ), ..., y2m+1(x∗

t )] (11)
In the case of scalar observations (D=1), Takens’ theorem (Takens, 1981) considers a single observation function
(y), i.e., the projection on the only observed component, but acting on multiple lagged versions of the system:

st = [y(x∗
t ), y(ϕ(x

∗
t )), y(ϕ

2(x∗
t )), ..., y(ϕ

2m(x∗
t ))]

= [xt, xt−τ , ..., xt−2mτ ]
(12)

The idea behind Eq. 12 is that the information about the unobserved state variables is contained in the relations
between past and future values of the observed time series and a 2m+ 1 dimensional embedding (often less) is
sufficient to extract that.

Generalized versions of Takens’ theorem have also been formulated. In particular, we find in Deyle & Sugihara
(2011) an extension to cases where lags of multiple observation functions can be used to create the embedding.
This is a useful result in cases where one cannot consider many lags, but can instead make use of fewer lags
spread across multiple available dimensions. In more detail, the allowed set of observation functions is any
{yk}2m+1

k=1 containing terms {yr} that cannot be written as a lagged version of any other element in the set
and terms {yq} that satisfy yq = yr(ϕ

b(x∗)) for a choice of b. Both Takens’ and Whitney’s theorems can be
recovered from this formulation: it reduces to the case of Takens’ when only one {yr} = y is chosen and all the
others belong to the family of {yq}; it reduces to the case of Whitney’s when {yr} = {yk} and {yq} = ∅.

All terms in the NVAR representation are reminiscent of this formulation. This points to the direction of
RNV AR being a closer approximation of the underlying state than the initial data X and also suggests that
the final number of dimensions plays a more important role than which are included and which are not. In
practice, the dimensionality m of the original manifold M∗ is unknown, making the selection of the embedding
dimensionality a potentially rich field of study. On top of that, the observed data may be corrupted by multiple
noise sources, which increases the importance of sampling the series correctly with a meticulous choice of the
lag size (τ ≡ s).
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B Experimental evaluation details

B.1 Datasets

Details of the 130 Univariate and 19 Multivariate datasets are reported in Tab. 4. Both cover an extensive range
of data points and series lengths. From the UEA archive, we have excluded 6 high-dimensional datasets for
which the application of the NVAR kernel is not appropriate, and 5 datasets for which SVM accuracy was < 0.5
for all approaches, which indicates that kernel methods are, in general, not a suitable solution.

Table 4: Attributes of UTS and MTS datasets. The splitting between the training and testing set is
provided by the respective archive.

UTS DATASET Ntrain Ntest T D Nclass

130 DATASETS 16÷ 8926 20÷ 16800 15÷ 18530 1 2÷ 60

MTS DATASET Ntrain Ntest Tmin Tmax D Nclass

SPOKENARABICDIG. 6599 2199 4 93 13 10
JAPANESEVOWELS 270 370 7 29 12 9
PENDIGITS 7494 3498 8 8 2 10
RACKETSPORTS 151 152 30 30 6 4
LSST 2459 2466 36 36 6 14
LIBRAS 180 180 45 45 2 15
FINGERMOV. 316 100 50 50 28 2
NATOPS 180 180 51 51 24 6
CHARACTERTRAJ. 1422 1436 60 182 3 20
ERING 30 270 65 65 4 6
BASICMOTIONS 40 40 100 100 6 4
ARTICULARYWORDREC. 275 300 144 144 9 25
EPILEPSY 137 138 206 206 3 4
UWAVEGESTURELIB. 120 320 315 315 3 8
SELFREGULATIONSCP1 268 293 896 896 6 2
SELFREGULATIONSCP2 200 180 1152 1152 7 2
CRICKET 108 72 1197 1197 6 12
STANDWALKJUMP 12 15 2500 2500 4 3
EIGENWORMS 128 131 17984 17984 6 5

B.2 Implementations and details for reproducibility

For reproducibility, we list here the parameter setting and the code implementation for each method. Experiments
were run on a 32-core AMD Ryzen™ Threadripper PRO CPU.

NVAR kernel (NVARk)

• the allowed number of lags k =
√

average distance between peaks and hollows, after series have been
ℓ1 trend-filtered (Kim et al., 2009);

• lag size s = k;

• order of the polynomial functionals n = 2;

• maximum dimensionality of the embedding d̄r = 75;

• readout regularization set by the OCReP method (Cancelliere et al., 2015);

• RBF lengthscale as the median pairwise distance between the representations.

An easy-to-use Python implementation of the NVAR kernel is made publicly available at https://github.
com/gdefe/nvark-kernel.
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Table 5: Grid values for the CV optimization of the NVARk embedding parameters.

DATASET CV GRID

T < 400 K=[1,2,3,4,5,K*], S=[1,2,3,4,5,S*]
T ≥ 400 K=[1,2,3,4,5,10,20,K*], S=[1,5,10,20,S*]

SPOKENARABICDIGITS K=[1,2,3,4,K*], S=[1,2,3,4,S*]
JAPANESEVOWELS "
PENDIGITS "
RACKETSPORTS "
LSST "
LIBRAS "
FINGERMOVEMENTS "
NATOPS "
CHARACTERTRAJECTORIES K=[1,2,3,4,10,20,K*], S=[1,5,20,S*]
ERING "
BASICMOTIONS "
ARTICULARYWORDRECOGNITION "
EPILEPSY "
UWAVEGESTURELIBRARY "
SELFREGULATIONSCP1 "
SELFREGULATIONSCP2 "
CRICKET "
STANDWALKJUMP "
EIGENWORMS "

optimized NVAR kernel (NVARk*) The lag size s and the allowed number of lags k are optimized in a
CV loop scrolling a small grid. Values for the grid are reported in Tab. 5. k∗ and s∗ refer to the values obtained
from the rule of thumb.

In general, one should allow for larger values for k and s in the case of longer series. A higher k allows capturing
longer-term dynamics, while a larger s avoid oversampling the series. In the case of multivariate datasets, we
observed that many lags are hardly required. This is possible because few lags spread across different dimensions
can be sufficient to construct the embedding. Also, the pool of features ([Rlag ||Rnonlin]) largely increases with
the dimensionality of the dataset and k, which affects the stability of the approach.

reservoir-model ESN (rmESN) For the rmESN, we follow the setting given in Bianchi et al. (2020):

• number of internal reservoir units R = 800;

• spectral radius ρ = 0.99;

• no leakage;

• percentage of non-zero connectivity within the reservoir states β = 0.25;

• input scaling ω = 0.15;

• noise level in the reservoir update ϵt = 0.001;

• transient dropped states ndrop = 5;

• number of dimensions after the dimensionality reduction module D = 75 (via tenor-PCA, also
proposed in the same paper);

• favoring comparability with NVARk, we set the readout regularization by the OCReP method;

• favoring comparability with NVARk, we set the RBF lengthscale to the median pairwise distance
between the representations.

As implementation, we used the public Python code provided by the authors: https://github.com/
FilippoMB/Time-series-classification-and-clustering-with-Reservoir-Computing.
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Time Cluster Kernel (TCK) For TCK, we follow the guidelines given in the original paper and in the
provided code. For a dataset of N samples and D attributes, these are:

• minimum percentage of subsample minN = 0.8;

• min number of attributes for each GMM minD = 1 for univariate datasets, minD = 2 for multivari-
ate datasets;

• max number of attributes for each GMM maxD = min(ceil(0.9 ∗D), 15);

• min length of time segments for each GMM minT = 6;

• max length of time segments for each GMM maxT = min(floor(0.8 ∗ T ), 25);
• max number of mixture components for each GMM C = 10 if N < 100, C = 40 otherwise;

• number of randomizations for each number of components G = 30;

• number of iterations I = 20.

The Matlab implementation of TCK that we use is part of the code available at https://github.com/
FilippoMB/TCK_AE.

Global Alignment Kernel (GAK) We set the multiplicative factor for the bandwidth of the radial function
to σGAK = 2. Python code is available from the tslearn package (Tavenard et al., 2020). As reported in the
package documentation, the method can lead to numerical issues for long series.

Shift INvariant Kernel (SINK) For SINK, we adopted the Python implementation provided by the
author at https://github.com/TheDatumOrg/grail-python. We use γ = 5 and retain all the energy after
Fourier-transforming the series.

C Additional experiments

C.1 Feature redundancy

For studying whether previously adopted values for the embedding dimensionality (d̄r) are also suitable
for NVARk, we adopted an experimental approach and studied how many features can be included before
experiencing redundancy. We do so by plotting, for a few univariate and multivariate datasets, the accuracy of
an SVM classifier against the d̄r parameter (Fig. 3). While do not observe redundancy in univariate datasets,

Figure 3: For some univariate (left) and multivariate (right) time series datasets, the plots show
the accuracy of an SVM classifier against the NVAR embedding dimensionality d̄r. Embedding
parameters are indicated as (k/s) and determined via the proposed rule of thumb. Features redundancy
manifests for some multivariate datasets (Cricket, UWaveGestureLibrary) as an accuracy drop.

we do observe a drop in performance after different d̄r for some multivariate datasets. We identify the region
70 ≤ d̄r ≤ 100 as a good, though non-optimal, setting, which is in line with previous RC studies (Bianchi et al.,
2020).
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C.2 Sensitivity analysis

In this section, we address the sensitivity of NVARk to the different hyperparameters:

Figure 4: Sensitivity of NVARk to the hidden dimensionality (left), evaluated across 16 multivariate
datasets; sensitivity to the regularization parameter (center) and RBF lengthscale (right), evaluated
across 20 randomly sampled univariate datasets. Red arrows indicate our parameter’s choice.

• d̄r: as we show in Fig. 4 (left), the average performance for multivariate datasets is not considerably
impacted in the range d̄r ∈ [70, 150]. As expected, we observe a significant drop in performance for
high values (redundancy).

• λridge: we show in Fig. 4 (center) little sensitivity in the region λridge ∈ [5, 50]. Results are averaged
across a pool of 20 randomly sampled univariate datasets. The employed OCReP method (Cancelliere
et al., 2015) outperforms the best choice by ∼ 2%, as it adapts the value to each individual dataset.

• γrbf: in Fig. 4 (right), we range different multiplicative factors for the median pairwise distance between
all representations and show little sensitivity in a neighborhood of our choice γrbfmul = 1.

• k and s: The sensitivity to the embedding parameters strongly depends on the dataset, although it
generally tends to be high. In response, we introduce our dataset-specific heuristic adapting ideas
from a precedent study (Kugiumtzis, 1996), which we find works well in practice. A reasonable
idea of the average sensitivity to these parameters can be obtained by comparing the performance of
NVAR, where k and s are chosen by the heuristic, to the performance of NVARk*, where k and s are
optimized. Unfortunately, understanding sensitivity by considering other settings is challenging, as
the existing literature predominantly focuses on the noise-free case. Furthermore, there is no strong
evidence for the wider applicability of such approaches outside dynamical systems.

C.3 Uneven lengths

NVARk can process and compare time series of different lengths. We report in Tab. 6 the SVM accuracy scores
for three datasets with uneven lengths.

Table 6: SVM classification accuracy for datasets with uneven lengths marked with the [dL] notation.
For comparison, here are copied the respective results from Sec. 4.3 after zero padding preprocessing.

DATASET NVARK* NVARK
SPOKENARABICDIGITS [DL] 0.971±0.003 0.971±0.003

SPOKENARABICDIGITS 0.980±0.004 0.980±0.003

JAPANESEVOWELS [DL] 0.973±0.007 0.975±0.004

JAPANESEVOWELS 0.981±0.008 0.975±0.007

CHARACTERTRAJECTORIES [DL] 0.983±0.005 0.933±0.000

CHARACTERTRAJECTORIES 0.982±0.000 0.915±0.008

C.4 Comparison with Global Alignment Kernel

We compare here the performance of the NVAR kernel against the popular Global Alignment Kernel (GAK)
baseline from Cuturi (2011). This has been moved from the main text as authors of SINK have already
demonstrated superior performance to GAK, following a similar evaluation. As reported in the tslearn package
documentation, the provided implementation can lead to numerical issues when used with relatively long time
series. To face this, we evaluate GAK on time series linearly interpolated to T = 400 when their length exceeds
this threshold. We report in Tab. 7 the average results across 122 univariate datasets. We report in Tab. 8 results
for the multivariate datasets. Datasets interpolated to T=400, before being processed by GAK, are marked with
the symbol (*).
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Table 7: Average performances for NVARk and GAK across 130 univariate datasets.

NVARK* NVARK GAK

AVERAGE SCORE 0.803 0.779 0.728
N FIRST RANKED / 77 56

Table 8: SVM classification of MTS datasets. Average across 10 seeds. Best accuracy is in bold.

DATASET NVARK GAK

SPOKENARABICDIG. 0.980±0.003 time limit
JAPANESEVOWELS 0.975±0.007 0.974±0.002

PENDIGITS 0.983±0.000 0.978±0.000

RACKETSPORTS 0.847±0.007 0.836±0.008

LSST 0.543±0.006 0.500±0.000

LIBRAS 0.900±0.000 0.783±0.007

FINGERMOVEMENTS 0.581±0.032 0.565±0.035

NATOPS 0.895±0.019 0.918±0.003

CHARACTERTRAJ. 0.915±0.008 0.988±0.000

ERING 0.864±0.025 0.931±0.002

BASICMOTIONS 0.938±0.027 0.995±0.011

ARTICULARYWORDREC. 0.976±0.005 0.980±0.000

EPILEPSY 0.986±0.000 0.845±0.004

UWAVEGESTURELIB. 0.939±0.011 0.865±0.002

SELFREGULATIONSCP1 0.688±0.032 0.902±0.008(∗)
SELFREGULATIONSCP2 0.567±0.028 0.526±0.017(∗)
CRICKET 0.986±0.000 0.958±0.000(∗)
STANDWALKJUMP 0.607±0.049 0.333±0.172(∗)
EIGENWORMS 0.950±0.012 0.482±0.005(∗)
AVERAGE SCORE 0.848 0.756
N FIRST RANKED 13 6

C.5 Example kPCA visualization

Despite the underlying equivalence between NVAR and simple RC, better performance can be obtained by
finding a better parameter setting, which is not trivial for RC. In our approach, a better setting is easier to find
with fewer and more interpretable parameters. Here, we aim to visually highlight the possible extent of the
differences between NVAR and rmESN, i.e., theoretically equivalent methods under different working points. To
do so, we projected the data onto the first principal components using different kernel matrices (kPCA). When
inspecting the projections for different datasets, we observed a few critical differences, predominantly for longer
series. One example is illustrated in Fig. 5 (CinCECGTorso dataset). These appear in the form of a qualitatively

Figure 5: kPCA visualization of the CinCECGTorso dataset. Projection onto the first three principal
components obtained with different kernels. Different colors correspond to different classes.

better grouping and class separation in the projected space. Tracing back the origin of this improvement, e.g., a
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better working point or a better resilience to noise, would represent interesting future work. For an alternative
visualization, we display here the two-dimensional projection of the CinCECGTorso dataset using different
kernels.

D Individual results for SVM classification of UTS

We report here the individual accuracies obtained under the SVM classification framework of univariate time
series of Sec. 4.1. Each accuracy is obtained as a mean of 10 repetitions with 10 different random seeds. For
readability, the standard deviation over the runs is not reported. Datasets interpolated to T=400, before being
processed by GAK, are marked with the symbol (*).

Table 9: SVM classification of 130 UTS datasets, individual performance. Results are averaged
across 10 different seeds.

NVARk* NVARk rmESN TCK GAK SINK

ACSF1 0.835 0.826 0.792 0.646 0.396 0.800
AbnormalHeartbeat 0.707 0.737 0.688 0.733 0.716(∗) 0.730
Adiac 0.749 0.709 0.638 0.623 0.598 0.731
AllGestureWiimoteX 0.673 0.676 0.608 0.471 0.527(∗) 0.584
AllGestureWiimoteY 0.733 0.631 0.693 0.444 0.548(∗) 0.651
AllGestureWiimoteZ 0.674 0.625 0.591 0.452 0.505(∗) 0.622
ArrowHead 0.823 0.834 0.577 0.672 0.794 0.842
BME 0.973 0.927 0.983 0.967 0.953 0.971
Beef 0.847 0.590 0.783 0.610 0.897(∗) 0.933
BeetleFly 0.800 0.950 0.880 0.645 0.850(∗) 0.850
BirdChicken 0.850 1.000 0.785 0.590 0.700(∗) 0.800
CBF 0.979 0.958 0.894 0.968 0.925 0.994
Car 0.833 0.733 0.612 0.693 0.825(∗) 0.800
CatsDogs 0.737 0.726 0.709 0.663 0.626(∗) 0.725
Chinatown 0.950 0.962 0.944 0.985 0.973 0.969
ChlorineConcentration 0.868 0.701 0.847 0.568 0.601 0.879
CinCECGTorso 0.914 0.849 0.834 0.850 0.888(∗) 0.749
Coffee 0.964 0.964 1.000 0.971 0.968 1.000
Computers 0.776 0.685 0.712 0.658 0.527(∗) 0.595
CricketX 0.697 0.645 0.649 0.618 0.681 0.744
CricketY 0.682 0.554 0.586 0.656 0.635 0.723
CricketZ 0.697 0.680 0.656 0.647 0.658 0.761
Crop 0.731 0.703 0.753 0.729 time limit time limit
DiatomSizeReduction 0.968 0.912 0.858 0.911 0.964 0.977
DistalPhalanxOutlineAgeGroup 0.763 0.741 0.718 0.750 0.705 0.719
DistalPhalanxOutlineCorrect 0.779 0.775 0.733 0.787 0.740 0.764
DistalPhalanxTW 0.705 0.676 0.644 0.654 0.675 0.655
DodgerLoopDay 0.462 0.392 0.448 0.679 0.635 0.575
DodgerLoopGame 0.790 0.776 0.774 0.825 0.871 0.868
DodgerLoopWeekend 0.957 0.920 0.914 0.986 0.986 0.978
ECG200 0.880 0.890 0.877 0.895 0.895 0.846
ECG5000 0.940 0.940 0.940 0.938 0.939 0.943
ECGFiveDays 0.984 0.995 0.878 0.831 0.997 1.000
EOGHorizontalSignal 0.566 0.573 0.538 0.419 0.422(∗) 0.512
EOGVerticalSignal 0.479 0.453 0.283 0.323 0.373(∗) 0.417
Earthquakes 0.748 0.748 0.748 0.748 0.750(∗) 0.748
ElectricDevices 0.654 0.650 0.652 0.643 time limit time limit
EthanolLevel 0.579 0.360 0.587 0.382 0.607(∗) 0.562
FaceAll 0.772 0.775 0.856 0.749 0.884 0.768
FaceFour 0.784 0.540 0.519 0.925 0.857 0.830
FacesUCR 0.903 0.811 0.808 0.852 0.890 0.895
FiftyWords 0.562 0.565 0.659 0.676 0.720 0.751
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NVARk* NVARk rmESN TCK GAK SINK

Fish 0.960 0.966 0.811 0.769 0.857(∗) 0.906
FordA 0.982 0.928 0.945 0.674 0.910(∗) 0.925
FordB 0.868 0.800 0.825 0.583 0.759(∗) 0.777
FreezerRegularTrain 0.989 0.956 0.964 0.963 0.985 0.980
FreezerSmallTrain 0.836 0.905 0.822 0.743 0.691 0.700
Fungi 0.656 0.952 0.866 0.930 0.982 1.000
GestureMidAirD1 0.662 0.591 0.535 0.448 0.535 0.554
GestureMidAirD2 0.546 0.565 0.452 0.295 0.538 0.483
GestureMidAirD3 0.238 0.248 0.204 0.177 0.290 0.215
GesturePebbleZ1 0.773 0.573 0.591 0.739 0.693(∗) 0.725
GesturePebbleZ2 0.722 0.551 0.594 0.565 0.513(∗) 0.618
GunPoint 0.987 1.000 0.963 0.961 0.960 0.980
GunPointAgeSpan 0.972 0.994 0.979 0.971 0.946 0.936
GunPointMaleVersusFemale 0.975 0.997 0.992 0.984 0.996 0.997
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 1.000
Ham 0.717 0.739 0.707 0.730 0.748(∗) 0.714
HandOutlines 0.948 0.945 0.866 0.884 0.917(∗) 0.914
Haptics 0.525 0.399 0.437 0.444 0.445(∗) 0.445
Herring 0.625 0.634 0.594 0.577 0.594(∗) 0.605
HouseTwenty 0.916 0.923 0.900 0.893 0.785(∗) 0.815
InlineSkate 0.543 0.470 0.443 0.310 0.340(∗) 0.401
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000(∗) 0.956
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000(∗) 0.936
InsectWingbeatSound 0.312 0.372 0.515 0.638 0.632 0.617
ItalyPowerDemand 0.963 0.952 0.952 0.950 0.959 0.949
LargeKitchenAppliances 0.755 0.690 0.887 0.552 0.512(∗) 0.794
Lightning2 0.738 0.725 0.811 0.715 0.797(∗) 0.820
Lightning7 0.630 0.612 0.759 0.681 0.699 0.781
Mallat 0.959 0.936 0.909 0.939 0.924(∗) 0.937
Meat 0.950 0.760 0.912 0.952 0.930(∗) 0.933
MedicalImages 0.713 0.742 0.726 0.698 0.761 0.740
MelbournePedestrian 0.931 0.905 0.950 0.938 0.935 0.933
MiddlePhalanxOutlineAgeGroup 0.591 0.630 0.578 0.574 0.631 0.631
MiddlePhalanxOutlineCorrect 0.866 0.834 0.779 0.786 0.632 0.811
MiddlePhalanxTW 0.552 0.558 0.560 0.588 0.580 0.594
MixedShapesRegularTrain 0.946 0.936 0.913 0.874 0.903(∗) 0.923
MixedShapesSmallTrain 0.913 0.867 0.798 0.817 0.846(∗) 0.885
MoteStrain 0.812 0.792 0.694 0.882 0.861 0.870
NonInvasiveFetalECGThorax1 0.930 0.924 0.935 0.890 0.922(∗) 0.937
NonInvasiveFetalECGThorax2 0.943 0.935 0.938 0.903 0.942(∗) 0.950
OSULeaf 0.955 0.909 0.845 0.475 0.585(∗) 0.707
OliveOil 0.867 0.867 0.793 0.853 0.407(∗) 0.700
PLAID 0.737 0.749 0.521 0.424 0.396(∗) 0.393
PhalangesOutlinesCorrect 0.826 0.834 0.784 0.797 0.664 0.798
Phoneme 0.297 0.267 0.335 0.221 0.117(∗) 0.193
PickupGestureWiimoteZ 0.600 0.560 0.680 0.550 0.642 0.614
PigAirwayPressure 0.856 0.702 0.226 0.109 0.122(∗) 0.216
PigArtPressure 0.954 0.962 0.514 0.210 0.248(∗) 0.779
PigCVP 0.926 0.885 0.815 0.152 0.173(∗) 0.601
Plane 1.000 1.000 0.981 0.990 0.973 0.968
PowerCons 0.883 0.873 0.943 1.000 1.000 0.983
ProximalPhalanxOutlineAgeGroup 0.820 0.849 0.849 0.853 0.840 0.837
ProximalPhalanxOutlineCorrect 0.900 0.900 0.858 0.855 0.778 0.849
ProximalPhalanxTW 0.771 0.795 0.763 0.801 0.802 0.797
RefrigerationDevices 0.541 0.523 0.542 0.512 0.419(∗) 0.483
Rock 0.644 0.686 0.514 0.546 0.618(∗) 0.508
ScreenType 0.552 0.416 0.483 0.402 0.455(∗) 0.423
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NVARk* NVARk rmESN TCK GAK SINK

SemgHandGenderCh2 0.871 0.840 0.829 0.886 0.912(∗) 0.909
SemgHandMovementCh2 0.717 0.562 0.600 0.756 0.768(∗) 0.829
SemgHandSubjectCh2 0.816 0.737 0.711 0.841 0.893(∗) 0.913
ShakeGestureWiimoteZ 0.800 0.800 0.842 0.634 0.704 0.680
ShapeletSim 0.950 0.950 0.871 0.537 0.462(∗) 0.800
ShapesAll 0.867 0.843 0.782 0.745 0.774(∗) 0.834
SmallKitchenAppliances 0.656 0.607 0.706 0.630 0.508(∗) 0.684
SmoothSubspace 0.960 0.945 0.903 0.980 0.943 0.900
SonyAIBORobotSurface1 0.945 0.930 0.807 0.936 0.708 0.894
SonyAIBORobotSurface2 0.918 0.928 0.834 0.829 0.816 0.879
StarLightCurves 0.976 0.966 0.969 0.937 0.946(∗) 0.959
Strawberry 0.951 0.965 0.962 0.966 0.924 0.951
SwedishLeaf 0.922 0.929 0.916 0.907 0.895 0.930
Symbols 0.911 0.945 0.950 0.877 0.897 0.913
SyntheticControl 0.980 0.963 0.909 0.990 0.979 0.994
ToeSegmentation1 0.904 0.970 0.890 0.615 0.635 0.864
ToeSegmentation2 0.862 0.883 0.814 0.778 0.795 0.865
Trace 1.000 1.000 1.000 0.931 0.922 0.960
TwoLeadECG 0.978 1.000 0.871 0.692 0.861 0.978
TwoPatterns 0.988 0.822 0.767 0.997 0.953 0.999
UMD 0.993 0.986 0.856 0.963 0.961 0.932
UWaveGestureLibraryAll 0.967 0.706 0.727 0.946 0.958(∗) 0.965
UWaveGestureLibraryX 0.697 0.698 0.631 0.766 0.772 0.792
UWaveGestureLibraryY 0.624 0.623 0.630 0.668 0.682 0.689
UWaveGestureLibraryZ 0.704 0.695 0.621 0.684 0.712 0.735
Wafer 0.993 0.992 0.995 0.993 0.995 0.998
Wine 0.722 0.815 0.794 0.707 0.606 0.667
WordSynonyms 0.434 0.440 0.572 0.596 0.647 0.669
Worms 0.779 0.822 0.808 0.569 0.621(∗) 0.670
WormsTwoClass 0.805 0.827 0.805 0.568 0.662(∗) 0.717
Yoga 0.831 0.822 0.793 0.795 0.845(∗) 0.877
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