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Abstract

Recent advancements in vision foundation models (VFMs) have opened up new
possibilities for versatile and efficient visual perception. In this work, we introduce
Seal, a novel framework that harnesses VFMs for segmenting diverse automotive
point cloud sequences. Seal exhibits three appealing properties: i) Scalability:
VFMs are directly distilled into point clouds, obviating the need for annotations
in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal
relationships are enforced at both the camera-to-LiDAR and point-to-segment
regularization stages, facilitating cross-modal representation learning. iii) General-
izability: Seal enables knowledge transfer in an off-the-shelf manner to downstream
tasks involving diverse point clouds, including those from real/synthetic, low/high-
resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments
conducted on eleven different point cloud datasets showcase the effectiveness and
superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes
after linear probing, surpassing random initialization by 36.9% mIoU and out-
performing prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant
performance gains over existing methods across 20 different few-shot fine-tuning
tasks on all eleven tested point cloud datasets. The code is available at this link2.

1 Introduction

Inspired by the achievements of large language models (LLMs) [87, 35, 113, 73, 18], a wave of vision
foundation models (VFMs), such as SAM [50], X-Decoder [122], and SEEM [123], has emerged.
These VFMs are revolutionizing the field of computer vision by facilitating the acquisition of pixel-
level semantics with greater ease. However, limited studies have been conducted on developing
VFMs for the 3D domain. To bridge this gap, it holds great promise to explore the adaptation or
extension of existing 2D VFMs for 3D perception tasks.

As an important 3D perception task, accurately segmenting the surrounding points captured by
onboard LiDAR sensors is crucial for ensuring the safe operation of autonomous vehicles [92, 94, 81].
However, existing point cloud segmentation models rely heavily on large annotated datasets for
training, which poses challenges due to the labor-intensive nature of point cloud labeling [2, 95].
To address this issue, recent works have explored semi- [55, 59] or weakly-supervised [95, 60]
approaches to alleviate the annotation burden. While these approaches show promise, the trained
point segmentors tend to perform well only on data within their distribution, primarily due to
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Figure 1: The proposed Seal distills semantic awareness on cameras views from VFMs to the point
cloud via superpixel-driven contrastive learning. [1st row] Semantic superpixels generated by SLIC
[1] and recent VFMs [50, 122, 123], where each color represents one segment. [2nd row] Semantic
superpoints grouped by projecting superpixels to 3D via camera-LiDAR correspondence. [3rd row]
Visualizations of the linear probing results of our framework driven by SLIC and different VFMs.

significant configuration differences (such as beam number, camera angle, emit rate) among different
sensors [101, 28, 92]. This limitation inevitably hampers the scalability of point cloud segmentation.

To address the aforementioned challenges, we aim to develop a framework that can learn informative
features while addressing the following objectives: i) Utilizing raw point clouds as input, thereby
eliminating the need for semi or weak labels and reducing annotation costs. ii) Leveraging spatial
and temporal cues inherent in driving scenes to enhance representation learning. iii) Ensuring
generalizability to diverse downstream point clouds, beyond those used in the pretraining phase.
Drawing inspiration from recent advancements in cross-modal representation learning [50, 122, 111,
123] and building upon the success of VFMs [50, 122, 111, 123], we propose a methodology that
distills semantically-rich knowledge from VFMs to support self-supervised representation learning
on challenging automotive point clouds. Our core idea is to leverage the 2D-3D correspondence in-
between LiDAR and camera sensors and construct high-quality contrastive samples for cross-modal
representation learning. As shown in Fig. 1, VFMs are capable of generating semantic superpixel
groups from the camera views3 and provide off-the-shelf semantic coherence for distinct objects and
backgrounds in the 3D scene. Such consistency can be distilled from 2D to 3D and further yields
promising performance on downstream tasks, which we will revisit more formally in later sections.

Compared to previous framework [85, 66], our VFM-assisted contrastive learning has three notable
advantages: i) The semantically-aware region partition mitigates the severe “self-conflict” problem in
driving scene contrastive learning. ii) The high-quality contrastive samples gradually form a more
coherent optimization landscape, yielding a faster convergence rate than previous configurations. iii)
A huge reduction in the number of superpixels also extenuates the overhead during pretraining.

Since a perfect calibration between LiDAR and cameras is often hard to meet, we further design a
superpoint temporal consistency regularization to mitigate the case that there are potential errors
from the sensor synchronization aspect. This objective directly resorts to the accurate geometric
information from the point cloud and thus improves the overall resilience and reliability. As will be
shown in the following sections, our framework (dubbed Seal) is capable of segmentation any point
cloud sequences across a wide range of downstream task on different automotive point cloud datasets.

To summarize, this work has the following key contributions:

• To the best of our knowledge, this study represents the first attempt at utilizing 2D vision
foundation models for self-supervised representation learning on large-scale 3D point clouds.

3We show the front view for simplicity; more common setups have surrounding views from multiple cameras.
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• We introduce Seal, a scalable, consistent, and generalizable framework designed to capture
semantic-aware spatial and temporal consistency, enabling the extraction of informative
features from automotive point cloud sequences.

• Our approach demonstrates clear superiority over previous state-of-the-art (SoTA) methods
in both linear probing and fine-tuning for downstream tasks across 11 different point cloud
datasets with diverse data configurations.

2 Related Work

Vision Foundation Models. Recent excitement about building powerful visual perception systems
based on massive amounts of training data [80, 50] or advanced self-supervised learning techniques
[8, 74] is revolutionizing the community. The segment anything model (SAM) [50] sparks a new
trend of general-purpose image segmentation which exhibits promising zero-shot transfer capability
on diverse downstream tasks. Concurrent works to SAM, such as X-Decoder [122], OpenSeeD [111],
SegGPT [99], and SEEM [123], also shed lights on the direct use of VFMs for handling different
kinds of image-related tasks. In this work, we extend this aspect by exploring the potential of VFMs
for point cloud segmentation. We design a new framework taking into consideration the off-the-shelf
semantic awareness of VFMs to construct better spatial and temporal cues for representation learning.

Point Cloud Segmentation. Densely perceiving the 3D surroundings is important for autonomous
vehicles [94, 41]. Various point cloud segmenters have been proposed, including methods based on
raw points [42, 90, 43, 114, 78], range view [69, 106, 93, 118, 20, 16, 52], bird’s eye view [115, 119,
9], voxels [19, 120, 37, 36], and multi-view fusion [62, 89, 107, 121, 17, 79]. Despite the promising
results achieved, existing 3D segmentation models rely on large sets of annotated data for training,
which hinders the scalability [28]. Recent efforts seek semi [55, 56, 59], weak [95, 40, 86, 63, 60],
and active [64, 44, 117] supervisions or domain adaptation techniques [48, 47, 54, 76, 82, 68] to ease
the annotation cost. In this work, we resort to self-supervised learning by distilling foundation models
using camera-to-LiDAR associations, where no annotation is required during the pretraining stage.

3D Representation Learning. Stemmed from the image vision community, most 3D self-supervised
learning methods focused on object-centric point clouds [84, 77, 83, 14, 97, 45, 110, 29, 91] or indoor
scenes [38, 15, 22, 108, 10, 39, 57, 58, 109] by either pretext task learning [21, 70, 71, 112, 30],
contrastive learning [11, 32, 12, 34, 27, 13, 46, 98, 104] or mask modeling [105, 31, 24, 61], where
the scale and diversity are much lower than the outdoor driving scenes [67, 6]. PointContrast
[103], DepthContrast [116], and SegContrast [72] are prior attempts aimed to establish contrastive
objectives on point clouds. Recently, Sautier et al. [85] proposed the first 2D-to-3D representation
distillation method called SLidR for cross-modal self-supervised learning on large-scale point clouds
and exhibits promising performance. The follow-up work [66] further improves this pipeline with a
semantically tolerant contrastive constraint and a class-balancing loss. Our framework also stems
from the SLidR paradigm. Differently, we propose to leverage VFMs to establish the cross-modal
contrastive objective which better tackles this challenging representation learning task. We also
design a superpoint temporal consistency regularization to further enhance feature learning.

3 Seal: A Scalable, Consistent, and Generalizable Framework

In this section, we first revisit the 2D-to-3D representation distillation [85] as preliminaries (Sec. 3.1).
We then elaborate on the technical details of our framework, which include the VFM-assisted spatial
contrastive learning (Sec. 3.2) and the superpoint temporal consistency regularization (Sec. 3.3).

3.1 Preliminaries

Given a point cloud Pt = {pt
i, e

t
i|i = 1, .., N} consists of N points collected by a LiDAR acqui-

sition at timestamp t, where pi ∈ R3 denotes the point coordinates and ei ∈ RL is the feature
embedding (intensity, elongation, etc.), our goal is to transfer the knowledge from an image set
It = {{It1, ..., Itj}|j = 1, ..., V } captured by V synchronized cameras at t to point cloud Pt, where
I ∈ R3×H×W is a single image with height H and width W . Prior works [85, 66] achieve this
goal by first aggregating image regions that are similar in the RGB space into a superpixel set
ΦS = {{s1, ..., sm}|m = 1, ...,M}, via the unsupervised SLIC [1] algorithm. The corresponding
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Figure 2: Overview of the Seal framework. We generate, for each {LiDAR, camera} pair {Pt, It}
at timestamp t and another LiDAR frame Pt+n at timestamp t + n, the semantic superpixel and
superpoint by vision foundation models (VFMs). Two pertaining objectives are then formed, including
spatial contrastive learning between paired LiDAR and camera features (Sec. 3.2) and temporal
consistency regularization between point segments at different timestamps (Sec. 3.3).

superpoint set ΦO = {{o1, ...,om}|m = 1, ...,M} can be obtained by leveraging known sensor
calibration parameters to establish correspondence between the points and image pixels. Specifically,
since the LiDAR and cameras usually operate at different frequencies [7, 26], we transform each
LiDAR point cloud pi = (xi, yi, zi) at timestamp tl to the pixel p̂i = (ui, vi) ∈ R2 in the image
plane at timestamp tc via the coordinate transformation. The point-to-pixel mapping is as follows:

[ui, vi, 1]
T =

1

zi
×ΓK×Γcamera←egotc

×Γegotc←global×Γglobal←egotl
×Γegotl

←lidar×[xi, yi, zi, 1]
T,

(1)
where symbol ΓK denotes the camera intrinsic matrix. Γcamera←egotc

, Γegotc←global, Γglobal←egotl
,

and Γegotl
←lidar are the extrinsic matrices for the transformations of ego to camera at tc, global to

ego at tc, ego to global at tl, and LiDAR to ego at tl, respectively.

3.2 Semantic Superpixel Spatial Consistency

Superpixel Generation. Prior works resort to SLIC [1] to group visually similar regions in the
image into superpixels. This method, however, tends to over-segment semantically coherent areas
(as shown in Fig. 1) and inevitably leads to several difficulties for contrastive learning. One of the
main impediments is the so-called “self-conflict”, where superpixels belonging to the same semantics
become negative samples [96]. Although [66] proposed a semantically-tolerant loss to ease this
problem, the lack of high-level semantic understanding still intensifies the implicit hardness-aware
property of the contrastive loss. We tackle this challenge by generating semantic superpixels with
VFMs. As shown in Fig. 1 and Fig. 4, these VFMs provide semantically-rich superpixels and yield
much better representation learning effects in-between near and far points in the LiDAR point cloud.

VFM-Assisted Contrastive Learning. Let Fθp : RN×(3+L) → RN×C be a 3D encoder with
trainable parameters θp, that takes a LiDAR point cloud as input and outputs a C-dimensional
per-point feature. Let Gθi : RH×W×3 → RH

s ×
W
s ×C be an image encoder with parameters θi,

which is initialized from a set of 2D self-supervised pretrained parameters. The goal of our VFM-
assisted contrastive learning is to transfer the knowledge from the pretrained 2D network to the
3D network via contrastive loss at the semantic superpixel level. To compute this VFM-assisted
contrastive loss, we first build trainable projection heads Hωp and Hωi which map the 3D point
features and 2D image features into the same D-dimensional embedding space. The point projection
head Hωp

: RN×C → RN×D is a linear layer with ℓ2-normalization. The image projection head
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Hωi : R
H
s ×

W
s ×C → RH

s ×
W
s ×D is a convolution layer with a kernel size of 1, followed by a fixed bi-

linear interpolation layer with a ratio of 4 in the spatial dimension, and outputs with ℓ2-normalization.

We distill the knowledge from the 2D network into the 3D network which is in favor of a solu-
tion where a semantic superpoint feature has a strong correlation with its corresponding semantic
superpixel feature than any other features. Concretely, the superpixels ΦS are used to group pixel em-
bedding and point embedding features. Then, an average pooling function is applied to each grouped
point and pixel embedding features, to extract the superpixel embedding features Q ∈ RM×D and
superpoint embedding features K ∈ RM×D. The VFM-assisted contrastive loss is formulated as:

Lvfm = L (Q,K) = − 1

M

M∑
i=1

log

[
e(⟨qi,ki⟩/τ)∑

j ̸=i e
(⟨qi,kj⟩/τ) + e(⟨qi,ki⟩/τ)

]
, (2)

Figure 3: The positive feature corre-
spondences in the contrastive learning
objective in our contrastive learning
framework. The circles and triangles
represent the instance-level and the
point-level features, respectively.

where ⟨qi,kj⟩ denotes the scalar product between super-
point embedding features and superpixel embedding features
to measure the similarity. τ is the temperature term.

Role in Our Framework. Our VFM-assisted contrastive
objective exhibits superiority over previous methods from
three aspects: i) The semantically-rich superpixels provided
by VFMs mitigate the “self-conflict” problem in existing ap-
proaches. ii) As we will show in the following sections, the
high-quality contrastive samples from VFMs gradually form
a much more coherent optimization landscape and yield a
faster convergence rate than the unsupervised superpixel gen-
eration method. iii) Using superpixels generated by VFMs
also helps our framework run faster than previous works,
since the embedding length of Q and K has been reduced
from a few hundred (SLIC [1]) to dozens (ours).

3.3 Semantic Superpoint Temporal Consistency

The assumption of having perfectly synchronized LiDAR
and camera data might become too ideal and cannot always
be fulfilled in actual deployment, which limits the scalability.
In this work, we resort to accurate geometric information
from point clouds to further relieve this constraint.

Implicit Geometric Clustering. To group coarse instance
segments in a LiDAR frame, we first partition non-ground
plane points Gt by eliminating the ground plane of a point
cloud Pt at timestamp t in an unsupervised manner via
RANSAC [25]. Then, we group Gt to yield a set of Mk segments Kt = {Kt

1, ...,Kt
Mk

} with the
help of HDBSCAN [23]. To map different segment views at different timestamps, we transform
those LiDAR frames across different timestamps to the global frame and aggregate them with
concatenations. The aggregated point cloud is denoted as P̃ = {P̃t, ..., P̃t+n}. Similarly, we
generate non-ground plane G̃ = {G̃t, ..., G̃t+n} from P̃ via RANSAC [25]. In the same manner as
the single scan, we group G̃ to obtain Mk segments K̃ = {K̃1, ..., K̃Mk

}. To generate the segment
masks for all n+ 1 scans at n consecutive timestamps, i.e., K̃ = {K̃t, ..., K̃t+n}, we maintain the
point index mapping from the aggregated point cloud P̃ to the n+ 1 individual scans.

Superpoint Temporal Consistency. We leverage the clustered segments to compute the temporal
consistency loss among related semantic superpoints. Here we assume n = 1 (i.e. the next frame)
without loss of generalizability. Specifically, given a sampled temporal pair P̃t and P̃t+1 and
their corresponding segments K̃t and K̃t+1, we compute the point-wise features F̂ t ∈ RN×D and
F̂ t+1 ∈ RN×D from the point projection head Hωp

. As for the target embedding, we split the point
features F̂ t and F̂ t+1 into Mk groups by segments K̃t and K̃t+1. Then, we apply an average pooling
operation on F̂ t+1 to get Mk target mean feature vectors F t+1 = {F t+1

1 ,F t+1
2 , ...,F t+1

Mk
}, where

F t+1
Mk

∈ R1×D. Let the split point feature F̂ t be F t = {F t
1,F t

2, ...,F t
Mk

}, where F t
Mk

∈ Rk×D and
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Figure 4: The cosine similarity between a query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [50, 122, 111, 123]. The queried semantic classes from
top to bottom examples are: “car”, “manmade”, and “truck”. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.

k is the number of points in the corresponding segment. We compute the temporal consistency loss
Lt→t+1 to minimize the differences between the point features in the current frame (timestamp t)
and the corresponding segment mean features from the next frame (timestamp t+ 1) as follows:

Lt→t+1 = − 1

Mk

Mk∑
i=1

log

 e(⟨f
t
i ,f

t+1
i ⟩/τ)∑

j ̸=i e
(⟨f ti ,f t+1

j ⟩/τ) + e(⟨f ti ,f
t+1
i ⟩/τ)

. (3)

Since the target embedding for all points within a segment in the current frame serves as the mean
segment representation from the next frame, this loss will force points from a segment to converge to a
mean representation while separating from other segments, implicitly clustering together points from
the same instance. Fig. 3 provides the positive feature correspondence in our contrastive learning
framework. Furthermore, we swap F̂ t when generating the target mean embedding features to form a
symmetric representation. In this way, the correspondence is encouraged from both t → t+ 1 and
t+ 1 → t, which leads to the following optimization objective: Ltmp = Lt→t+1 + Lt+1→t.

Point to Segment Regularization. To pull close the LiDAR points belonging to the same instance at
timestamp t, we minimize the distance between the point feature F t and the corresponding mean
cluster feature Ct. To implement this, we leverage a max-pooling function to pool F t according to the
segments to obtain Ct = {Ct

1, Ct
2, ..., Ct

Mk
}, where Ct

Mk
∈ R1×D. The point-to-segment regularization

is thus achieved via the following loss function:

Lp2s = − 1

MkNk

Mk∑
i=1

Nk∑
a=1

log

 e(⟨c
t
i,f

t
i,a⟩/τ)∑

j ̸=i e
(⟨ct

i,f
t
j,a⟩/τ) + e(⟨ct

i,f
t
i,a⟩/τ)

, (4)

where Nk represents the number of points within the corresponding segment. The final optimization
objective is to minimize the aforementioned semantic spatial consistency loss Lvfm, temporal
consistency loss Ltmp, and the point-to-segment regularization loss Lp2s.

Role in Our Framework. Our semantic superpoint temporal consistency resorts to the accurate
geometric information from the point cloud and exploits the different views of an instance across
different timestamps to learn a temporally consistent representation. Considering the worst-case
scenario that the 2D-3D correspondence between the LiDAR and camera sensors becomes unreliable,
this geometric constraint can still effectively mitigate the potential errors that occur in inaccurate cross-
sensor calibration and synchronization. Besides, our point-to-segment regularization mechanism
can serve to aggregate the spatial information thus contributing to the effect of better-distinguishing
instances in the LiDAR-acquired scene, e.g., “car” and “truck”. As we will show in the following
sections, our experimental results are able to verify the effectiveness and superiority of the proposed
consistency regularization objectives, even under certain degrees of perturbation in-between sensors.
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Table 1: Comparisons of different pretraining methods pretrained on nuScenes [26] and fine-tuned on
nuScenes [7], SemanticKITTI [3], Waymo Open [88], and Synth4D [82]. LP denotes linear probing
with frozen backbones. Symbol † denotes fine-tuning with the LaserMix augmentation [55]. Symbol
‡ denotes fine-tuning with semi-supervised learning. All mIoU scores are given in percentage (%).

Method & Year nuScenes KITTI Waymo Synth4D
LP 1% 5% 10% 25% Full 1% 1% 1%

Random 8.10 30.30 47.84 56.15 65.48 74.66 39.50 39.41 20.22
PointContrast [ECCV’20] [103] 21.90 32.50 - - - - 41.10 - -
DepthContrast [ICCV’21] [116] 22.10 31.70 - - - - 41.50 - -

PPKT [arXiv’21] [65] 35.90 37.80 53.74 60.25 67.14 74.52 44.00 47.60 61.10
SLidR [CVPR’22] [85] 38.80 38.30 52.49 59.84 66.91 74.79 44.60 47.12 63.10

ST-SLidR [CVPR’23] [66] 40.48 40.75 54.69 60.75 67.70 75.14 44.72 44.93 -
Seal (Ours) 44.95 45.84 55.64 62.97 68.41 75.60 46.63 49.34 64.50

Seal † (Ours) - 48.41 57.84 65.52 70.80 77.13 - - -
Seal ‡ (Ours) - 49.53 58.64 66.78 72.31 78.28 - - -

4 Experiments

4.1 Settings

Data. We verify the effectiveness of our approach on eleven different point cloud datasets. 1nuScenes
[7, 26], 2SemanticKITTI [3], and 3Waymo Open [88] contain large-scale LiDAR scans collected
from real-world driving scenes; while the former adopted a Velodyne HDL32E, data from the
latter two datasets are acquired by 64-beam LiDAR sensors. 4ScribbleKITTI [95] shares the data
with [3] but are weakly annotated with line scribbles. 5RELLIS-3D [49] is a multimodal dataset
collected in an off-road campus environment. 6SemanticPOSS [75] is a small-scale set with an
emphasis on dynamic instances. 7SemanticSTF [102] consist of LiDAR scans from adverse weather
conditions. 8SynLiDAR [100], 9Synth4D [82], and 10DAPS-3D [51] are synthetic datasets collected
from simulators. We also conduct extensive robustness evaluations on the 11nuScenes-C dataset
proposed in the Robo3D benchmark [53], a comprehensive collection of eight out-of-distribution
corruptions that occur in driving scenarios. More details on these datasets are in the Appendix.

Implementation Details. We use MinkUNet [19] as the 3D backbone which takes cylindrical voxels
of size 0.10m as inputs. Similar to [85, 66], our 2D backbone is a ResNet-50 [33] pretrained with
MoCoV2 [12]. We pretrain our segmentation network for 50 epochs on two GPUs with a batch size
of 32, using SGD with momentum and a cosine annealing scheduler. For fine-tuning, we follow
the exact same data split, augmentation, and evaluation protocol as SLidR [85] on nuScenes and
SemanticKITTI, and adopt a similar procedure on other datasets. The training objective is to minimize
a combination of the cross-entropy loss and the Lovász-Softmax loss [4]. We compare the results
of prior arts from their official reporting [85, 66]. Since PPKT [65] and SLidR [85] only conducted
experiments on nuScenes and SemanticKITTI, we reproduce their best-possible performance on the
other nine datasets using public code. For additional details, please refer to the Appendix.

Metrics. We follow the conventional reporting of Intersection-over-Union (IoU) on each semantic
class and the mean IoU (mIoU) across all classes. For robustness probing, we follow the Robo3D
protocol [53] and report the mean Corruption Error (mCE) and mean Resilience Rate (mRR) scores
calculated by using the MinkUNet18 (torchsparse) implemented by Tang et al. [89] as the baseline.

4.2 Comparative Study

Comparison to State-of-the-Arts. We compare Seal with random initialization and five existing
pretraining approaches under both linear probing (LP) protocol and few-shot fine-tuning settings
on nuScenes [26] in Table 1. We observe that the pretraining strategy can effectively improve the
accuracy of downstream tasks, especially when the fine-tuning budget is very limited (e.g. 1%, 5%,
and 10%). Our framework achieves 44.95% mIoU under the LP setup – a 4.47% mIoU lead over to
the prior art ST-SLidR [66] and a 6.15% mIoU boost compared to the baseline SLidR [85]. What is
more, Seal achieves the best scores so far across all downstream fine-tuning tasks, which verifies the
superiority of VFM-assisted contrastive learning and spatial-temporal consistency regularization. We
also show that recent out-of-context augmentation [55] could enhance the feature learning during
fine-tuning, which establishes a new state of the art on the challenging nuScenes benchmark.
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Table 2: Comparisons of different pretraining methods pretrained on nuScenes [26] and fine-tuned on
different downstream point cloud datasets. All mIoU scores are given in percentage (%).

Method ScribbleKITTI RELLIS-3D SemanticPOSS SemanticSTF SynLiDAR DAPS-3D
1% 10% 1% 10% Half Full Half Full 1% 10% Half Full

Random 23.81 47.60 38.46 53.60 46.26 54.12 48.03 48.15 19.89 44.74 74.32 79.38
PPKT [65] 36.50 51.67 49.71 54.33 50.18 56.00 50.92 54.69 37.57 46.48 78.90 84.00
SLidR [85] 39.60 50.45 49.75 54.57 51.56 55.36 52.01 54.35 42.05 47.84 81.00 85.40
Seal (Ours) 40.64 52.77 51.09 55.03 53.26 56.89 53.46 55.36 43.58 49.26 81.88 85.90

Table 3: Robustness evaluations under eight out-of-distribution corruptions in the nuScenes-C dataset
from the Robo3D benchmark [53]. All mCE, mRR, and mIoU scores are given in percentage (%).

Initial Backbone mCE ↓ mRR ↑ Fog Wet Snow Move Beam Cross Echo Sensor

L
P

PPKT [65] MinkUNet 183.44 78.15 30.65 35.42 28.12 29.21 32.82 19.52 28.01 20.71
SLidR [85] MinkUNet 179.38 77.18 34.88 38.09 32.64 26.44 33.73 20.81 31.54 21.44
Seal (Ours) MinkUNet 166.18 75.38 37.33 42.77 29.93 37.73 40.32 20.31 37.73 24.94

Fu
ll

Random PolarNet 115.09 76.34 58.23 69.91 64.82 44.60 61.91 40.77 53.64 42.01
Random CENet 112.79 76.04 67.01 69.87 61.64 58.31 49.97 60.89 53.31 24.78
Random WaffleIron 106.73 72.78 56.07 73.93 49.59 59.46 65.19 33.12 61.51 44.01
Random Cylinder3D 105.56 78.08 61.42 71.02 58.40 56.02 64.15 45.36 59.97 43.03
Random SPVCNN 106.65 74.70 59.01 72.46 41.08 58.36 65.36 36.83 62.29 49.21
Random MinkUNet 112.20 72.57 62.96 70.65 55.48 51.71 62.01 31.56 59.64 39.41

PPKT [65] MinkUNet 105.64 76.06 64.01 72.18 59.08 57.17 63.88 36.34 60.59 39.57
SLidR [85] MinkUNet 106.08 75.99 65.41 72.31 56.01 56.07 62.87 41.94 61.16 38.90
Seal (Ours) MinkUNet 92.63 83.08 72.66 74.31 66.22 66.14 65.96 57.44 59.87 39.85

Downstream Generalization. To further verify the capability of Seal on segmenting any automotive
point clouds, we conduct extensive experiments on eleven different datasets and show the results
in Table 1 and Table 2. Note that each of these datasets has a unique data collection protocol and
a diverse data distribution – ranging from diverse sensor types and data acquisition environments
to scales and fidelity – making this evaluation a comprehensive one. The results show that our
framework constantly outperforms prior arts across all downstream tasks on all eleven datasets, which
concretely supports the effectiveness and superiority of our proposed approach.

Semi-Supervised Learning. Recent research [55, 59] reveals that combining both labeled and
unlabeled data for semi-supervised point cloud segmentation can significantly boost the performance
on downstream tasks. We follow these works to implement such a learning paradigm where a
momentum-updated teacher model is adopted to assign pseudo-labels for the unlabeled data. The
results from the last row of Table 1 show that Seal is capable of providing reliable supervision signals
for data-efficient learning. Notably, our framework with partial annotation is able to surpass some
recent fully-supervised learning methods. More results on this aspect are included in the Appendix.

Robustness Probing. It is often of great importance to assess the quality of learned representations
on out-of-distribution data, especially for cases that occur in the real-world environment. We resort to
the recently established nuScenes-C in the Robo3D benchmark [53] for such robustness evaluations.
From Table 3 we observe that the self-supervised learning methods [65, 85] in general achieve better
robustness than their baseline [19]. Seal achieves the best robustness under almost all corruption
types and exhibits superiority over other recent segmentation backbones with different LiDAR
representations, such as range view [16], BEV [115], raw points [78], and multi-view fusion [89].

Qualitative Assessment. We visualize the predictions of each pertaining method pretrained and
fine-tuned on nuScenes [26] in Fig. 5. A clear observation is the substantial enhancement offered
by all pretraining methods when juxtaposed with a baseline of random initialization. Diving deeper
into the comparison among the trio of tested techniques, Seal stands out, delivering superlative
segmentation outcomes, especially in the intricate terrains of driving scenarios. This is credited to the
strong spatial and temporal consistency learning that Seal tailored to excite during the pretraining.
We have cataloged additional examples in the Appendix for more detailed visual comparisons.

4.3 Ablation Study

Foundation Model Comparisons. We provide the first study on adapting VFMs for large-scale point
cloud representation learning and show the results in Table 4. We observe that different VFMs exhibit
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Table 4: Ablation study on pretraining frameworks (ours vs. SLidR [85]) and the knowledge transfer
effects from different vision foundation models. All mIoU scores are given in percentage (%).

Method Superpixel nuScenes KITTI Waymo Synth4D
LP 1% 5% 10% 25% Full 1% 1% 1%

Random - 8.10 30.30 47.84 56.15 65.48 74.66 39.50 39.41 20.22

SLidR

SLIC [1] 38.80 38.30 52.49 59.84 66.91 74.79 44.60 47.12 63.10
SAM [50] 41.49 43.67 55.97 61.74 68.85 75.40 43.35 48.64 63.15

X-Decoder [122] 41.71 43.02 54.24 61.32 67.35 75.11 45.70 48.73 63.21
OpenSeeD [111] 42.61 43.82 54.17 61.03 67.30 74.85 45.88 48.64 63.31

SEEM [123] 43.00 44.02 53.03 60.84 67.38 75.21 45.72 48.75 63.13

Seal

SLIC [1] 40.89 39.77 53.33 61.58 67.78 75.32 45.75 47.74 63.37
SAM [50] 43.94 45.09 56.95 62.35 69.08 75.92 46.53 49.00 63.76

X-Decoder [122] 42.64 44.31 55.18 62.03 68.24 75.56 46.02 49.11 64.21
OpenSeeD [111] 44.67 44.74 55.13 62.36 69.00 75.64 46.13 48.98 64.29

SEEM [123] 44.95 45.84 55.64 62.97 68.41 75.60 46.63 49.34 64.50

Table 5: Ablation study of each component pretrained on nuScenes [26] and fine-tuned on nuScenes
[26], SemanticKITTI [3], and Waymo Open [88]. C2L: Camera-to-LiDAR distillation. VFM: Vision
foundation models. STC: Superpoint temporal consistency. P2S: Point-to-segment regularization.

# C2L VFM STC P2S nuScenes KITTI Waymo
LP 1% 5% 10% 25% Full 1% 1%

(1) ✓ 38.80 38.30 52.49 59.84 66.91 74.79 44.60 47.12

(2) ✓ ✓ 40.45 41.62 54.67 60.48 67.61 75.30 45.38 48.08
(3) ✓ ✓ 43.00 44.02 53.03 60.84 67.38 75.21 45.72 48.75
(4) ✓ ✓ ✓ 44.01 44.78 55.36 61.99 67.70 75.00 46.49 49.15
(5) ✓ ✓ ✓ 43.35 44.25 53.69 61.11 67.42 75.44 46.07 48.82

(6) ✓ ✓ ✓ ✓ 44.95 45.84 55.64 62.97 68.41 75.60 46.63 49.34

diverse abilities in encouraging contrastive objectives. All VFMs show larger gains than SLIC [1]
with both frameworks, while SEEM [123] in general performs the best. Notably, SAM [50] tends to
generate more fine-grained superpixels and yields better results when fine-tuning with more annotated
data. We conjecture that SAM [50] generally provides more negative samples than the other three
VFMs which might be conducive to the superpixel-driven contrastive learning. On all setups, Seal
constantly surpasses SLidR [85] by large margins, which verifies the effectiveness of our framework.

Cosine Similarity. We visualize three examples of feature similarity across different VFMs in Fig. 4.
We observe that our contrastive objective has already facilitated distinction representations before
fine-tuning. The semantically-rich VFMs such as X-Decoder [122], OpenSeeD [111], and SEEM
[123] offers overt feature cues for recognizing objects and backgrounds; while the unsupervised
(SLIC [1]) or too fine-grained (SAM [50]) region partition methods only provide limited semantic
awareness. Such behaviors have been reflected in the linear probing and downstream fine-tuning
performance (see Table 4), where SEEM [123] tends to offer better consistency regularization impacts
during the cross-sensor representation learning.

Component Analysis. Table 5 shows the ablation results of each component in the Seal framework.
Specifically, direct integration of VFMs (row #3) or temporal consistency learning (row #2) brings
4.20% and 1.65% mIoU gains in LP, respectively, while a combination of them (row #4) leads to a
5.21% mIoU gain. The point-to-segment regularization (row #5) alone also provides a considerable
performance boost of around 4.55% mIoU. Finally, an integration of all proposed components (row
#6) yields our best-performing model, which is 6.15% mIoU better than the prior art [85] in LP and
also outperforms on all in-distribution and -out-of-distribution downstream setups.

Sensor Misalignment. An accurate calibration is crucial for establishing correct correspondences be-
tween LiDAR and cameras. In most cases, those sensors should be well-calibrated for an autonomous
car. It is unusual if the calibration is completely unknown, but it is possible to be imprecise due to
a lack of maintenance. Hence, we conduct the following experiments to validate the robustness of
our method. For each point coordinate pi = (xi, yi, zi) in a LiDAR point cloud, its corresponding
pixel p̂i = (ui, vi) in the camera view can be found via Eq. 1. To simulate the misalignment between
LiDAR and cameras, we insert random noises into the camera extrinsic matrix ΓK , with a relative
proportion of 1%, 5%, and 10%. Table 6 shows the results of PPKT [65], SLidR [85], and Seal
under such noise perturbations. We observe that the possible calibration errors between LiDAR
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Figure 5: The qualitative results of different point cloud pretraining approaches pretrained on the
raw data of nuScenes [26] and fine-tuned with 1% labeled data. To highlight the differences, the
correct / incorrect predictions are painted in gray / red, respectively. Best viewed in color.

Table 6: Ablation study on the possible misalignment between the LiDAR and camera sensors. The
perturbation is randomly generated and inserted. All mIoU scores are given in percentage (%).

Method 1% Misalignment 5% Misalignment 10% Misalignment
1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%

PPKT [65] 34.94 51.11 58.54 65.01 33.69 51.40 58.00 64.11 33.35 50.98 57.84 63.52
SLidR [85] 37.92 53.08 59.89 66.90 38.00 52.36 60.01 64.10 37.30 51.11 58.50 64.50

Seal (Ours) 45.23 55.71 62.62 68.13 45.66 55.42 62.77 68.01 44.80 54.45 61.80 68.29

and cameras will cause performance degradation for different pretraining approaches (compared to
Table 1). The performance degradation for PPKT [65] is especially prominent; we conjecture that this
is because the point-wise consistency regularization of PPKT [65] relies heavily on the calibration
accuracy and encounters problems under misalignment. Both SLidR [85] and Seal exhibit certain
robustness; we believe the superpixel-level consistency is less sensitive to calibration perturbations.
It is worth mentioning that Seal can maintain good performance under calibration error, since: i)
Our VFM-assisted representation learning tends to be more robust; and ii) We enforce superpoint
temporal consistency during the pertaining which does not rely on the 2D-3D correspondence.

5 Concluding Remark

In this study, we presented Seal, a versatile self-supervised learning framework capable of segmenting
any automotive point clouds by encouraging spatial and temporal consistency during the representa-
tion learning stage. Additionally, our work pioneers the utilization of VFMs to enhance 3D scene
understanding. Extensive experimental results on 20 downstream tasks across eleven different point
cloud datasets verified the effectiveness and superiority of our framework. We aspire for this research
to catalyze further integration of large-scale 2D and 3D representation learning endeavors, which
could shed light on the development of robust and annotation-efficient perception models.

Potential Limitations. Although our proposed framework holistically improved the point cloud
segmentation performance across a wide range of downstream tasks, there are still some limitations
that could hinder the scalability. i) Our model operates under the assumption of impeccably calibrated
and synchronized LiDAR and cameras, which might not always hold true in real-world scenarios. ii)
We only pretrain the networks on a single set of point clouds with unified setups; while aggregating
more abundant data from different datasets for pretraining would further improve the generalizability
of this framework. These limitations present intriguing avenues for future investigations.
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Appendix

In this appendix, we supplement the following materials to support the findings and observations in
the main body of this paper:

• Section A elaborates on additional implementation details to facilitate reproduction.

• Section B provides the complete quantitative results of our experiments.

• Section C includes more qualitative results to allow better visual comparisons.

• Section D acknowledges the public resources used during the course of this work.

A Additional Implementation Detail

A.1 Datasets

In this work, we conduct extensive experiments from a wide range of point cloud datasets to verify
the effectiveness of the proposed Seal framework. A summary of the detailed configurations and
emphases of these datasets is shown in Table A.

• 1nuScenes [26]: The nuScenes4 dataset offers a substantial number of samples collected
by the LiDAR, RADAR, camera, and IMU sensors from Boston and Singapore, allowing
machine learning models to learn useful multi-modal features effectively. For the point
cloud segmentation task, it consists of 1000 scenes of a total number of 1.1B annotated
points, collected by a Velodyne HDL32E LiDAR sensor. It also includes image data from six
cameras, which are synchronized with the LiDAR sensor. In this work, we use the LiDAR
point clouds and image data from nuScenes for model pretraining. We also conduct detailed
fine-tuning experiments to validate the effectiveness of representation learning. More details
of this dataset can be found at https://www.nuscenes.org/nuscenes.

• 2SemanticKITTI [3]: The SemanticKITTI dataset is a comprehensive dataset designed
for semantic scene understanding of LiDAR sequences. This dataset aims to advance the
development of algorithms and models for autonomous driving and scene understanding
using LiDAR data. It provides 22 densely labeled point cloud sequences that cover urban
street scenes, which are captured by a Velodyne HDL-64E LiDAR sensor. In this work,
we use the LiDAR point clouds from SemanticKITTI as a downstream task to validate
the generalizability of pertaining methods. More details of this dataset can be found at
http://semantic-kitti.org.

• 3Waymo Open [88]: The Waymo Open dataset is a large-scale collection of real-world
autonomous driving data. The 3D semantic segmentation subset contains 1150 scenes,
split into 798 training, 202 validation, and 150 testing scenes. This subset contains 23691
training scans, 5976 validation scans, and 2982 testing scans, respectively, with semantic
segmentation labels from 23 classes. The data are captured by five LiDAR sensors: one
mid-range LiDAR sensor truncated to a maximum of 75 meters, and four short-range LiDAR
sensors truncated to a maximum of 20 meters. In this work, we use the LiDAR point clouds
from Waymo Open as a downstream task to validate the generalizability of pertaining
methods. More details of this dataset can be found at https://waymo.com/open.

• 4ScribbleKITTI [95]: The ScribbleKITTI dataset is a recent variant of the SemanticKITTI
dataset, with weak supervisions annotated by line scribbles. It shares the exact same amount
of training samples with SemanticKITTI, i.e., 19130 scans collected by a Velodyne HDL-
64E LiDAR sensor, where the total number of valid semantic labels is 8.06% compared to
the fully-supervised version. Annotating the LiDAR point cloud in such a way corresponds
to roughly a 90% time-saving. In this work, we use the LiDAR point clouds from Scrib-
bleKITTI as a downstream task to validate the generalizability of pertaining methods. More
details of this dataset can be found at https://github.com/ouenal/scribblekitti.

4Here we refer to the lidarseg subset of the nuScenes dataset. Know more details about this dataset at the
official webpage: https://www.nuscenes.org/nuscenes.
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Table A: The sensor configuration and data statistics for the eleven datasets used in our experiments.

Dataset Illustration Sensor Setup Statistics Type

nuScenes
[26]

1× LiDAR (32-beam)
6× RGB Camera
5× RADAR
1× IMU & GPS

16 semantic classes
29130 training samples
6019 validation samples
6008 testing samples

Real-world
Low-resolution point cloud
Dense annotation
Multi-modality

SemanticKITTI
[3]

1× LiDAR (64-beam)
1× Stereo Camera
1× IMU & GPS

19 semantic classes
19130 training samples
4071 validation samples
20351 testing samples

Real-world
High-resolution point cloud
Dense annotation
Multi-modality

Waymo Open
[88]

1× LiDAR (64-beam)
5× RGB Camera
1× IMU & GPS

23 semantic classes
23691 training samples
5976 validation samples
2982 testing samples

Real-world
High-resolution point cloud
Dense annotation
Multi-modality

ScribbleKITTI
[95]

1× LiDAR (64-beam)
1× Stereo Camera
1× IMU & GPS

19 semantic classes
19130 training samples
4071 validation samples
20351 testing samples

Real-world
High-resolution point cloud
Sparse annotation
Weakly-supervised learning

RELLIS-3D
[49]

1× LiDAR (64-beam)
1× LiDAR (32-beam)
1× Stereo Camera
1× IMU & GPS

20 semantic classes
7800 training samples
2413 validation samples
3343 testing samples

Real-world
High-resolution point cloud
Dense annotation
Multi-modality

SemanticPOSS
[75]

1× LiDAR (40-beam)
1× RGB Camera
1× IMU & GPS

14 semantic classes
2488 training samples
500 validation samples

Real-world
High-resolution point cloud
Dense annotation
Dynamic instance

SemanticSTF
[102]

1× LiDAR (64-beam)
1× LiDAR (32-beam)
1× Stereo Camera
1× RADAR

21 semantic classes
1326 training samples
250 validation samples
500 testing samples

Real-world
High-resolution point cloud
Dense annotation
Adverse weather

SynLiDAR
[100]

1× LiDAR (64-beam)
1× simulation suite

32 semantic classes
198396 total samples

Synthetic
High-resolution point cloud
Dense annotation
Transfer learning

Synth4D
[82]

1× LiDAR (64-beam)
1× LiDAR (32-beam)
1× simulation suite

22 semantic classes
10000 training samples
10000 validation samples

Synthetic
Low-resolution point cloud
Dense annotation
Transfer learning

DAPS-3D
[51]

3× LiDAR (64-beam)
1× simulation suite

4 semantic classes
19061 training samples
3995 validation samples

Semi-synthetic
High-resolution point cloud
Dense annotation
Transfer learning

nuScenes-C
[53]

1× LiDAR (32-beam)
6× RGB Camera
5× RADAR
1× IMU & GPS

16 semantic classes
144456 validation samples

Synthetic
Low-resolution point cloud
Dense annotation
Robustness
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• 5RELLIS-3D [49]: The RELLIS-3D dataset is a multimodal dataset collected in an off-road
environment from the Rellis Campus of Texas A&M University. It consists of 13556 LiDAR
scans from 5 traversal sequences. The point-wise annotations are initialized by using the
camera-LiDAR calibration to project the more than 6000 image annotations onto the point
clouds. In this work, we use the LiDAR point clouds from RELLIS-3D as a downstream
task to validate the generalizability of pertaining methods. More details of this dataset can
be found at http://www.unmannedlab.org/research/RELLIS-3D.

• 6SemanticPOSS [75]: The SemanticPOSS dataset is a relatively small-scale point cloud
dataset with an emphasis on dynamic instances. It includes 2988 scans collected by a Hesai
Pandora LiDAR sensor, which is a 40-channel LiDAR with 0.33 degree vertical resolution,
a forward-facing color camera, 4 wide-angle mono cameras covering 360 degrees around
the ego-car. The data in this dataset was collected from the campus of Peking University. In
this work, we use the LiDAR point clouds from SemanticPOSS as a downstream task to
validate the generalizability of pertaining methods. More details of this dataset can be found
at https://www.poss.pku.edu.cn/semanticposs.

• 7SemanticSTF [102]: The SemanticSTF dataset is a small-scale collection of 2076 scans,
where the data are borrowed from the STF dataset [5]. The scans are collected by a Velodyne
HDL64 S3D LiDAR sensor and covered various adverse weather conditions, including 694
snowy, 637 dense-foggy, 631 light-foggy, and 114 rainy scans. The whole dataset is split
into three sets: 1326 scans for training, 250 scans for validation, and 500 scans for testing.
All three splits have similar proportions of scans from different weather conditions. In this
work, we use the LiDAR point clouds from SemanticSTF as a downstream task to validate
the generalizability of pertaining methods. More details of this dataset can be found at
https://github.com/xiaoaoran/SemanticSTF.

• 8SynLiDAR [100]: The SynLiDAR dataset contains synthetic point clouds captured from
constructed virtual scenes using the Unreal Engine 4 simulator. In total, this dataset contains
13 LiDAR point cloud sequences with 198396 scans. As stated, the virtual scenes in
SynLiDAR are constituted by physically accurate object models that are produced by expert
modelers with the 3D-Max software. In this work, we use the LiDAR point clouds from
SynLiDAR as a downstream task to validate the generalizability of pertaining methods. More
details of this dataset can be found at https://github.com/xiaoaoran/SynLiDAR.

• 9Synth4D [82]: The Synth4D dataset includes two subsets with point clouds captured by
simulated Velodyne LiDAR sensors using the CARLA simulator. We use the Synth4D-
nuScenes subset in our experiments. It is composed of around 20000 labeled point clouds
captured by a virtual vehicle navigating in town, highway, rural area, and city. The label
mappings are mapped to that of the nuScenes dataset. In this work, we use the LiDAR point
clouds from Synth4D-nuScenes as a downstream task to validate the generalizability of
pertaining methods. More details of this dataset can be found at https://github.com/
saltoricristiano/gipso-sfouda.

• 10DAPS-3D [51]: The DAPS-3D dataset consists of two subsets: DAPS-1 and DAPS-2;
while the former is a semi-synthetic one with a larger scale, the latter is recorded during
a real field trip of the cleaning robot to the territory of the VDNH Park in Moscow. Both
subsets are with scans collected by a 64-line Ouster OS0 LiDAR sensor. We use the DAPS-1
subset in our experiments, which contains 11 LiDAR sequences with more than 23000
labeled point clouds. In this work, we use the LiDAR point clouds from DAPS-1 as a
downstream task to validate the generalizability of pertaining methods. More details of this
dataset can be found at https://github.com/subake/DAPS3D.

• 11nuScenes-C [53]: The nuScenes-C dataset is one of the corruption sets in the Robo3D
benchmark, which is a comprehensive benchmark heading toward probing the robustness of
3D detectors and segmentors under out-of-distribution scenarios against natural corruptions
that occur in real-world environments. A total number of eight corruption types, stemming
from severe weather conditions, external disturbances, and internal sensor failure, are
considered, including ‘fog’, ‘wet ground’, ‘snow’, ‘motion blur’, ‘beam missing’, ‘crosstalk’,
‘incomplete echo’, and ‘cross-sensor’ scenarios. These corruptions are simulated with rules
constrained by physical principles or engineering experiences. In this work, we use the
LiDAR point clouds from nuScenes-C as a downstream task to validate the robustness of
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Table B: The statistics of superpixels (for front-view cameras) generated by SLIC [1] and different
vision foundation modes [50, 122, 111, 123]. The horizontal axis denotes the number of superpixels
per image. The vertical axis denotes the frequency of occurrence.

Method Front Left Front Front Right

SLIC
[1]

SAM
[50]

X-Decoder
[122]

OpenSeeD
[111]

SEEM
[123]

pertaining methods under out-of-distribution scenarios. More details of this dataset can be
found at https://github.com/ldkong1205/Robo3D.

A.2 Vision Foundation Models

In this work, we conduct comprehensive experiments on analyzing the effects brought by different
vision foundation models (VFMs), compared to the traditional SLIC [1] method. Some statistical
analyses of these different visual partition methods are shown in Table B and Table C.

• SLIC [1] (traditional method): The SLIC model, which stands for ‘simple linear iterative
clustering’, is a popular choice for visual partitions of RGB images. It adapts a k-means
clustering approach to generate superpixels, in an efficient manner, and offers good un-
supervised partition abilities for many downstream tasks. The pursuit of adherence to
boundaries and computational and memory efficiency allows SLIC to perform well on
different image collections. In this work, we follow SLidR [85] and use SLIC to generate
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Table C: The statistics of superpixels (for back-view cameras) generated by SLIC [1] and different
vision foundation modes [50, 122, 111, 123]. The horizontal axis denotes the number of superpixels
per image. The vertical axis denotes the frequency of occurrence.

Method Back Left Back Back Right

SLIC
[1]

SAM
[50]

X-Decoder
[122]

OpenSeeD
[111]

SEEM
[123]

superpixels, with a fixed quota of 150 superpixels per image, and compare our framework
with previous ones using SLIC superpixels. More details of this model can be found at
https://github.com/valeoai/SLidR.

• SAM [50]: The Segment Anything Model (SAM) is a recent breakthrough towards zero-shot
transferable visual understanding across a wide range of tasks. This model is trained on SA-
1B, a large-scale dataset with over 1 billion masks on 11M licensed and privacy-respecting
images. As a result, SAM is able to segment images, with either point, box, or mask prompts,
across different domains and data distributions. In this work, we use a fixed SAM model
with the ViT-H backbone (termed as ViT-H-SAM model) to generate superpixels. We use
this pretrained model directly without any further fine-tuning. More details of this model
can be found at https://github.com/facebookresearch/segment-anything.

• X-Decoder [122]: The X-Decoder model is a generalized decoding framework that can
predict pixel-level segmentation and language tokens seamlessly. This model is pretrained
on three types of data, including panoptic segmentation, image-text pairs, and referring
segmentation. For the panoptic segmentation task, the model is trained on COCO2017,
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which includes around 104k images for model training. In this work, we use a fixed X-
Decoder model termed BestSeg-Tiny to generate superpixels. We use this pretrained
model directly without any further fine-tuning. More details of this model can be found at
https://github.com/microsoft/X-Decoder.

• OpenSeeD [111]: The OpenSeeD model is designed for open-vocabulary segmentation
and detection, which jointly learns from different segmentation and detection datasets.
This model consists of an image encoder, a text encoder, and a decoder with foreground,
background, and conditioned mask decoding capability. The model is trained on COCO2017
and Objects365, under the tasks of panoptic segmentation and object detection, respectively.
In this work, we use a fixed OpenSeeD model termed openseed-swint-lang to generate
superpixels. We use this pretrained model directly without any further fine-tuning. More
details of this model can be found at https://github.com/IDEA-Research/OpenSeeD.

• SEEM [123]: The SEEM model contributes a new universal interactive interface for image
segmentation, where ‘SEEM’ stands for ‘segment everything everywhere with multi-modal
prompts all at once’. The newly designed prompting scheme can encode various user intents
into prompts in a joint visual-semantic space, which possesses properties of versatility,
compositionality, interactivity, and semantic awareness. As such, this model is able to
generalize well to different image datasets, under a zero-shot transfer manner. Similar to
X-Decoder, SEEM is trained on COCO2017, with a total number of 107k images used
during model training. In this work, we use a fixed SEEM model termed SEEM-oq101
to generate superpixels. We use this pretrained model directly without any further fine-
tuning. More details of this model can be found at https://github.com/UX-Decoder/
Segment-Everything-Everywhere-All-At-Once.

The quality of superpixels directly affects the performance of self-supervised representation learning.
Different from the previous paradigm [85, 66], our Seal framework resorts to the recent VFMs
for generating superpixels. Compared to the traditional SLIC method, these VFMs are able to
generate semantically-aware superpixels that represent coherent semantic meanings of objects and
backgrounds around the ego-vehicle.

As been verified in our experiments, these semantic superpixels have the ability to ease the “over-
segment” problem in current self-supervised learning frameworks [85, 66] and further improve the
performance for both linear probing and downstream fine-tuning.

The histograms shown in Table B and Table C verify that the number of superpixels per image of
VFMs is much smaller than that of SLIC. This brings two notable advantages: i) Since semantically
similar objects and backgrounds are grouped together in semantic superpixels, the “self-conflict”
problem in existing approaches is largely mitigated, which directly boosts the quality of representation
learning. ii) Since the embedding length D of the superpixel embedding features Q ∈ RM×D and
superpoint embedding features K ∈ RM×D directly relates to computation overhead, a reduction
(e.g., around 150 superpixels per image in SLIC [1] and around 25 superpixels per image in X-
Decoder [122], OpenSeeD [111], and SEEM [123]) on D would allow us to train the segmentation
models in a more efficient manner.

Some typical examples of our generated superpixels and their corresponding superpoints are shown
in Fig. A, Fig. B, Fig. C, and Fig. D. As will be shown in Section B, our use of semantic superpixels
generated by VFMs brings not only performance gains but also a much faster convergence rate during
the model pretraining stage.

A.3 Implementation Detail

A.3.1 Data Split

For model pertaining, we follow the SLidR protocol [85] in data splitting. Specifically, the nuScenes
[26] dataset consists of 700 training scenes in total, 100 of which are kept aside, which constitute the
SLidR mini-val split. All models are pretrained using all the scans from the 600 remaining training
scenes. The 100 scans in the mini-val split are used to find the best possible hyperparameters. The
trained models are then validated on the official nuScenes validation set, without any kind of test-time
augmentation or model ensemble. This is to ensure a fair comparison with previous works and also
in line with the practical requirements.
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Figure A: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [123]. Each color represents one distinct segment. Best viewed in color.

Figure B: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [123]. Each color represents one distinct segment. Best viewed in color.

For linear probing, the pretrained 3D network Fθp is frozen with a trainable point-wise linear
classification head which is trained for 50 epochs on an A100 GPU with a learning rate of 0.05, and
batch size is 16 on the nuScenes train set for all methods.

For downstream fine-tuning tasks, we stick with the common practice in SLidR [85] whenever
possible. The detailed data split strategies are summarized as follows.

• For fine-tuning on nuScenes [26], we follow the SLidR protocol to split the train set of
nuScenes to generate 1%, 5%, 10%, 25%, and 100% annotated scans for the training subset.

• For fine-tuning on DAPS-3D [51], we take sequences ‘38-18_7_72_90’ as the training set
and ‘38-18_7_72_90’, ‘42-48_10_78_90’, and ‘44-18_11_15_32’ as the validation set.
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Figure C: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [123]. Each color represents one distinct segment. Best viewed in color.

Figure D: Illustration of the semantic superpixel-to-superpoint transformation in the proposed
Seal framework. [Row 1 & 2] The raw data captured by the multi-view camera and LiDAR sensors.
[Row 3 & 4] The semantic superpixel on the camera images and superpoint formed by projecting
superpixel into the point cloud via camera-LiDAR correspondence. The superpixels are generated
using SEEM [123]. Each color represents one distinct segment. Best viewed in color.

• For fine-tuning on SynLiDAR [100], we use the sub-set which is a uniformly downsampled
collection from the whole dataset.

• For fine-tuning on SemanticPOSS [75], we use sequences 00 and 01 as half of the annotated
training scans and use sequences 00 to 05, except 02 for validation to create full of the
annotated training samples.

• For fine-tuning on SemanticKITTI [3], Waymo Open [88], ScribbleKITTI [95], RELLIS-
3D [49], SemanticSTF [102], and Synth4D [82], we follow the SLidR protocol to create
1%, 10%, half, or full split of the annotated training scans, e.g., one scan is taken every 100
frame from the training set to get 1% of the labeled training samples. Notably, the point
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cloud segmentation performance in terms of IoU is reported on the official validation sets
for all the above-mentioned datasets.

A.3.2 Experimental Setup

In our experiments, we fine-tune the entire 3D network on the semantic segmentation task using a
linear combination of the cross-entropy loss and the Lovász-Softmax loss [4] as training objectives
on a single A100 GPU. For the few-shot semantic segmentation tasks, the 3D networks are fine-tuned
for 100 epochs with a batch size of 10 for the SemanticKITTI [3], Waymo Open [88], ScribbleKITTI
[95], RELLIS-3D [49], SemanticSTF [102], SemanticPOSS [75], DAPS-3D [51], SynLiDAR [100],
and Synth4D [82] datasets.

For the nuScenes [26] dataset, we fine-tune the 3D network for 100 epochs with a batch size of 16
while training on the 1% annotated scans. The 3D network train on the other portions of nuScenes is
fine-tuned for 50 epochs with a batch size of 16. We adopt different learning rates on the 3D backbone
Fθp and the classification head, except for the case that Fθp is randomly initialized. The learning rate
of Fθp is set as 0.05 and the learning rate of the classification head is set as 2.0, respectively, for all
the above-mentioned datasets except nuScenes. On the nuScenes dataset, the learning rate of Fθp is
set as 0.02.

We train our framework using the SGD optimizer with a momentum of 0.9, a weight decay of 0.0001,
and a dampening ratio of 0.1. The cosine annealing learning rate strategy is adopted which decreases
the learning rate from its initial value to zero at the end of the training.

A.3.3 Data Augmentation

For the model pretraining, we apply two sets of data augmentations on the point cloud and the
multi-view image, respectively, and update the point-pixel correspondences after each augmentation
by following SLidR [85].

• Regarding the point cloud, we adopt a random rotation around the z-axis and flip the x-axis
or y-axis with a 50% probability. Besides, we randomly drop the cuboid where the length of
each side covers no more than 10% range of point coordinates on the corresponding axis,
and the cuboid center is located on a randomly chosen point in the point cloud. We also
ensure that the dropped cuboid retains at least 1024 pairs of points and pixels; otherwise,
we select another new cuboid instead. For the temporal frame, we apply the same data
augmentation to it.

• Regarding the multi-view image, we apply a horizontal flip with a 50% probability and a
cropped resize which reshapes the image to 416× 224. Before resizing, the random crop
fills at least 30% of the available image space with a random aspect ratio between 14 : 9 and
17 : 9. If this random cropping does not preserve at least 1024 or 75% of the pixel-point
pairs, a different crop is chosen.

For the downstream fine-tuning tasks, we apply a random rotation around the z-axis and flip the x-
axis or y-axis with a 50% probability for all the points in the point cloud. If the results are mentioned
with LaserMix [55] augmentation, we augment the point clouds via the LaserMix before the above
data augmentations. We report both results in the main paper so that we can fairly compare the point
cloud segmentation performance with previous works.

A.3.4 Model Configuration

For the model pretraining, the 3D backbone Fθp is a Minkowski U-Net [19] with 3× 3× 3 kernels;
while the 2D image encoder Gθi is a ResNet-50 [33] initialized with 2D self-supervised pretrained
model of MoCoV2 [12]. These configurations are kept the same as SLidR [85]. The channel
dimension of Gθi head and Fθp head is set to 64. For the linear probing task, we adopt a linear
classification head, as mentioned in previous sections. For the downstream fine-tuning tasks, the
same 3D backbone Fθp , i.e., the Minkowski U-Net [19] with 3× 3× 3 kernels, is used.
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Figure E: The convergence rate comparison between SLidR [85] and the proposed Seal framework.

B Additional Quantitative Result

B.1 Self-Supervised Learning

We report the complete results (i.e., the class-wise IoU scores) for the linear probing and downstream
fine-tuning tasks shown in the main paper. We report the official results from previous works
whenever possible. We also report our reproduced results for random initialization, PPKT [65],
and SLidR [85]. Specifically, the complete results on the nuScenes [26], SemanticKITTI [3],
Waymo Open [88], and Synth4D [82] datasets are shown in Table D, Table E, Table F, and Table G,
respectively. We observe that Seal constantly outperforms prior methods for most semantic classes
on all datasets.

We also compare the convergence rate of Seal with SLidR [85] in Fig. E. As can be seen, our
framework is able to converge faster with the use of semantic superpixels, where these higher
qualitative contrastive samples gradually form a much more coherent optimization landscape.

B.2 Robustness Probing

We report the complete results of the robustness evaluation experiments in the main paper, including
the per-corruption CE scores and the per-corruption RR scores. Specifically, the complete results on
the nuScenes-C [53] dataset are shown in Table H and Table I. We observe that Seal is superior to
previous methods in terms of both CE and RR metrics.

C Additional Qualitative Result

C.1 Cosine Similarity

We provide more examples for the cosine similarity study in Fig. F, Fig. G, and Fig. H.

C.2 Downstream Tasks

We provide more qualitative results for downstream fine-tuning tasks in Fig. I, Fig. J, and Fig. K.
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Table D: The per-class IoU scores of different pretraining methods pretrained on nuScenes [26] and
linear probed or fine-tuned on different proportions (1%, 5%, 10%, 25%, and Full) of the nuScenes
[26] data. Symbol ¶ denotes our reproduced results and the remaining are reported scores. All IoU
scores are given in percentage (%). The best mIoU score is highlighted in bold.
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Linear Probing

Random ¶ 8.4 0.5 0.0 0.0 3.9 0.0 0.0 0.0 6.4 0.0 3.9 60.4 0.0 0.1 16.2 30.6 12.2
PointContrast 21.9 - - - - - - - - - - - - - - - -
DepthContrast 22.1 - - - - - - - - - - - - - - - -
PPKT 35.9 - - - - - - - - - - - - - - - -
SLidR ¶ 39.2 44.2 0.0 30.8 60.2 15.1 22.4 47.2 27.7 16.3 34.3 80.6 21.8 35.2 48.1 71.0 71.9
ST-SLidR 40.5 - - - - - - - - - - - - - - - -
Seal (Ours) 45.0 54.7 5.9 3.6 61.7 18.9 28.8 48.1 31.0 22.1 39.5 83.8 35.4 46.7 56.9 74.7 74.7

Fine-tuning (1%)
Random 30.3 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3
PointContrast 32.5 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6
DepthContrast 31.7 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0
PPKT 37.8 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9
SLidR 38.8 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3
ST-SLidR 40.8 0.0 2.7 16.0 74.5 3.2 25.4 50.9 20.0 17.7 40.2 92.0 30.7 54.2 61.1 80.5 82.9
Seal (Ours) 45.8 0.0 9.4 32.6 77.5 10.4 28.0 53.0 25.0 30.9 49.7 94.0 33.7 60.1 59.6 83.9 83.4

Fine-tuning (5%)
Random 47.8 - - - - - - - - - - - - - - - -
Random ¶ 44.5 50.1 2.9 57.3 70.3 1.1 6.1 39.1 18.3 17.3 44.8 92.3 38.6 54.9 61.1 80.3 77.9
PPKT ¶ 52.7 56.1 8.2 65.3 79.0 9.1 15.5 54.3 34.5 26.7 58.6 93.2 44.1 63.1 64.8 85.1 83.6
SLidR 52.5 - - - - - - - - - - - - - - - -
ST-SLidR 54.7 - - - - - - - - - - - - - - - -
Seal (Ours) 55.6 61.0 7.4 70.4 82.4 11.9 30.4 59.2 34.0 33.6 61.1 94.7 46.2 63.4 63.9 85.7 84.9

Fine-tuning (10%)
Random 56.2 - - - - - - - - - - - - - - - -
Random ¶ 53.2 56.8 5.2 66.3 74.5 5.7 36.1 49.5 38.2 29.2 54.4 94.0 47.7 61.4 67.6 82.8 81.1
PPKT ¶ 60.3 64.0 12.0 67.8 77.6 16.0 56.8 63.3 49.8 28.3 56.3 94.1 62.7 66.4 68.7 85.9 85.4
SLidR 59.8 - - - - - - - - - - - - - - - -
ST-SLidR 60.8 - - - - - - - - - - - - - - - -
Seal (Ours) 63.0 64.9 15.1 78.9 83.5 22.5 61.0 63.0 51.5 37.4 65.2 95.2 59.4 67.7 69.6 86.2 86.4

Fine-tuning (25%)
Random 65.5 - - - - - - - - - - - - - - - -
Random ¶ 63.0 64.9 15.1 78.9 83.5 22.5 61.0 63.0 51.5 37.4 65.2 95.2 59.4 67.7 69.6 86.2 86.4
PPKT ¶ 67.1 63.7 12.1 87.4 85.2 42.0 61.2 69.6 54.7 50.1 74.9 95.8 64.6 69.9 70.4 87.4 85.1
SLidR 66.9 - - - - - - - - - - - - - - - -
ST-SLidR 67.7 - - - - - - - - - - - - - - - -
Seal (Ours) 68.4 67.4 15.5 90.5 85.1 40.0 62.3 68.1 58.3 54.5 76.0 95.8 65.6 69.8 71.0 87.9 86.7

Fine-tuning (Full)
Random 74.7 - - - - - - - - - - - - - - -
Random ¶ 74.9 77.4 34.4 90.4 86.5 51.1 78.4 77.0 64.9 67.8 77.7 96.6 72.2 74.3 73.2 89.6 86.7
PPKT ¶ 74.5 75.4 37.4 91.7 86.1 45.3 77.3 75.6 65.1 65.0 79.9 96.6 72.1 74.6 73.4 89.2 86.6
SLidR 74.8 - - - - - - - - - - - - - - - -
ST-SLidR 75.1 - - - - - - - - - - - - - - - -
Seal (Ours) 75.6 76.7 26.0 93.4 86.1 55.8 82.7 77.3 66.0 67.9 83.9 96.5 73.6 74.3 73.2 89.3 87.1
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Table E: The per-class IoU scores of different pretraining methods pretrained on nuScenes [26] and
fine-tuned on 1% of the SemanticKITTI [3] data. Symbol ¶ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.
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Random 39.5 91.2 0.0 9.4 8.0 10.7 21.2 0.0 0.0 89.4 21.4 73.0 1.1 85.3 41.1 84.9 50.1 71.4 55.4 37.6
PPKT 43.9 91.3 1.9 11.2 23.1 12.1 27.4 37.3 0.0 91.3 27.0 74.6 0.3 86.5 38.2 85.3 58.2 71.6 57.7 40.1
SLidR 44.6 92.2 3.0 17.0 22.4 14.3 36.0 22.1 0.0 91.3 30.0 74.7 0.2 87.7 41.2 85.0 58.5 70.4 58.3 42.4

ST-SLidR 44.7 - - - - - - - - - - - - - - - - - - -
Seal 46.6 92.3 14.9 18.7 16.1 23.7 43.0 34.4 0.0 91.3 27.2 75.3 0.7 85.7 38.8 85.1 61.9 71.3 57.7 47.7

Table F: The per-class IoU scores of different pretraining methods pretrained on nuScenes [26] and
fine-tuned on 1% of the Waymo Open [88] data. Symbol ¶ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.
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Random 39.4 - - - - - - - - - - - - - - - - - - - - - -
PPKT ¶ 47.6 92.3 48.8 34.8 6.9 0.0 22.0 73.0 58.3 17.6 55.8 20.4 25.5 7.8 91.5 87.1 53.8 55.1 89.1 38.6 34.7 71.4 62.6
SLidR 47.1 - - - - - - - - - - - - - - - - - - - - - -

ST-SLidR 44.9 - - - - - - - - - - - - - - - - - - - - - -
Seal 49.3 92.5 52.6 33.5 3.7 0.0 31.9 73.1 61.0 23.5 57.0 31.4 20.1 12.4 91.4 87.1 53.2 57.2 89.5 38.8 34.9 72.1 68.7

Table G: The per-class IoU scores of different pretraining methods pretrained on nuScenes [26]
and fine-tuned on 1% of the Synth4D [82] data. Symbol ¶ denotes our reproduced results and the
remaining are reported scores. All IoU scores are given in percentage (%). The best mIoU score is
highlighted in bold.
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Seal 64.5 84.8 70.5 64.8 80.3 76.3 9.3 92.9 79.8 92.7 98.9 73.0 60.7 0.0 75.2 55.3 84.6 67.0 0.0 68.2 60.7 53.2 70.9
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Table H: The Corruption Error (CE) scores of different pretraining methods pretrained on nuScenes
[26] and probed under the eight out-of-distribution corruptions in the nuScenes-C dataset from the
Robo3D benchmark [53]. All CE scores are given in percentage (%). The best CE score for each
corruption type is highlighted in bold.
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PPKT MinkUNet18 183.44 149.59 247.53 120.50 266.03 213.54 109.62 199.03 161.65
SLidR MinkUNet18 179.38 140.47 237.29 112.93 276.44 210.65 107.86 189.27 160.16

Seal (Ours) MinkUNet18 166.18 135.18 219.36 117.47 234.01 189.70 108.54 172.16 153.03
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ll

Random PolarNet 115.09 90.10 115.33 58.98 208.19 121.07 80.67 128.17 118.23
Random FIDNet 122.42 75.93 122.58 68.78 192.03 164.84 57.95 141.66 155.56
Random CENet 112.79 71.16 115.48 64.31 156.67 159.03 53.27 129.08 153.35
Random WaffleIron 106.73 94.76 99.92 84.51 152.35 110.65 91.09 106.41 114.15
Random Cylinder3D 105.56 83.22 111.08 69.74 165.28 113.95 74.42 110.67 116.15
Random SPVCNN18 106.65 88.42 105.56 98.78 156.48 110.11 86.04 104.26 103.55
Random SPVCNN34 97.45 95.21 99.50 97.32 95.34 98.73 97.92 96.88 98.74
Random MinkUNet18 112.20 79.90 112.50 74.64 181.47 120.76 93.22 111.58 123.53
PPKT MinkUNet18 105.64 77.63 104.22 68.60 160.95 114.81 86.71 108.96 123.20
SLidR MinkUNet18 106.08 74.61 106.13 73.75 165.09 118.02 79.08 107.38 124.57

Seal (Ours) MinkUNet18 92.63 58.97 98.47 56.63 127.25 108.20 57.97 110.95 122.63

Table I: The Resilience Rate (RR) scores of different pretraining methods pretrained on nuScenes
[26] and probed under the eight out-of-distribution corruptions in the nuScenes-C dataset from the
Robo3D benchmark [53]. All RR scores are given in percentage (%). The best RR score for each
corruption type is highlighted in bold.
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PPKT MinkUNet18 78.15 85.38 98.66 78.33 81.36 91.42 54.37 78.02 57.69
SLidR MinkUNet18 77.18 89.90 98.17 84.12 68.14 86.93 53.63 81.29 55.26

Seal (Ours) MinkUNet18 75.38 83.05 95.15 66.59 83.94 89.70 45.18 83.94 55.48

Fu
ll

Random PolarNet 76.34 81.59 97.95 90.82 62.49 86.75 57.12 75.16 58.86
Random FIDNet 73.33 90.78 95.29 82.61 68.51 67.44 80.48 68.31 33.20
Random CENet 76.04 91.44 95.35 84.12 79.57 68.19 83.09 72.75 33.82
Random WaffleIron 72.78 73.71 97.19 65.19 78.16 85.70 43.54 80.86 57.85
Random Cylinder3D 78.08 83.52 96.57 79.41 76.18 87.23 61.68 81.55 58.51
Random SPVCNN18 74.70 79.31 97.39 55.22 78.44 87.85 49.50 83.72 66.14
Random SPVCNN34 75.10 72.95 96.70 54.79 97.47 90.04 36.71 84.84 67.35
Random MinkUNet18 72.57 84.33 94.63 74.31 69.26 83.06 42.27 79.88 52.79
PPKT MinkUNet18 76.06 85.90 97.71 79.28 76.72 85.72 48.77 81.31 53.10
SLidR MinkUNet18 75.99 87.46 96.68 74.89 74.97 84.06 56.08 81.78 52.01

Seal (Ours) MinkUNet18 83.08 96.11 98.29 87.59 87.49 87.25 75.98 79.19 52.71
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Figure F: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [50, 122, 111, 123]. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.
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Figure G: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [50, 122, 111, 123]. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.
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Figure H: The cosine similarity between the query point (denoted as the red dot) and the feature
learned with SLIC [1] and different VFMs [50, 122, 111, 123]. The color goes from violet to yellow
denoting low and high similarity scores, respectively. Best viewed in color.
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Figure I: The qualitative results of different point cloud pretraining approaches pretrained on the
raw data of nuScenes [26] and fine-tuned with 1% labeled data. To highlight the differences, the
correct / incorrect predictions are painted in gray / red, respectively. Best viewed in color.
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Figure J: The qualitative results of different point cloud pretraining approaches pretrained on the
raw data of nuScenes [26] and fine-tuned with 1% labeled data. To highlight the differences, the
correct / incorrect predictions are painted in gray / red, respectively. Best viewed in color.
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Figure K: The qualitative results of different point cloud pretraining approaches pretrained on the
raw data of nuScenes [26] and fine-tuned with 1% labeled data. To highlight the differences, the
correct / incorrect predictions are painted in gray / red, respectively. Best viewed in color.
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D Public Resources Used

We acknowledge the use of the following public resources, during the course of this work:

• nuScenes5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• nuScenes-devkit6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SemanticKITTI7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SemanticKITTI-API8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• Waymo Open Dataset9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Waymo Dataset License
• ScribbleKITTI10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• RELLIS-3D11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• SemanticPOSS12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
• SemanticSTF13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CC BY-NC-SA 4.0
• SynLiDAR14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Synth4D15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU General Public License 3.0
• DAPS-3D16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• nuScenes-C17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• MinkowskiEngine18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SLidR19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• spvnas20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Cylinder3D21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• LaserMix22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• mean-teacher23 . . . . . . . . . . . . . . . . . . . . . . . . . .Attribution-NonCommercial 4.0 International
• PyTorch-Lightning24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• mmdetection3d25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

5https://www.nuscenes.org/nuscenes.
6https://github.com/nutonomy/nuscenes-devkit.
7http://semantic-kitti.org.
8https://github.com/PRBonn/semantic-kitti-api.
9https://waymo.com/open.

10https://github.com/ouenal/scribblekitti.
11http://www.unmannedlab.org/research/RELLIS-3D.
12http://www.poss.pku.edu.cn/semanticposs.html.
13https://github.com/xiaoaoran/SemanticSTF.
14https://github.com/xiaoaoran/SynLiDAR.
15https://github.com/saltoricristiano/gipso-sfouda.
16https://github.com/subake/DAPS3D.
17https://github.com/ldkong1205/Robo3D.
18https://github.com/NVIDIA/MinkowskiEngine.
19https://github.com/valeoai/SLidR.
20https://github.com/mit-han-lab/spvnas.
21https://github.com/xinge008/Cylinder3D.
22https://github.com/ldkong1205/LaserMix.
23https://github.com/CuriousAI/mean-teacher.
24https://github.com/Lightning-AI/lightning.
25https://github.com/open-mmlab/mmdetection3d.
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