
Supplementary Material
StreamNet: Memory-Efficient Streaming Tiny Deep

Learning Inference on the Microcontroller

Contents

A System Architecture 2

B Performance Analysis when Consuming Nearly Equal Memory 2

C MAC/Latency Correlation Analysis 2

D Latency Analysis of Patch-wise Layers 3

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



A System Architecture

StreamNet
Unchanged

TE Kernels: TinyEngine Kernels
BP Kernels: Bypass padding Kernels

St
re

am
 p

at
ch

 G
en

er
at

io
n

+
Pa

tc
h

ge
n

er
at

io
n.tflite

patch params
(𝑛_𝑝𝑎𝑡𝑐ℎ, 𝑠𝑝𝑙𝑖𝑡_𝑖𝑑𝑥)

stream params
(𝑠𝑡𝑟𝑒𝑎𝑚_𝑥_𝑙𝑒𝑣𝑒𝑙,
𝑠𝑡𝑟𝑒𝑎𝑚_𝑦_𝑙𝑒𝑣𝑒𝑙)

Patched Layers

p
at

ch
ed

Stream Patch Code Gen
+

Patch Code Gen code

*.h
*.c

C
M

SI
S-

N
N

TE
 K

er
n

el
s

B
P

 K
er

n
el

s

Ke
rn

el
 L

ib
ra

ry

M
b

ed
C

LI
SD

K

Ta
rg

et
 P

la
tf

o
rm

A
R

M
 C

o
rt

ex
-M

7

Figure 1: The system architecture of StreamNet

TensorFlow Lite for Microcontrollers (TFLM) (1) tailors for the TinyML applications and adopts the
interpreter-based approach to make cross-platform interoperability in the embedded system possible.
However, TFLM’s interpreter increases the performance overhead of the TinyML applications on
MCUs. Unlike TFLM, StreamNet and MCUNetv2 replace the interpreter with a code generator.
StreamNet is built on top of MCUNetv2 (2; 3) and adds the feature of the 1D and 2D stream
processing (4; 5; 6; 7; 8; 9; 10). The code generator of StreamNet produces kernel implementations
with fixed parameters at the compile time. Then, codes generated by StreamNet can be well-optimized
by the backend C/C++ target compiler through constant folding and loop unrolling. As a result,
StreamNet decreases the runtime overhead by using its code generator to tackle tensors of TinyML
models (11).

The system architecture of StreamNet contains the frontend and backend processing. In the frontend
system of StreamNet, the input of StreamNet is the TensorFlow Lite model (.tfile file). Then,
StreamNet uses the parameters of the TinyML model to create layers of patch-based inference (3).
Second, the memory scheduler allocates SRAM memory space for tensors on the static arena memory
space and then StreamNet performs the 1D and 2D stream processing with its stream buffers. In
StreamNet’s backend system, StreamNet translates tensors and operators of the patch-based inference
into C source code and links kernel libraries such as ARM CMSIS-NN (12), TinyEngine (2; 3), and
our bypass padding kernels. Finally, StreamNet deploys TinyML models on the MCU by using Mbed
CLI SDK (13).

B Performance Analysis when Consuming Nearly Equal Memory

Table 1 compares the performance of StreamNet and MCUNetv2 when both of them use nearly the
same SRAM memory space. Table 1 presents the data of StreamNet-2D. Then, we scan through the
value of n_patch and split_idx parameters to search for the one where their SRAM memory usage
is closest to StreamNet-2D. In Table 1, StreamNet achieves a geometric mean of 5.11X speedup
over MCUNetv2. The SRAM memory consumption varies with the change of n_patch and split_idx
parameters on MCUNetv2. However, the amount of MACs increases rapidly with the reduction
of SRAM memory usage on MCUNetv2. As a result, StreamNet has better performance than
MCUNetv2 when consuming nearly equal SRAM memory.

C MAC/Latency Correlation Analysis

To reduce the runtime overhead, StreamNet uses the amount of multiply-and-accumulate (MACs) of
TinyML models collected at the compile time to guide its auto-tuning framework. This evaluation
aims to validate the correctness of StreamNet that uses the offline data rather than the real latency
result of TinyML models on the MCU. Figure 2 presents the magnitude of the overhead on the
layer-wise inference compared to our StreamNet. Each dot in Figure 2 indicates all possible results
of streaming parameters across 10 TinyML models. We calculate the Pearson product-moment

2



Table 1: Performance results of MCUNetv2 and StreamNet-2D when consuming nearly equal
memory. Param (n_patch, split_idx), Memory (KB), MAC (millions), Latency (ms)

StreamNet-2D MCUNetV2 Speedup

Model Param Mem MAC Latency Param Mem MAC Latency MAC Latency

MB2 (18,13) 66 24 417 (18,12) 63 77 1,513 3.29 3.63
PL (22,13) 95 38 676 (11,21) 89 549 9,519 14.31 14.08
MI0 (12,06) 30 6 99 (04,14) 29 19 274.441 2.99 2.77
MI1 (12,11) 47 13 188 (03,12) 48 24 366 1.84 1.95
MI2 (20,21) 169 67 1,168 (05,25) 169 463 7,055 6.87 6.04
MI3 (22,21) 208 82 1,444 (11,32) 215 2,777 43,812 33.89 30.35
MI4 (20,17) 236 126 1,762 (04,21) 214 366 4,613 2.91 2.62
MV0 (08,13) 29 6 101 (08,11) 30 17 296 2.83 2.93
MV1 (20,14) 44 12 225 (05,17) 45 47 810 4.04 3.61
MV2 (18,21) 143 56 961 (06,29) 144 518 8,311 9.27 8.65

MAC Overhead

La
te

nc
y 

O
ve

rh
ea

d

0

2

4

6

1 2 3 4

Figure 2: The correlation of MAC over latency on TinyML Models

correlation coefficient to figure out the relationship between the value of MACs and the final execution
time of StreamNet. Figure 2 demonstrates that the Pearson correlation coefficient is 0.97 and the
Pearson R2 correlation is 0.94. These results show the strong correlation between MAC and latency
of TinyML models. Hence, the amount of MACs in the TinyML model is an appropriate candidate
that can be used to infer the final latency of TinyML models on our StreamNet.

D Latency Analysis of Patch-wise Layers

Patch-wise layers contribute a large percentage of execution time in the TinyML model. The
patch-based inference leverages the split_idx to determine the number of patch-wise layers in a
TinyML model. Thus, the number of patch-wise layers varies across different TinyML models.
This experiment only counts the results of patch-wise layers and helps to figure out the overhead
removal of StreamNet on patch-wise layers. In Table 2, StreamNet-2D and StreamNet-1D achieve a
geometric mean speedup of 15.78X and 4.45X over the baseline MCUNetv2, respectively. These
results are much better than the one shown in the main paper, because this evaluation only considers
the patch-wise layers. In addition, results of the execution time on TinyML models are also revealed
on the Table 3. In Table 3, StreamNet-1D and StreamNet-2D achieve a geometric mean speedup of

3



Table 2: The amount of MACs (millions) on patch-wise layers

Speedup over MNv2

model param MNv2 MNv2+ SN-1D SN-2D MNv2+ SN-1D SN-2D

MB2 (18,13) 62.75 58.67 22.47 9.15 1.07 2.79 6.86
PL (22,13) 326.89 303.81 65.93 15.68 1.08 4.96 20.85
MI0 (12,06) 10.80 9.70 3.83 1.69 1.11 2.82 6.40
MI1 (12,11) 18.44 16.81 8.08 4.26 1.10 2.28 4.33
MI2 (20,21) 966.90 888.26 157.28 35.48 1.09 6.15 27.26
MI3 (22,21) 1,743.20 1,609.17 230.12 40.38 1.08 7.58 43.16
MI4 (20,17) 1,868.38 1,714.09 280.01 52.28 1.09 6.67 35.73
MV0 (08,13) 19.94 16.85 6.51 2.79 1.18 3.06 7.15
MV1 (20,14) 88.26 81.29 16.41 3.81 1.09 5.38 23.18
MV2 (18,21) 793.83 721.38 120.32 22.93 1.10 6.60 34.62

GMEAN 1.10 4.45 15.78

Table 3: The latency (ms) of patch-wise layers

Speedup over MNv2

model param MNv2 MNv2+ SN-1D SN-2D MNv2+ SN-1D SN-2D

MB2 (18,13) 1.34 1,215.89 512.49 242.32 1.10 2.61 5.52
PL (22,13) 6,002.88 5,516.51 1,322.64 399.39 1.09 4.54 15.03
MI0 (12,06) 181.59 161.34 75.07 43.02 1.13 2.42 4.22
MI1 (12,11) 357.97 321.37 166.86 96.89 1.11 2.15 3.69
MI2 (20,21) 16,216.19 14,721.54 2,951.38 839.81 1.10 5.49 19.31
MI3 (22,21) 29,302.43 26,939.08 4,440.88 1,018.34 1.09 6.60 28.77
MI4 (20,17) 26,149.01 24,038.13 4,470.71 1,087.92 1.09 5.85 24.04
MV0 (08,13) 378.41 316.05 132.24 64.08 1.20 2.86 5.91
MV1 (20,14) 1,726.77 1,579.44 387.94 136.64 1.09 4.45 12.64
MV2 (18,21) 13,750.00 12,655.84 2,431.68 613.15 1.09 5.65 22.43

GMEAN 1.11 3.96 11.12

3.96X and 11.12X over the baseline, respectively. As a result, StreamNet indeed accelerates TinyML
models by removing redundant computations of overlapping patches in the patch-based inference on
MCUs.

References
[1] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Natraj,

T. Wang, et al., “Tensorflow lite micro: Embedded machine learning for tinyml systems,”
Proceedings of Machine Learning and Systems (MLSys), vol. 3, pp. 800–811, 2021.

[2] J. Lin, W.-M. Chen, Y. Lin, C. Gan, and S. Han, “Mcunet: Tiny deep learning on iot devices,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[3] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Mcunetv2: Memory-efficient patch-based
inference for tiny deep learning,” in Annual Conference on Neural Information Processing
Systems (NeurIPS), 2021.

[4] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide:
a language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines,” Acm Sigplan Notices, vol. 48, no. 6, pp. 519–530, 2013.

[5] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accelerators,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–12, IEEE,
2016.

4



[6] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and S. Laurenzo, “Streaming
keyword spotting on mobile devices,” arXiv preprint arXiv:2005.06720, 2020.

[7] A. Coucke, M. Chlieh, T. Gisselbrecht, D. Leroy, M. Poumeyrol, and T. Lavril, “Efficient key-
word spotting using dilated convolutions and gating,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6351–6355, IEEE, 2019.

[8] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao, D. Rybach, A. Kannan,
Y. Wu, R. Pang, et al., “Streaming end-to-end speech recognition for mobile devices,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6381–6385, IEEE, 2019.

[9] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-time streaming transformer trans-
ducer for speech recognition on large-scale dataset,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5904–5908, IEEE, 2021.

[10] Y. Wang, H. Lv, D. Povey, L. Xie, and S. Khudanpur, “Wake word detection with streaming
transformers,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5864–5868, IEEE, 2021.

[11] Lin, Ji and Chen, Wei-Ming and Lin, Yujun and Gan, Chuang and Han, Song, “MCUNet Model
Zoo.” [Online]. Available: https://github.com/mit-han-lab/mcunet/blob/master/
mcunet/model_zoo.py, 2023. (accessed May. 16, 2023).

[12] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network kernels for arm cortex-m
cpus,” arXiv preprint arXiv:1801.06601, 2018.

[13] ARM Ltd., “Arm Mbed CLI.” [Online]. Available: https://github.com/ARMmbed/
mbed-cli, 2023. (accessed May. 16, 2023).

5

https://github.com/mit-han-lab/mcunet/blob/master/mcunet/model_zoo.py
https://github.com/mit-han-lab/mcunet/blob/master/mcunet/model_zoo.py
https://github.com/ARMmbed/mbed-cli
https://github.com/ARMmbed/mbed-cli

	System Architecture
	Performance Analysis when Consuming Nearly Equal Memory
	MAC/Latency Correlation Analysis
	Latency Analysis of Patch-wise Layers

