
StreamNet: Memory-Efficient Streaming Tiny Deep
Learning Inference on the Microcontroller

Hong-Sheng Zheng, Chen-Fong Hsu, Yu-Yuan Liu, Tsung Tai Yeh
Department of Computer Science

National Yang-Ming Chiao Tung University
Hsinchu, Taiwan

{hszheng.cs08, fonghsu.cs08, yyliu.cs11, ttyeh14}@nycu.edu.tw

Abstract

With the emerging Tiny Machine Learning (TinyML) inference applications, there
is a growing interest when deploying TinyML models on the low-power Microcon-
troller Unit (MCU). However, deploying TinyML models on MCUs reveals several
challenges due to the MCU’s resource constraints, such as small flash memory, tight
SRAM memory budget, and slow CPU performance. Unlike typical layer-wise in-
ference, patch-based inference reduces the peak usage of SRAM memory on MCUs
by saving small patches rather than the entire tensor in the SRAM memory. How-
ever, the processing of patch-based inference tremendously increases the amount
of MACs against the layer-wise method. Thus, this notoriously computational
overhead makes patch-based inference undesirable on MCUs. This work designs
StreamNet that employs the stream buffer to eliminate the redundant computation
of patch-based inference. StreamNet uses 1D and 2D streaming processing and
provides an parameter selection algorithm that automatically improve the perfor-
mance of patch-based inference with minimal requirements on the MCU’s SRAM
memory space. In 10 TinyML models, StreamNet-2D achieves a geometric mean
of 7.3X speedup and saves 81% of MACs over the state-of-the-art patch-based
inference.

1 Introduction

With the emerging Tiny Machine Learning (TinyML) applications, challenges to successfully deploy
TinyML models on the resource-constrained microcontroller (MCU) are becoming critical. Unlike the
high-performance CPU, the MCU is basically composed of a small flash memory (several MBs), an
SRAM memory (hundreds of KBs), and a slow CPU (hundreds of MHz). Since the SRAM memory
has better performance on reading and writing data than the flash memory, most TinyML system
frameworks often place the input/output tensors on the SRAM and store weights and filters on the
flash memory. In addition, the size of memory on MCUs is always small because of their constrained
budgets. However, recent TinyML models tend to use large input images and intermediate tensors to
raise their training accuracy (1; 2). Such TinyML models expose grand challenges when deploying
these models on MCUs with the stringent memory constraint.

Tensor memory planner of TinyML system frameworks determines the usage of the SRAM memory.
An MCU is often responsible for Machine Learning (ML) inference and often uses a single batch to
facilitate the response time of ML inference tasks. Thus, the static tensor memory planner schedules
intermediate tensors to meet the SRAM memory constraint. Conventionally, the compiler/interpreter
employs layer-wise scheduling, pushes data of a layer in the SRAM memory, and replaces them after
finishing its operator (3; 4). However, such layer-wise inference will overuse the SRAM memory
space when TinyML models have large intermediate tensors. To overcome this shortcoming, patch-

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

based inference (2) divides the entire tensors into multiple overlapping patches. Then, patch-based
inference places a patch in the SRAM memory space rather than the entire tensor to repair the
out-of-memory problem. However, the redundant computation of patch-based inference occurs when
proceeding with a large number of overlapping patches and tremendously increases the execution
time of TinyML models. Furthermore, this situation becomes worse in particular when significantly
shrinking the usage of SRAM memory space. Hence, patch-based inference is becoming undesirable
with such notoriously high performance overhead on MCUs.

This work designs StreamNet that eliminates the significant amount of redundant computations while
reaching minimal usage of the SRAM memory space for TinyML models on MCUs. StreamNet
creates the stream buffer to reuse tensor data in the patch-based inference. In addition, StreamNet
designs 1D and 2D stream processing to improve the performance of patch-based inference with
different SRAM memory requirements. To facilitate the performance of StreamNet further, StreamNet
also removes the unnecessary computation on the padding data. At last, StreamNet’s parameter
selection framework automatically constructs a new patch-based inference that mixes 1D and 2D
stream processing to meet the memory constraint while resulting in the best performance for TinyML
models.

The main contributions of this paper are shown below:

1. StreamNet achieves a geometric mean of 3.4X (1D) to 7.3X (2D) speedup over the existing
patch-based inference without increasing memory usage significantly.

2. Developing output padding bypass kernels to enhance the performance of patch-based
inference.

3. The StreamNet parameter selection framework automatically selects an optimal configura-
tion for StreamNet-2D operations under the SRAM memory constraint of an MCU.

2 Understanding Performance Bottleneck of Memory Allocation on TinyML

Memory-efficient patch-based inference: Patch-based inference aims to reduce the peak SRAM
memory usage of TinyML models on MCUs. This patch-based approach divides a large input feature
map into multiple small patches. Then, the MCU’s SRAM buffer reduces its space usage by only
storing a small patch each time instead of the entire input feature map. For instance, Figure 1(a)
demonstrates the peak SRAM memory usage of the proxyless-w0.3 TinyML model (5) and other
TinyML models have the similar trend. Traditionally, ML system frameworks such as TFLM (3)
place input and output tensors of a layer or an operator in the SRAM buffer. After finishing the
work of a layer, TFLM (3) removes the obsolete input data of the completed layer and allocates
another space to put the output data of the next layer. However, given an MCU and its size of
SRAM memory is 128 KB, Figure 1 demonstrates that the memory usage of multiple layers in the
proxyless-w0.3 TinyML model (5) is larger than the size of the SRAM memory on an MCU. As
a result, the layer-wise memory allocation raises significant challenges when deploying TinyML
models on MCUs. Unlike the layer-wise inference, Figure 1 presents patch-based inference that
reduces the total SRAM memory usage of TinyML models and enables models to be run on MCUs
with small memory size.

Figure 1: Comparing peak memory usage and the amount of MACs on patch-based and layer-wise
inference

Challenges and opportunities: Patch-based inference creates a large amount of redundant computa-
tion that occurs among its adjacent patches. To reduce the peak SRAM memory usage on MCUs,

2

patch-based inference creates many small patches that overlap receptive fields. These small patches
tremendously raise the amount of computation on a TinyML model. The inefficient patch-based
inference is becoming undesirable on MCUs even if it saves the peak SRAM memory usage of a
TinyML model significantly. Figure 1(b) demonstrates that patch-based inference takes 33X more
MACs than the layer-wise one at the first layer. Furthermore, the amount of MACs in patch-based
inference also rapidly grows with the reduction of peak SRAM memory usage. Hence, our work
stores repeated results of patch-based inference in the stream buffer and skips these computations to
eliminate the performance bottleneck of patch-based inference.

3 StreamNet: Efficient Patch-based Inference for TinyML Models

This section details the design and implementation of StreamNet that removes the redundant compu-
tation of patch-based inference with the minimal usage of the SRAM memory space on MCUs.

(a) Step 1 & 2

 ଵ

1
2

11
22

2
1 1

22
1

(b) Step 3

 ଵ

12
13

21
32

13
1 1

32
1

(c) Step 4

 ଵ

12
24

21
42

24
1 2

42
2 1

Operator Overlapping areaComputed Patch 0 Patch 1 Patch 2 Patch 3

Figure 2: Patch-based inference example

3.1 Inefficient Patch-based Inference

To accelerate patch-based inference, this work proposes StreamNet that removes most redundant
computations of patch-based inference by putting its repetitive results in the stream buffer. Figure 2
demonstrates operations of patch-based inference. In Figure 2, there are two operators where each
of them has its own input and output tensor and the computed block means the completed output
element. Conventionally, in the convolution processing, the 6× 6 input with the 3× 3 filter will yield
the 4× 4 output. This calculation takes 144 (16× 9) MACs where the number 16 is the size of the
output and the number 9 comes from the 3× 3 filter. Unlike conventional convolution, in Figure 2,
patch-based inference divides a 6× 6 input into four 5× 5 patches. Each 5× 5 patch computes the
convolution with the 3× 3 filter to finally yield a 4× 4 output. As illustrated in Figure 2(a), Patch 0
and Patch 1 generate a 3× 3 output patch, respectively. Each of them takes 9× 9 MACs where the
first number 9 is the size of output and the second number 9 is associated with the size of the filter.
Thus, patch-based inference uses 4 patches to create a 4× 4 output and takes 324 MACs (9× 9× 4).
The amount of MACs of patch-based inference is 2.25X (324/144) more than the layer-wise inference
because patch-based inference contains an enormous amount of repetitive computations. For instance,
in Figure 2, each value in the overlapping area represents the repetition count of the output tensor
element. This redundant calculation increases the execution time of a TinyML model significantly. In
addition, patch-based inference tends to use the fine-grained patch to lower the usage of the SRAM
memory. However, the amount of redundant computation increases as the patch size becomes small.

3.2 StreamNet 1D Streaming Processing

Figure 3(a) illustrates the steps of 1D streaming processing on StreamNet inference. In Figure 3(a),
two patches proceed one after the other as the data stream during the computation of the convolution.
In Figure 3, the computed block represents the completed element of the tensor, and the computing
block indicates the elements of the tensor in the execution. At first, in Figure 3(a), StreamNet-1D
performs the CONV0 operator on the 5 × 5 patch and yields a 3 × 3 output tile (1). Second,
StreamNet-1D stores the overlapping area of this 3× 3 output tile in the stream buffer (2). Then,
StreamNet-1D uses this 3×3 tile to generate the 1×1 output data after finishing the CONV1 operator
(3). Unlike patch-based inference, StreamNet uses the results preserved in the stream buffer during
the computation of Patch 1. Thus, StreamNet-1D only fetches a 3× 5 tile from Patch 1 to yield a

3

12
12

21
21

12
1 2

21
2 1

12
24

21
42

24
1 2

42
2 1

StreamNet-1D

(a) StreamNet-1D streaming processing

Stream
Buffer

In
pl

ac
e

Co
nc

at

 ଵ

5

3

4

2
1

6

(c) StreamNet-1D result

(b) Patch−based inference

Patch 1Patch 0

Operator Overlapping area
ComputingComputed

Figure 3: The operation of StreamNet-1D

3× 1 output data (4). Then, StreamNet-1D combines this 3× 1 output with the data of the stream
buffer to work out a 3× 3 output tile as illustrated in Figure 3(a) (5). At last, the 3× 3 output of
Patch 1 will yield a 1 × 1 output after finishing the CONV1 operator (6). In the computation of
Patch 0 and Patch 1, StreamNet-1D takes 108 MACs (12× 9) where the number 12 is the sum of the
calculated output size in (1) (3× 3) and (4) (3× 1) and the number 9 is associated with the size of
the 3× 3 filter. Since StreamNet-1D also needs to use four patches to create a 4× 4 output in total,
the total amount of MACs in 1D streaming processing of StreamNet-1D is 216 (12× 9× 2). Unlike
patch-based inference in Figure 3(b), StreamNet-1D in Figure 3(c) decreases the repetition counts in
each element of the output tensor. Hence, StreamNet-1D reduces roughly 60% of MAC overhead
over patch-based inference in Figure 3, because the overhead of StreamNet-1D and patch-based
inference is 8 (24 - 16) and 20 (36 - 16) where 16 (4× 4) is the number of output elements of the
layer-wise inference.

Patch 1Patch 0Operator Patch 2 Patch 3

ଵ

he
ig

ht

width

In
pl

ac
e

Co
nc

at
In

pl
ac

e
Co

nc
at

X Stream
Buffer

In
pl

ac
e

Co
nc

at

1

2

3

4

stream_x

stream_y

stream_x + stream_y

Y Stream
Buffer

Y Stream
Buffer

XY
Stream
Buffer

Figure 4: The StreamNet-2D operations

3.3 StreamNet 2D Streaming Processing

StreamNet uses the stream buffer to preserve temporary results that will be used multiple times
across patches. After finishing an operator, StreamNet will place a number of output tensors in
the stream buffer. Since StreamNet-1D does not completely remove the redundant computation
overhead, StreamNet designs StreamNet-2D to eliminate all redundant MACs in patch-based infer-
ence. StreamNet-2D is composed of stream_x and stream_y processing. The execution order of

4

stream_y patches is firstly moving downward. For instance, patch-based inference in Figure 4 moves
its execution vertically for Patch 1, then back to Patch 2, and finally moves downward for Patch 3.
Unlike stream_y, the execution order of stream_x patch firstly moves toward the horizontal direction.
At first, in Figure 4, the 5×5 Patch 0 computes CONV0 with the 3×3 filter and yields a 3×3 output.
Then, StreamNet-2D stores a 3× 2 tile and 2× 3 tile of the 3× 3 output in the Y and X stream buffer
(1)(2), respectively. Second, StreamNet-2D tackles Patch 1 and fetches a 5× 3 tile in Patch 1 to
yield a 3× 1 output. After finishing Patch 1, StreamNet stores a 2× 1 tile of its output tensor to the
XY stream buffer (4) and cleans the Y stream buffer. Third, StreamNet-2D handles Patch 2 and
reuses results in the X stream buffer. After completing Patch 2, StreamNet-2D stores a 3× 2 tile of
Patch 2’s output in the Y stream buffer (3)). Finally, StreamNet-2D reuses the data within the Y and
XY stream buffer to proceed with Patch 3. StreamNet-2D takes 144 MACs ((9+3+3+1)×9) where
each number of the first bracket represents the amount of calculation in each patch and the second
number 9 means the size of the 3× 3 filter. Hence, StreamNet-2D completely eliminates the total
amount of the redundant computation shown in patch-based inference. However, StreamNet-2D has a
larger stream buffer to store the temporary results of each patch over StreamNet-1D. As illustrated in
Figure 4, the stream buffer of StreamNet-2D is 14 where the 2× 3 tile is from stream_x, the 3× 2 tile
is from stream_y, and the 2× 1 tile is from the XY stream buffer. A large stream buffer increases the
requirement of the SRAM memory space. To balance the consumption of the MACs and the SRAM
memory space, StreamNet presents an parameter selection framework that mixes StreamNet-1D and
StreamNet-2D. As a result, StreamNet can satisfy the constraint of the SRAM memory size on MCUs
while achieving efficient execution on TinyML models.

Algorithm 1: The StreamNet Parameter Selection Algorithm
Input: model and constraint
Output: selected StreamNet parameter under constraint

1 patch_params = {(split_idx, n_patch) | split_idx ∈ V alidSplitIndexes(Model),
n_patch ∈ OutShapeFactors(Layers[split_idx])}

2 candidates = []
3 for param in patch_params do
4 performance = (mem,MACs) = ProfileParameter_PatchBased(param)
5 if mem meets constraint then
6 candidates.append(param, performance)
7 Filter obtained records and only keep the ones that have performance on the Pareto frontier
8 for candidate in candidates do
9 for stream_x_level in [0, 1, ..., record.split_idx] do

10 param = (candidate.param,max_stream_y_level, stream_x_level)
11 performance = (mem,MACs) = ProfileParameter_StreamNet(param)
12 if mem meets constraint then
13 new_candidates.append(param, performance)
14 if there is only one param that has the smallest MACs then
15 return param as the best parameter.
16 else
17 return the param that has the largest output patch size as the best parameter.

3.4 StreamNet Parameter Selection Framework

Searching for the best parameter that satisfies memory constraints while minimizing the latency
of a TinyML model manually is exceedingly tedious and challenging. To address this problem,
StreamNet designs an parameter selection framework that determines the best parameter candidate
to meet the constraint of the SRAM memory across different MCUs. Hence, StreamNet parameter
selection framework aims to automatically find the parameter composition of StreamNet and mixes
StreamNet-1D and StreamNet-2D to fit the limited amount of SRAM memory on the MCU. To
minimize the runtime overhead, StreamNet refers to the MAC count to choose the best candidate of
StreamNet parameters through its compiler pass.

Algorithm 1 demonstrates StreamNet parameter selection framework that infers parameters of
StreamNet to fit an MCU at the compile time. The patch parameter in line 1 of Algorithm 1
includes the number of the patch (n_patch) and the number of layers that proceed with patch-based

5

computation (split_idx). The OutShapeFactor function returns the valid number of the patch in
patch-based inference. Next, StreamNet calculates the amount of MACs with different combinations
of these two parameters and picks out candidates that meet the constraint of the SRAM memory
space of an MCU from line 2 - 7 of the Algorithm 1. Then, StreamNet examines different values of
stream_x_level and stream_y_level to determine the number of stream-wise layers while having a
minimum amount of MACs in a model and returns this combination from line 8 - 15 of Algorithm 1.
Otherwise, StreamNet tends to choose the one with the smallest patch count when both candidates
have the same amount of MACs, since a large output patch has bigger computation granularity, which
usually yields better latency.

Tensor D

 ଵ

ଶ

…

…

Tensor A

…

…

Tensor C

…

…

…

…

Tensor B

Padding areaTensor area Patch areaOperator StreamNet
skipping area

Figure 5: Output padding data bypassing on StreamNet

3.5 Output Padding Bypassing

The padding data of each tensor contributes the performance overhead in the patch-based inference.
To further the performance of patch-based inference, StreamNet intelligently skips the computation
of the padding data. Figure 5 presents a patch-based inference neural network that consists of 3
operators and 4 tensors. Padding is always added to a tensor to generate an output with the specified
size. Parameters of conventional neural networks such as the size of the stride and the filter result in
different amounts of padding data in each tensor. Unlike common neural networks, in Figure 5, the
patch size of the current tensor is obtained from the configuration of the next tensor. For instance,
patch-based inference refers to the patch size of Tensor C to figure out the patch size of Tensor B.
The padding data in Tensor B appends the one in Tensor C. Thus, the amount of the padding data
in patch-based inference can be more than the one in the layer-wise inference. Since the value of
padding data is always assigned to be zero, the padding data won’t change the expected results. In
Figure 5, patch-based inference proceeds with a 7 × 7 patch in Tensor A including padding data
to generate an output 5 × 5 patch. Next, this 5 × 5 patch in Tensor B is used to create a 3 × 3
patch in Tensor C. Hence, each operator computes its padding data that contributes additional MACs
during the execution of TinyML models. StreamNet removes the performance overhead shown in
the padding data by skipping the computation of each output padding data. In Figure 5, patch-based
inference reads the data of a 5× 5 patch in Tensor B to generate a 3× 3 patch in Tensor B. Unlike
patch-based inference, StreamNet uses the size of the padding data known after finishing the previous
layer to distinguish the padding data from the real one. Next, StreamNet only considers the real data
in the calculation of an operator. Furthermore, StreamNet only writes the zero value into output
padding data directly without consuming any MACs. StreamNet changes the implemented kernel of
patch-based inference to skip the computation of the output padding data during the execution of
each operator.

4 StreamNet System Architecture

The system architecture of StreamNet contains the frontend and backend processing. In the frontend
system of StreamNet, the input of StreamNet is the TensorFlow Lite model (.tflite file). Then,
StreamNet uses the parameters of the TinyML model to create layers of patch-based inference (2).
Second, the memory scheduler allocates SRAM memory space for tensors on the static arena memory
space and then StreamNet performs the 1D and 2D stream processing with its stream buffers. In
StreamNet’s backend system, StreamNet translates tensors and operators of the patch-based inference

6

StreamNet
Unchanged

TE Kernels: TinyEngine Kernels
BP Kernels: Bypass padding Kernels

St
re

am
 p

at
ch

 G
en

er
at

io
n

+
Pa

tc
h

ge
n

er
at

io
n.tflite

patch params
(𝑛_𝑝𝑎𝑡𝑐ℎ, 𝑠𝑝𝑙𝑖𝑡_𝑖𝑑𝑥)

stream params
(𝑠𝑡𝑟𝑒𝑎𝑚_𝑥_𝑙𝑒𝑣𝑒𝑙,
𝑠𝑡𝑟𝑒𝑎𝑚_𝑦_𝑙𝑒𝑣𝑒𝑙)

Patched Layers

p
at

ch
ed

Stream Patch Code Gen
+

Patch Code Gen code

*.h
*.c

C
M

SI
S-

N
N

TE
 K

er
n

el
s

B
P

 K
er

n
el

s

Ke
rn

el
 L

ib
ra

ry

M
b

ed
C

LI
SD

K

Ta
rg

et
 P

la
tf

o
rm

A
R

M
 C

o
rt

ex
-M

7

Figure 6: The system architecture of StreamNet

into C source code and links kernel libraries such as ARM CMSIS-NN (6), TinyEngine (1; 2), and
our bypass padding kernels. Finally, StreamNet deploys TinyML models on the MCU by using Mbed
CLI SDK (7).

5 Experiments

5.1 Experiment Environment Setup

System Implementation: We compare the performance and memory consumption of StreamNet
to MCUNetV2 (2), which performs patch-based inference on TinyML models. Since existing
TinyEngine kernels (1) used by MCUNetV2 (2) do not support 5×5 and 7×7 filters, we fix this issue
to enable our evaluation to work on the depthwise convolution function with more filter combinations.
In addition, we also insert our output padding bypassing implementation within MCUNetV2 (2) as
MCUNetV2+. StreamNet modifies MCUNetV2’s memory scheduler and code generator to identify
streamable area, allocate stream buffer, generate codes with different streaming processing, and insert
the stream buffer operation between operator kernel invocation in StreamNet.

Benchmark: We evaluate 10 TinyML models from MCUNetV2 model zoo (5)such as mbv2-
w0.35(MB2), proxyless-w0.3(PL), mcunet-vww0(MV0), mcunet-vww1(MV1), mcunet-vww2(MV2),
mcunet-in0(MI0), mcunet-in1(MI1), mcunet-in2(MI2), mcunet-in3(MI3), mcunet-in4(MI4). All
models use int8 quantized mode. These TinyML models have different requirements on the SRAM
memory space and their execution time also differs.

On-device Experiment: We deploy TinyML models through ARM Mbed CLI (7) on the ARM
Cortex-M7 CPU. The MCU used in our evaluation is STM32F767ZI (8) that includes an ARM
Cortex-M7 CPU at 216 MHz, a 512KB SRAM, and a 2MB Flash

5.2 Performance Analysis when Consuming Nearly Equal Memory

Table 1 compares the performance of StreamNet and MCUNetv2 when both of them use nearly the
same SRAM memory space. Table 1 presents the data of StreamNet-2D. Then, we scan through the
value of n_patch and split_idx parameters to search for the one where their SRAM memory usage
is closest to StreamNet-2D. In Table 1, StreamNet achieves a geometric mean of 5.11X speedup
over MCUNetv2. The SRAM memory consumption varies with the change of n_patch and split_idx
parameters on MCUNetv2. However, the amount of MACs increases rapidly with the reduction
of SRAM memory usage on MCUNetv2. As a result, StreamNet has better performance than
MCUNetv2 when consuming nearly equal SRAM memory.

5.3 The Variation of MAC Counts

Table 2 compares the amount of MACs used in each TinyML model. In Table 2, the value of the
n_patch and split_idx determines the number of patches and the number of patch-based layers used
in a model, respectively. StreamNet scans through all combinations of the n_patch and split_idx and

7

Table 1: Performance results of MCUNetv2 and StreamNet-2D when consuming nearly equal
memory. Param (n_patch, split_idx), Memory (KB), MAC (millions), Latency (ms)

StreamNet-2D MCUNetV2 Speedup

Model Param Mem MAC Latency Param Mem MAC Latency MAC Latency

MB2 (18,13) 66 24 417 (18,12) 63 77 1,513 3.29 3.63
PL (22,13) 95 38 676 (11,21) 89 549 9,519 14.31 14.08
MI0 (12,06) 30 6 99 (04,14) 29 19 274.441 2.99 2.77
MI1 (12,11) 47 13 188 (03,12) 48 24 366 1.84 1.95
MI2 (20,21) 169 67 1,168 (05,25) 169 463 7,055 6.87 6.04
MI3 (22,21) 208 82 1,444 (11,32) 215 2,777 43,812 33.89 30.35
MI4 (20,17) 236 126 1,762 (04,21) 214 366 4,613 2.91 2.62
MV0 (08,13) 29 6 101 (08,11) 30 17 296 2.83 2.93
MV1 (20,14) 44 12 225 (05,17) 45 47 810 4.04 3.61
MV2 (18,21) 143 56 961 (06,29) 144 518 8,311 9.27 8.65

GMEAN 5.33 5.11

Table 2: The amount of MACs (Millions) used in StreamNet and MCUNetv2

Speedup over MNv2

Model n_patch split_idx MNv2 MNv2+ SN-1D SN-2D MNv2+ SN-1D SN-2D

MB2 18 13 77.4 73.1 36.9 23.5 1.06 2.10 3.29
PL 22 13 349.6 326.5 88.6 38.4 1.07 3.95 9.11
MI0 12 06 15.5 14.4 8.5 6.4 1.08 1.82 2.43
MI1 12 11 27.0 25.4 16.6 12.8 1.06 1.62 2.11
MI2 20 21 998.8 920.2 189.2 67.4 1.09 5.28 14.82
MI3 22 21 1,784.7 1,650.7 271.7 81.9 1.08 6.57 21.78
MI4 20 17 1,942.1 1,787.8 353.8 126.0 1.09 5.49 15.41
MV0 08 13 23.1 20.0 9.7 6.0 1.15 2.39 3.87
MV1 20 14 96.1 89.1 24.2 11.6 1.08 3.97 8.28
MV2 18 21 826.8 754.3 153.3 55.9 1.10 5.39 14.79

GMEAN 1.08 3.45 7.18

finds the one that can result in the minimal usage of SRAM memory space in patch-based inference.
Thus, results in Table 2 show the amount of MACs used in the TinyML model with the lowest peak
SRAM memory usage through all possible combinations of n_patch and split_idx. The amount of
the MACs in patch-based inference increases with the reduction of the usage on the SRAM memory.
Therefore, MCUNetv2 (MNv2) obtains a significant amount of the MACs over the other alternatives
in Table 2. In addition, MCUNetv2+ (MNv2+) reduces roughly 8% of MACs on average over
the baseline MCUNetv2. The output padding bypassing of MCUNetv2+ removes overhead on the
padding data and achieves such a reduction on the amount of MACs. Moreover, StreamNet-1D (SN-
1D) performs 1D stream_y processing and saves the redundant computation through its stream buffer.
Thus, StreamNet-1D reduces 65% of MACs on average over the baseline. To completely remove the
redundant computation on patch-based inference (MCUNetv2), StreamNet-2D (SN-2D) performs 2D
streaming processing to increase more data reuse than StreamNet-1D. Hence, StreamNet-2D reduces
83% of MACs on average over MCUNetv2 across 10 TinyML models. StreamNet-2D saves 93% and
95% of MACs on MI2 and MI3, since these models consist of many patch-based layers with the large
split_idx value and the amount of MACs on the redundant computation is large.

5.4 Reveal the Latency of StreamNet

This evaluation aims to figure out if StreamNet can shorten the execution time of TinyML models by
reducing the amount of their MACs. Table 3 compares the latency of each TinyML model across
different implementations on MCUNetv2(MNv2) and StreamNet. The n_patch and split_idx in
Table 3 and Table 2 use the same value. Table 3 shows the execution time when TinyML models use
minimum SRAM memory space through patch-based inference. MCUNetv2+ (MNv2+), StreamNet-
1D (SN-1D), and StreamNet-2D (SN-2D) achieves a geometric mean of 1.1X, 3.4X, 7.3X speedup

8

Table 3: The latency (ms) of TinyML models on StreamNet and MCUNetv2

Speedup over MNv2

Model MNv2 MNv2+ SN-1D SN-2D MNv2+ SN-1D SN-2D

MB2 1,514 1,391 687 417 1.09 2.20 3.63
PL 6,296 5,795 1,610 676 1.09 3.91 9.31
MI0 238 219 131 99 1.09 1.81 2.40
MI1 449 413 258 188 1.09 1.74 2.39
MI2 16,545 15,055 3,281 1,168 1.10 5.04 14.17
MI3 29,700 27,331 4,858 1,444 1.09 6.11 20.57
MI4 26,816 24,747 5,153 1,762 1.08 5.20 15.22
MV0 415 355 169 101 1.17 2.45 4.10
MV1 1,817 1,667 473 225 1.09 3.84 8.09
MV2 14,106 13,040 2,778 961 1.08 5.08 14.68

GMEAN 1.10 3.40 7.28

over the baseline MCUNetv2. The speedup of Table 3 presents the consistent results over the amount
of MACs in Table 2. Hence, this result provides StreamNet the evidence to exploit the MAC count
obtained at compile time to infer the final latency in StreamNet auto-tuning framework.

GMEAN
0

1

2

3

4

MB2 PL MI0 MI1 MI2 MI3 MI4 MV0 MV1 MV2

Pe
rf

or
m

an
ce

 S
pe

ed
up

ov

er
 M

CU
N

et
v2

TinyML Models

mem+0% mem+5% mem+10% mem+15%

0

100

200

300

MB2 PL MI0 MI1 MI2 MI3 MI4 MV0 MV1 MV2 MEANPe
ak

 M
em

or
y

U
sa

ge
 (k

B)

TinyML Models

Layer-wise MCUNetv2 StreamNet-1D StreamNet-2D
416.1

(a) SRAM memory consumption (b) Auto-tuning framework

Figure 7: Results of SRAM Memory consumption and StreamNet’s auto-tuning framework

5.5 Analysis of Peak SRAM Memory Usage

Figure 7(a) presents the peak SRAM memory usage of TinyML models on different implementations
of MCUNetv2 (2) and StreamNet. MCUNetv2 (2), StreamNet-1D, and StreamNet-2D save 66%,
62%, and 47% SRAM memory usage on average over the layer-wise inference baseline, respectively.
Unlike patch-based inference, StreamNet-1D reuses the data within the stream buffer that occupies
the SRAM memory space. Thus, StreamNet-1D consumes additional 4% SRAM memory space on
average to store the stream buffer over the MCUNetv2 (2). To increase the ratio of the data reuse,
StreamNet-2D requires about 22% extra SRAM memory space on average for the stream buffer to
cover more data reuse than StreamNet-1D. StreamNet provides a trade-off between the performance
and the peak usage of the SRAM memory. Unlike patch-based inference, StreamNet improves the
performance of TinyML models without sacrificing too much SRAM memory space.

5.6 Results of StreamNet Auto-tuning Framework

This evaluation aims to validate if StreamNet auto-tuning framework can create a case that satisfies
its memory constraint while achieving the best performance. Figure 7(b) presents the performance
speedup results when adding 0% to 15% memory space on each TinyML model based on the minimal
SRAM memory usage of StreamNet-1D. In addition, we also design an auto-tuning framework for
MCUNetV2 (2) that scans through its n_patch and split_idx parameters to obtain a case with the best
performance while meeting the memory constraint. Unlike MCUNetV2 (2) auto-tuning framework,
StreamNet searches for the combination of StreamNet-1D and StreamNet-2D network to fit the
memory constraint while achieving the best performance. As illustrated in Figure 7(b), StreamNet
achieves a geometric mean of 1.63X, 1.61X, 1.8X speedup over MCUNetV2 (2) when the memory
constraint is the base memory space plus 5%, 10%, and 15%, respectively. In Figure 7(b), MI0

9

achieves only a speedup of 1.07X to 1.09X over MCUNetV2 (2), where the value of the split_idx
and n_patches is small, leading to minor recomputation in MCUNetV2 (2). Unlike MI0, MI3 uses
larger split_idx and n_patches values to meet the memory constraints. The large value of split_idx
and n_patches allows StreamNet to eliminate the significant amount of redundant computation.

6 Related Work

Tiny Machine Learning (TinyML) TinyML has gained significant attention in recent years.
Techniques such as model compression (9; 10), pruning (11; 12; 13; 14; 15) and quantization (11;
16; 17; 18; 19; 20; 21; 22), are employed to reduce model size and complexity while maintaining
accuracy. Existing frameworks like TFLM (3) and microTVM (4) optimize the execution time of
TinyML models on resource-constrained devices by utilizing CMSIS-NN (6) and CMix-NN (23)
libraries for kernel implementation. MCUNet (1) further optimizes kernel implementation through
vectorization, loop reordering, loop unrolling, and data layout transformation, resulting in more
efficient performance.

Memory-Efficient Inference The peak usage of SRAM memory is a critical factor in deploying
TinyML models on microcontrollers due to the tight SRAM constraints in MCUs. However, existing
works (3; 24; 25) employ per-layer inference, which restricts model deployment on severely memory-
constrained MCUs. Several approaches have been proposed to address this issue in different ways.
Some methods rearrange operators (26; 27) or use tensor memory planners (28) to save memory
usage. Nonetheless, a single intermediate tensor may still be too large for the MCUs. As an
alternative, models can be rewritten to reduce memory requirements (29; 30). However, this requires
network modifications and may affect accuracy, reducing adaptability. MCUNetV2 (2) and TVM’s
cascade scheduling (31) address this problem by fusing multiple layers and introducing redundant
computation. Prior work (32; 33; 34; 35; 4) also tackles similar problems as MCUNetv2 (2) in the
ML inference. However, too many fused layers increase the amount of redundant computation.

Remove Recomputations To address recomputations introduced by the aforementioned approach,
the main idea is to cache the computed result and reuse it when necessary. Halide (35) introduces
sliding window optimization to remove recomputation, but it lacks flexibility in adjusting temporary
buffers to reduce memory requirements across different dimensions. Prior work such as Fused-layer
CNN accelerators (36) and streaming methods (37; 38; 39; 40; 41) offer solutions to reduce execution
time in the data streaming manner, but none of them provides a method to mix 1D and 2D data
streaming. Hence, our proposed StreamNet builds upon and extends existing streaming approaches
by introducing a hybrid method that mixes different dimensional streaming to form 1D and 2D
streaming techniques, skips the redundant computation shown in patch-based inference (2), and offers
an auto-tuning framework to select StreamNet configurations.

7 Conclusion

Deploying TinyML models exposes challenges on MCUs with the stringent memory and power
constraints. Unlike layer-wise inference, patch-based inference significantly decreases the usage of
the SRAM memory and helps the deployment of TinyML models on MCUs. However, the redundant
computation of patch-based inference enormously raises the latency of Machine Learning inference.
Thus, this work proposes StreamNet that aims to eliminate such a performance bottleneck of patch-
based inference. StreamNet designs 1D and 2D streaming processing to significantly remove the
performance overhead of patch-based inference. Thus, StreamNet-2D achieves a geometric-mean
speedup of 7.3X over patch-based inference across 10 TinyML models. Furthermore, StreamNet also
skips the unnecessary computation for the padding data. Finally, StreamNet provides an auto-tuning
framework to automatically search for the network that can satisfy the memory constraint of MCUs
while achieving better performance over the existing patch-based inference.

8 Acknowledgement

The authors gratefully acknowledge the support from the National Science and Technology Council
in Taiwan under grant number 111-2221-E-A49-131-MY3

10

References
[1] J. Lin, W.-M. Chen, Y. Lin, C. Gan, and S. Han, “Mcunet: Tiny deep learning on iot devices,”

Advances in Neural Information Processing Systems, vol. 33, 2020.

[2] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Mcunetv2: Memory-efficient patch-based
inference for tiny deep learning,” in Annual Conference on Neural Information Processing
Systems (NeuralPS), 2021.

[3] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Natraj,
T. Wang, et al., “Tensorflow lite micro: Embedded machine learning for tinyml systems,”
Proceedings of Machine Learning and Systems (MLSys), vol. 3, pp. 800–811, 2021.

[4] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y. Hu, L. Ceze,
et al., “Tvm: An automated end-to-end optimizing compiler for deep learning,” arXiv preprint
arXiv:1802.04799, 2018.

[5] Lin, Ji and Chen, Wei-Ming and Lin, Yujun and Gan, Chuang and Han, Song, “MCUNet Model
Zoo.” [Online]. Available: https://github.com/mit-han-lab/mcunet/blob/master/
mcunet/model_zoo.py, 2023. (accessed May. 16, 2023).

[6] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network kernels for arm cortex-m
cpus,” arXiv preprint arXiv:1801.06601, 2018.

[7] ARM Ltd., “Arm Mbed CLI.” [Online]. Available: https://github.com/ARMmbed/
mbed-cli, 2023. (accessed May. 16, 2023).

[8] STI Ltd., “STM32F767ZI Datasheet.” [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32f767zi.html, 2023. (accessed May. 16,
2023).

[9] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model compression and
acceleration on mobile devices,” in Proceedings of the European conference on computer vision
(ECCV), pp. 784–800, 2018.

[10] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie: Efficient
inference engine on compressed deep neural network,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), p. 243–254, 2016.

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[12] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” Advances in neural information
processing systems, vol. 30, 2017.

[13] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural networks,” in
Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

[14] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional
networks through network slimming,” in Proceedings of the IEEE international conference on
computer vision, pp. 2736–2744, 2017.

[15] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun, “Metapruning: Meta
learning for automatic neural network channel pruning,” in Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3296–3305, 2019.

[16] H. F. Langroudi, V. Karia, T. Pandit, and D. Kudithipudi, “Tent: Efficient quantization of neural
networks on the tiny edge with tapered fixed point,” arXiv preprint arXiv:2104.02233, 2021.

[17] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low precision quantization for
enabling deep network inference on microcontrollers,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 326–335, 2020.

11

https://github.com/mit-han-lab/mcunet/blob/master/mcunet/model_zoo.py
https://github.com/mit-han-lab/mcunet/blob/master/mcunet/model_zoo.py
https://github.com/ARMmbed/mbed-cli
https://github.com/ARMmbed/mbed-cli
https://www.st.com/en/microcontrollers-microprocessors/stm32f767zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f767zi.html

[18] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakrish-
nan, “Pact: Parameterized clipping activation for quantized neural networks,” arXiv preprint
arXiv:1805.06085, 2018.

[19] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated quantization
with mixed precision,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8612–8620, 2019.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV, pp. 525–
542, Springer, 2016.

[21] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016.

[22] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv preprint
arXiv:1612.01064, 2016.

[23] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “Cmix-nn: Mixed low-precision cnn library
for memory-constrained edge devices,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 67, no. 5, pp. 871–875, 2020.

[24] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov, N. Gibson, J. Hegeman,
M. Lele, R. Levenstein, et al., “Glow: Graph lowering compiler techniques for neural networks,”
arXiv preprint arXiv:1805.00907, 2018.

[25] H.-I. C. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, and S. Laurenzo, “Tinyiree:
An ml execution environment for embedded systems from compilation to deployment,” arXiv
preprint arXiv:2205.14479, 2022.

[26] E. Liberis and N. D. Lane, “Neural networks on microcontrollers: saving memory at inference
via operator reordering,” arXiv preprint arXiv:1910.05110, 2019.

[27] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou, and H. Esmaeilzadeh, “Ordering chaos:
Memory-aware scheduling of irregularly wired neural networks for edge devices,” Proceedings
of Machine Learning and Systems, vol. 2, pp. 44–57, 2020.

[28] Y. Pisarchyk and J. Lee, “Efficient memory management for deep neural net inference,” arXiv
preprint arXiv:2001.03288, 2020.

[29] T. Jin and S. Hong, “Split-cnn: Splitting window-based operations in convolutional neural
networks for memory system optimization,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operation Systems (ASPLOS),
pp. 835–847, 2019.

[30] O. Saha, A. Kusupati, H. V. Simhadri, M. Varma, and P. Jain, “Rnnpool: Efficient non-linear
pooling for ram constrained inference,” Advances in Neural Information Processing Systems,
vol. 33, pp. 20473–20484, 2020.

[31] ARM ltd, “Miniaturizing Models for microNPUs: a Cascading Scheduler.” [Online Available:]
https://www.youtube.com/watch?v=4MVsOwt5YLo, 2022. (accessed Jan. 20, 2023).

[32] J. Zhao and A. Cohen, “Flextended tiles: A flexible extension of overlapped tiles for polyhedral
compilation,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 16, no. 4,
pp. 1–25, 2019.

[33] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and D. Padua, “Hierarchical
overlapped tiling,” in Proceedings of the Tenth International Symposium on Code Generation
and Optimization, pp. 207–218, 2012.

[34] K. Goetschalckx and M. Verhelst, “Breaking high-resolution cnn bandwidth barriers with
enhanced depth-first execution,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 2, pp. 323–331, 2019.

12

https://www.youtube.com/watch?v=4MVsOwt5YLo

[35] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide:
a language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines,” Acm Sigplan Notices, vol. 48, no. 6, pp. 519–530, 2013.

[36] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accelerators,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–12, IEEE,
2016.

[37] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and S. Laurenzo, “Streaming
keyword spotting on mobile devices,” arXiv preprint arXiv:2005.06720, 2020.

[38] A. Coucke, M. Chlieh, T. Gisselbrecht, D. Leroy, M. Poumeyrol, and T. Lavril, “Efficient key-
word spotting using dilated convolutions and gating,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6351–6355, IEEE, 2019.

[39] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao, D. Rybach, A. Kannan,
Y. Wu, R. Pang, et al., “Streaming end-to-end speech recognition for mobile devices,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6381–6385, IEEE, 2019.

[40] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-time streaming transformer trans-
ducer for speech recognition on large-scale dataset,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5904–5908, IEEE, 2021.

[41] Y. Wang, H. Lv, D. Povey, L. Xie, and S. Khudanpur, “Wake word detection with streaming
transformers,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5864–5868, IEEE, 2021.

13

	Introduction
	Understanding Performance Bottleneck of Memory Allocation on TinyML
	StreamNet: Efficient Patch-based Inference for TinyML Models
	Inefficient Patch-based Inference
	StreamNet 1D Streaming Processing
	StreamNet 2D Streaming Processing
	StreamNet Parameter Selection Framework
	Output Padding Bypassing

	StreamNet System Architecture
	Experiments
	Experiment Environment Setup
	Performance Analysis when Consuming Nearly Equal Memory
	The Variation of MAC Counts
	Reveal the Latency of StreamNet
	Analysis of Peak SRAM Memory Usage
	Results of StreamNet Auto-tuning Framework

	Related Work
	Conclusion
	Acknowledgement

