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Abstract

Uncertainty quantification is crucial for the deployment of image restoration models
in safety-critical domains, like autonomous driving and biological imaging. To date,
methods for uncertainty visualization have mainly focused on per-pixel estimates.
Yet, a heatmap of per-pixel variances is typically of little practical use, as it does
not capture the strong correlations between pixels. A more natural measure of
uncertainty corresponds to the variances along the principal components (PCs) of
the posterior distribution. Theoretically, the PCs can be computed by applying PCA
on samples generated from a conditional generative model for the input image.
However, this requires generating a very large number of samples at test time,
which is painfully slow with the current state-of-the-art (diffusion) models. In this
work, we present a method for predicting the PCs of the posterior distribution for
any input image, in a single forward pass of a neural network. Our method can
either wrap around a pre-trained model that was trained to minimize the mean
square error (MSE), or can be trained from scratch to output both a predicted image
and the posterior PCs. We showcase our method on multiple inverse problems
in imaging, including denoising, inpainting, super-resolution, colorization, and
biological image-to-image translation. Our method reliably conveys instance-
adaptive uncertainty directions, achieving uncertainty quantification comparable
with posterior samplers while being orders of magnitude faster. Code and examples
are available on our webpage.

1 Introduction

Reliable uncertainty quantification is central to making informed decisions when using predictive
models. This is especially important in domains with high stakes such as autonomous cars and
biological/medical imaging, where based on visual data, the system is asked to provide predictions
that could influence human life. In such domains, communicating predictive uncertainty becomes
a necessity. In the particular case of image-to-image inverse problems, efficient visualization of
predictive uncertainty is required. For example, in biological and medical image-to-image translation
[7, 35, 37, 38], the predicted image as a whole is supposed to inform a scientific discovery or
affect the diagnosis of a patient. Hence, an effective form of uncertainty to consider in this case is
semantically-coordinated pixel variations that could alter the output image.

Currently, the majority of existing methods handle uncertainty in image-valued inverse problems
by factorizing the output posterior into per-pixel marginals, in which case the strong correlations
between pixels are completely ignored. This leads to per-pixel uncertainty estimates in the form
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Figure 1: Comparison between per-pixel methods and NPPC. In structured output posteriors such
as in image-to-image regression (left), uncertainty visualization in the form of per-pixel variance
maps (top) fail to convey semantic variations in the prediction, leaving the user with no clue regarding
the different possibilities of the solution set. Our method - NPPC (bottom) captures a more natural
measure of uncertainty, by providing the user with input-adaptive PCs around the mean prediction.
These can then be used to navigate the different possibilities in a meaningful manner. e.g., in 1a
NPPC is used to traverse the existence of uncertain cells in an image-to-image translation task from
biological imaging. Panel 1b presents a 2D motivating example illustrating the practical benefit of
moving along PCs as opposed to the “standard” coordinate system (e.g., pixels in an image).

of variance heatmaps [20] or confidence intervals [2], which are of little practical use as they do
not describe the joint uncertainty of different pixels. As a result, such models suffer from model
misspecification, absorbing inter-pixel covariates into per-pixel marginals, and presenting the user
with unnecessarily inflated uncertainty estimates (see Fig. 1b). For example, consider a set of pixels
along an edge in an image, in the task of image super-resolution. It is clear that for severe upsampling
factors, a model would typically be uncertain around object edges. However, since these pixels are
all correlated with the same object, the underlying uncertainty is whether the entire edge is shifted
jointly, and not whether individual pixels can be shifted independently.

Recently, the field of image-to-image regression has seen a surge of probabilistic methods inspired by
advancements in deep generative models, such as diffusion models (DMs). The recurring theme in
these approaches is the use of a deep generative prior in order to sample from the posterior distribution
[8, 19, 50]. In principle, using the resulting samples, it is possible to present the practitioner with
the main modes of variations of the posterior uncertainty, for example using principal components
analysis (PCA). However, these powerful posterior samplers come with a heavy computational price.
Despite tremendous efforts over the past few years [27, 31, 43, 51], sampling from state-of-the-art
methods is still unacceptably slow for many practical applications.

In this work, we bypass the need to learn a data-hungry and extremely slow conditional generative
model, by directly training a neural model to predict the principal components of the posterior. Our
method, which we term neural posterior principal components (NPPC), can wrap around any pre-
trained model that was originally trained to minimize the mean square error (MSE), or alternatively
can be trained to jointly predict the conditional mean alongside the posterior principal components.
In particular, when used as a post-hoc method with MSE pre-trained models, NPPC is a general
technique that can be transferred across datasets and model architectures seamlessly. This is because
our network architecture inherits the structure and the learning hyper-parameters of the pre-trained
model with only one key change: Increasing the filter count at the last layer and employing a
Gram-Schmidt process to the output to ensure our found principal components are orthogonal by
construction. NPPC is then trained on the pre-trained model residuals, to endow the model’s point
prediction with efficient input-adaptive uncertainty visualization.

Several prior works proposed modeling the posterior as a correlated Gaussian distribution. In
particular, Dorta et al. [9] approximated the output precision matrix by a matrix of the form LLT ,
where L is a lower triangular matrix with a pre-determined sparsity pattern. More recently, Monteiro
et al. [33] and Meng et al. [30] approximated the covariance matrix by a sum of a diagonal matrix
and a low-rank one. However, unlike NPPC, both [9] and [30] are limited to very low-resolution
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images, because either they explicitly construct the (huge) covariance matrix during training or they
capture only short-range correlations. Moreover, [33] suffers from training instability as multivariate
Gaussians with both unknown mean and covariance are known to be notoriously unstable [46]. This
limits its applicability to image segmentation, requiring proper background masking to avoid infinite
covariance and overflow errors. Our method, on the other hand, does not construct the covariance
matrix at any point. It directly outputs the top eigenvectors of the covariance and trains using the
objective of PCA. As a result, our method is generally applicable to any inverse problem, enjoys
faster and more stable training, and can handle high-resolution images as we demonstrate in Sec. 4.
This is enabled by several design choices introduced to the architecture and training, including a
Gram-Schmidt output layer, a PCA loss function maximizing correlation with the residuals, and a
Stopgrad trick that enables learning all principal directions jointly, mitigating the need for training
separate models for separate PCs.

We compare our PCs to those extracted from samples from a conditional generative model as recently
proposed in [4]. As we show, we obtain comparable results, but orders of magnitude faster. Finally,
we showcase NPPC on multiple inverse problems in imaging showing promising results across tasks
and datasets. In particular, we apply NPPC to scientific biological datasets, showing the practical
benefit of our uncertainty estimates in their ability to capture output correlations.

2 Related Work

Model uncertainty Some methods attempt to report uncertainty that is due to model misspecifica-
tion and/or out-of-distribution data. Early work on quantification of such uncertainty in deep models
has focused on Bayesian modeling by imposing distributions on model weights/feature activations
[6, 17, 34]. These methods employ various techniques for approximating the posterior of the weights,
including using MCMC [44], variational inference [6, 25], Monte-Carlo Dropout [13], and Laplace
approximation [36]. Our work rather focuses on data uncertainty as described in Section 3.

Per-pixel methods Some methods for predicting per-pixel variances assume a Gaussian distribu-
tion and learn it by maximizing the log-likelihood [20]. This approach was later combined with
hierarchical priors on likelihood parameters to infer a family of distributions in a single deterministic
neural network [1, 28]. Similarly, multi-modal approximations assuming a Gaussian Mixture Model
per pixel have been proposed [5]. Deep Ensembles [22] and Test-time augmentations [53] have also
been used to estimate uncertainty by measuring the variance of model predictions. More recently,
distribution-free methods such as quantile regression and conformal prediction [39] have taken over
their counterparts with firm statistical guarantees. Specifically for image-to-image regression, a work
that stands out is that of Angelopoulos et al. [2]. The main shortcoming of these methods is the
underlying assumption of i.i.d. pixels.

Distribution-free risk control Elaborate distribution-free methods, such as Risk Controlling
Prediction Sets (RCPS) [3], take pixel correlations into account by controlling some risk factorizing
all pixels in an image (such as the false discovery rate in binary image segmentation). Recently,
this approach has been deployed in image-to-image regression problems using a technique called
Conformal Prediction Masks [21]. The main drawback of these methods is their inability to explore
the different possible options, but rather, only impose upper and lower bounds on the possible solution
set. In addition, they also require an extra data split for calibration, which is not always readily
available. An interesting recent work in this field [45] has proposed to control the risk of disentangled
factors in the latent space of StyleGAN, and demonstrated informative uncertainty visualizations in
inverse problems of facial images. However, the main drawbacks of this work are the key assumption
of access to disentangled latent representations and the generalization gap from fake to real images.

Generative models and posterior samplers Generative models have been widely used to navigate
prediction uncertainty, either in the form of conditional variational autoencoders [47] and conditional
GANs[32], or more recently using state-of-the-art score-based and denoising diffusion models
[8, 12, 14, 19, 26, 41, 42, 48, 49, 54]. While the latter have achieved astounding results in the last two
years, when aiming for high-quality samples, they remain extremely slow to sample from, despite
promising results reported in recent efforts [27, 31, 43, 51]. The recent Conffusion method [15]
finetunes pre-trained diffusion models to output interval bounds in a single forward pass to achieve
fast confidence interval prediction for posterior samplers. Nonetheless, the result is a per-pixel
uncertainty map.
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Figure 2: Method overview. Here, NPPC is demonstrated for image inpainting, where x is the
ground truth image, y is the masked input, and x̂ is the posterior mean prediction. Our method
can wrap around pre-trained conditional mean predictors f (y;θ), replicating their architecture with
a slight modification at the output (see text). Using a PCA loss on the errors (e = x − x̂), we
learn to predict the first K PCs of the posterior w1, . . . ,wK directly in a single forward pass of a
neural network w (y, x̂;φ). On the right, we visualize the uncertainty captured by two PCs (w1,w4)
around the mean prediction x̂.

Gaussian covariance approximation Works that are particularly related to the approach presented
here are [9], [33] and [30]. Specifically, Dorta et al. [9] proposed to model the output posterior with a
correlated Gaussian, and approximated the precision matrix using the factorization Λ = LL⊤, where
L is a lower triangular matrix with predefined sparsity patterns capturing short-term correlations.
The matrix L is then learned during training using a maximum likelihood objective. Similarly, [33]
and [30] suggested approximating the posterior covariance matrix using a low-rank factorization
with the latter involving second-order scores. However, the main drawback of [9] and [30] is their
limited ability to generalize to high-resolution RGB images while efficiently capturing long-range
correlations [10]. Additionally, [33] is limited by training instability, limiting its applicability to
image segmentation. In contrast, our method directly estimates eigenvectors of the covariance matrix
without the need for explicitly storing the covariance matrix in memory during training as in [30].
This enables us to seamlessly generalize to arbitrary inverse problems and high-resolution RGB
images with more stable and less expensive training steps.
Concurrent work A related approach was recently proposed in the concurrent work of [29], where
the authors demonstrate a training-free method to calculate the posterior PCs in the task of Gaussian
denoising. The key advantage of our approach over this work is that we are not constrained to the task
of Gaussian denoising and can handle arbitrary inverse problems, as we show in our experiments.

3 Neural Posterior Principal Components

We address the problem of predicting a signal x ∈ Rdx based on measurements y ∈ Rdy . In the
context of imaging, y often represents a degraded version of x (e.g., noisy, blurry), or a measurement
of the same specimen/scene acquired by a different modality. We assume that x and y are realizations
of random vectors x and y with an unknown joint distribution p(x,y), and that we have a training
set D = {(xi,yi)}Nd

i=1 of matched input-output pairs independently sampled from that distribution.

Many image restoration methods output a single prediction x̂ for any given input y. A common
choice is to aim for the posterior mean x̂ = E[x|y = y], which is the predictor that minimizes the
MSE. However, a single prediction does not convey to the user the uncertainty in the restoration. To
achieve this goal, here we propose to also output the top K principal components of the posterior
p(x|y), i.e., the top K eigenvectors of the posterior covariance E[(x − x̂)(x − x̂)⊤|y = y]. The
PCs capture the main directions along which x could vary, given the input y, and thus provide the
user with valuable information. However, their direct computation is computationally infeasible in
high-dimensional settings. The main challenge we face is, therefore, how to obtain the posterior
PCs without having to ever store or even compute the entire posterior covariance matrix. Before we
describe our method, let us recall the properties of PCA in the standard (unconditional) setting.

Unconditional PCA Given a set of N data points {xi} where xi ∈ Rdx , the goal in PCA is to
find a set of K orthogonal principal directions w1, . . . ,wK along which the data varies the most.
The resulting directions are ordered such that the variance of {w⊤

1 xi} is biggest, the variance of
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{w⊤
2 xi} is the second biggest, etc. The objective function for finding these directions has multiple

equivalent forms and interpretations. The one we exploit here is the iterative maximization of variance.
Specifically, let X denote the centered data matrix whose rows consist of different observations x⊤

i

after subtracting their column-wise mean, and let w1, . . . ,wK denote the first K PCs. Then the kth

PC is given by
wk = argmax

w
∥Xw∥22, s.t. ∥w∥ = 1, w ⊥ span {w1, . . . ,wk−1}, (1)

where for the first PC, the constraint is only ∥w∥ = 1. The variance along the kth PC is given by
σ2
k = 1

N ∥Xwk∥22.

The challenge in posterior PCA Going back to our goal of computing the posterior PCs, let us
assume for simplicity we are given a pre-trained conditional mean predictor x̂ = f(y;θ) obtained
through MSE minimization on the training set D. Let ei = xi− x̂i denote the error of the conditional
mean predictor given the ith measurement, y = yi. The uncertainty directions we wish to capture
per sample yi, are the PCs of the error ei around the conditional mean estimate x̂i. Conceptually,
this task is extremely difficult as during training for every measurement yi, we have access only to a
single error sample ei. If we were to estimate the PCs directly, the result would be a trivial single
principal direction equaling ei which is unpredictable at test time. To address this challenge, here we
propose to harness the implicit bias of neural models and to learn these directions from a dataset of
triplets D′ = {(xi,yi, x̂i)}Nd

i=1. The key implicit assumption underlying our approach (and empirical
risk minimization in general) is that the posterior mean E[x|y = y] and the posterior covariance
E[(x− x̂)(x− x̂)⊤|y = y] vary smoothly with y. Hence, with the right architecture, such models
can capitalize on inter-sample dependencies and properly generalize to unseen test points, by learning
posterior PCs that change gracefully as a function of y. This is much like models trained with MSE
minimization to estimate the conditional mean E[x|y = y], while being presented during training
only with a single output xi for every measurement yi.

3.1 Naive solution: Iterative learning of PCs

Following the intuition from the previous section, we can parameterize the kth PC of the error using a
neural network wk(y, x̂;φk) with parameters φk, which has similar capacity to the pre-trained model
f(y;θ) outputting the conditional mean. This model accepts the measurement y and (optionally) the
conditional mean estimate x̂, and outputs the kth PC of the error e.

Let d1(y, x̂;φ1) be a model for predicting the first unnormalized direction, such that
w1(yi, x̂i;φ1) = d1(yi, x̂i;φ1)/∥d1(yi, x̂i;φ1)∥. Given a dataset of triplets D′ = {(xi,yi, x̂i)},
we adopt the objective employed in (1), and propose to learn the parameters of the input-dependent
first PC by minimizing

Lw1
(D′,φ1) = −

∑
(xi,yi,x̂i∈D′)

|w1 (yi, x̂i;φ1)
⊤
ei|2. (2)

Next, given the model predicting the first PC, we can train a model to predict the second PC,
w2(yi, x̂i;φ2), by manipulating the output of a model d2(yi, x̂i;φ2). Specifically, following the
approach in (1), we optimize the same loss (2), but construct the output of the model w2 by removing
the projection of d2 onto w1, and normalizing the result. This ensures that w2(yi, x̂i;φ2) ⊥
w1(yi, x̂i;φ1).

While in principle this approach can be iterated K times to learn the first K PCs, it has several
drawbacks that make it impractical. First, it requires a prolonged iterative training of K neural
networks sequentially, preventing parallelization and leading to very long training times. Second,
this approach is also inefficient at test time, as we need to compute K dependent forward passes.
Finally, in this current formulation, different PCs have their own set of weights {φk}Kk=1, and do not
share parameters. This is inefficient as for a given input y and corresponding mean prediction x̂, it is
expected that the initial feature extraction stage for predicting the different PCs, would be similar. A
better strategy is therefore to design an architecture that outputs all PCs at once.

3.2 Joint learning of PCs

To jointly learn the first K PCs of the error using a single neural network w(yi, x̂i;φ), we introduce
two key changes to the architecture inherited from the pre-trained mean estimator f(y;θ). First,
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the number of filters at the output layer is multiplied by K, to accomodate the K PCs, w1, . . . ,wK .
Second, we introduce a Gram-Schmidt procedure at the output layer, making the directions satisfy
the orthogonality constraint by construction. Formally, denote the non-orthonormal predicted set of
directions by d1, . . . ,dK . Then, we transform them to be an orthonormal set w1, . . . ,wK as

w1 =
d1

∥d1∥
,

wk =
dk −∑k−1

ℓ=1 (d
⊤
k wℓ)wℓ

∥dk −∑k−1
ℓ=1 (d

⊤
k wℓ)wℓ∥

, k = 2, . . .K. (3)

Note, however, that these changes do not yet guarantee proper learning of the PCs. Indeed, if we
were to learn the directions by naively minimizing the loss

Lw (D′,φ) = −
∑

(xi,yi,x̂i∈D′)

K∑
k=1

|wk (yi, x̂i;φ)
⊤
ei|2, (4)

then we would only recover them up to an orthogonal matrix. To see this, let Wi denote the matrix
that has wk(yi, x̂i;φ) in its kth column. Then the inner sum in (4) can be rewritten as ∥W⊤

i ei∥22.
Now, it is easy to see that neither the loss nor the constraints are affected by replacing each Wi

with W̃i = WiOi, for some orthogonal matrix Oi. Indeed, this solution satisfies the orthogonality
constraint W̃⊤

i W̃i = I , and attains the same loss value as the original PCs.

Note that this rotation ambiguity did not exist in the naive approach of Sec. 3.1 because there, when
finding the kth PC given the preceding k − 1 pre-trained PCs, the loss term |wk(yi, x̂i;φ)

⊤ei|2 did
not affect the learning of w1, . . . ,wk−1. However, when attempting to learn all directions jointly, the
preceding PCs receive a gradient signal from the kth loss term as wk is a function of w1, . . . ,wk−1

in the Gram-Schmidt procedure.

To solve this problem and decouple the learning of the different PCs while still maintaining their
orthogonality, we propose a simple modification to the Gram-Schmidt procedure: Using Stopgrad
for the previously derived PCs within the projection operators in (3) (see the red term in Fig. 2).
This way, in each learning step the different PCs are guaranteed to be orthogonal, while solely
optimizing their respective objective. This allows learning them jointly and recovering the solution of
the iterative scheme in a single forward pass of a neural network with shared parameters. Please see
App. D.2 for validation of the equivalence between sequential and joint PC learning.

3.3 Learning variances along PCs

Recall that the variance along the kth direction corresponds to the average squared projection of
the data along that direction. We can use that to output a prediction of the variances {σ2

k} of the
PCs, by using a loss that minimizes

∑
i(σ

2
k − |w⊤

k ei|2)2 for every k. However, instead of adding K
additional outputs to the architecture, we can encode the variances in the norms of the unnomarlized
directions. To achieve this without altering the optimization objective for finding the kth PC, we
again invoke the Stopgrad operator on the term |w⊤

k ei| which is the current loss function value, and
match the norm of the found PCs at the current step to this projected variance by minimizing the loss

Lσ (D′,φ) =
∑

(xi,yi,x̂i∈D′)

K∑
k=1

(∥∥∥dk −
k−1∑
ℓ=1

(d⊤
k wℓ)wℓ

∥∥∥2
2
− |w⊤

k ei|2
)2

. (5)

With this, our prediction for σ2
k at test-time is simply ∥dk−

∑k−1
ℓ=1 (d

⊤
k wℓ)wℓ∥2. Please see App. D.3

for quantitative validation of our estimated variances.

3.4 Joint prediction of posterior mean

Thus far, we assumed we have access to a pre-trained posterior mean predictor x̂ = f(y;θ), obtained
through MSE minimization on a dataset D = {(xi,yi)}Nd

i=1 of matched pairs. Hence, our entire
derivation revolved around a dataset of triplets D′ = {(xi,yi, x̂i)}Nd

i=1. However, this is not strictly
necessary. In particular, the posterior mean predictor can be learned jointly alongside the PCs with an
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Figure 3: Denoising samples from a 2D Gaussian mixture. The left two panels depict the underlying
(unknown) signal prior p(x) (blue heatmap), exemplar matched samples from the joint distribution
(xi,yi) ∼ p(x,y), and the resulting training set D. The right two panels show the analytical posterior
p(x|y) (red heatmap) for two different test points y1 and y2 (marked as red dots) on top of the signal
prior. Our estimated conditional mean µ̂x|y(y) (black star) and PCs scaled by the estimated std
(dashed black ellipse) coincide with the analytical posterior mean µx|y(y) (red star), and scaled
posterior PCs derived from the analytical covariance (solid orange ellipse).

additional MSE loss
Lµ (D,φ) =

∑
(xi,yi∈D)

∥xi − x̂i∥22. (6)

Note that we do not want the gradients of Lw and Lσ to affect the recovered mean. Therefore, we
use a Stopgrad operator when inputting the error xi − x̂i to those loss functions.

3.5 Putting it all together

To summarize, given a dataset D = {(xi,yi)}Nd
i=1 of matched pairs, we can learn a model that predicts

the posterior mean as well as the posterior PCs, using the combined loss functions of eqs. (4)-(6),

Lall = Lµ + λ1Lw + λ2Lσ, (7)

where λ1 and λ2 are weights balancing the contributions of the different losses.

4 Experiments

We now illustrate NPPC on several tasks and datasets. In all experiments except for the toy example,
we used variants of the U-Net architecture [11, 40]. The weighting factors for the losses were chosen
such that all three terms are roughly within an order of magnitude of each other. Empirically, we find
that ramping up the weight factors for the terms of the directions and the variances after the mean
estimate started converging, stabilizes training. Full details regarding the architectures, the scheduler,
and the per-task setting of λ1, λ2 are in App. A.

Table 1: Comparison of the Wasserstein 2-distance from
the rank K Gaussian approximation of the GT posterior
p(x|y) ≈ N (x;µx|y,Σx|y) (i.e., K = rank(Σx|y)),
on 5000 test samples (see text).

K=0 K=3 K=6 K=9 K=12

Baseline 0.4 180.6 272.5 317.5 325.7
NPPC 0.4 30.3 31.2 26.6 28.8

Toy examples Figure 3 demonstrates
NPPC on a 2D denoising task, where sam-
ples xi from a two-component Gaussian
mixture model are contaminated by addi-
tive white Gaussian noise to result in noisy
measurements yi. To predict x from y,
we trained a 5-layer MLP with 256 hid-
den features using MSE minimization, and
around the estimated conditional mean x̂ =
µ̂x|y(y), we trained NPPC (instantiated
with a similar MLP) to output the two PCs
w1,w2, and their variances σ̂2

1 , σ̂
2
2 . As can be seen in the right two panels of Fig. 3, NPPC accurately

predicts the ground-truth (GT) PCs (those are computed from the analytical expression for the poste-
rior covariance; see App. B). To quantify the accuracy of the recovered PCs, we computed the Wasser-
stein 2-distance between a Gaussian approximation of the GT posterior p(x|y) ≈ N (µx|y,Σx|y),
and an estimated Gaussian constructed by NPPC, p̂(x|y) = N (µ̂x|y,W⋆W

⊤
⋆ ), where W⋆ has the

scaled estimated PC σ̂kwk in its kth column. Compared to a baseline of a point mass at the estimated
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Figure 4: MNIST denoising and inpainting. (a) Here we show the application of NPPC to extreme
image denoising. On the left is the noisy measurement y, the estimated conditional mean x̂, and
the (unknown) ground truth test image x. On the right, the top row shows the first K = 5 predicted
PCs wk, and the bottom rows show a traversal of 3 standard deviations around x̂ for w1,w4. At an
extreme noise level of σε = 1, the digit is either a “4” or a “9”. (b) Here we show the result of NPPC
on image inpainting from only the 8 bottom rows. The PCs reveal the digit is either a “7” or a “9”.

conditional mean, δ(x− x̂), NPPC reduces the Wasserstein 2-distance by 100× from 4.05 to 0.04.
Similarly, we also applied NPPC to a 100-dimensional Gaussian mixture denoising task, and com-
puted the Wasserstein 2-distance from a Gaussian distribution whose mean is the GT posterior mean
and whose covariance is the best rank-K approximation of the GT posterior covariance. As clearly
evident in Table 1, NPPC maintains a roughly constant distance to the analytical posterior, while the
point mass baseline distance rapidly grows with K. See App. B for more details.
Handwritten digits Figure 4 demonstrates NPPC on denoising and inpainting of handwritten digits
from the MNIST dataset. In the denoising task, we used noise of standard deviation σε = 1, and in
inpainting we used a mask that covers the top 70% of the image. As can be seen, for denoising, the
learned PCs capture both inter-digit and intra-digit variations, e.g., turning a “4” into a “9”. Similarly,
in inpainting, the learned PCs traverse the two likely modes around the mean estimate x̂, going from
a “7” into a “9”. More examples are available in App. D.
Faces To test NPPC on faces, we trained on the CelebA-HQ dataset using the original split inherited
from celebA [24], resulting in 24183 images for training, 2993 images for validation, and 2824
images for testing. Figure 5 presents results on 256× 256 face images from the CelebA-HQ dataset.
Here, we demonstrate NPPC on the task of inpainting, as well as on noisy 8× super-resolution with a
box downsampling filter and a noise-level of σε = 0.05. As can be seen, the PCs generated by NPPC
capture semantically meaningful uncertainty, corresponding to the eyes, mouth, and eyebrows. We
also tested our approach on inpainting of the eyes area, on 4× super-resolution (noisy and noiseless),
and on image colorization. More results and examples are provided in App. D.
Comparison to posterior samplers While traversal along the predicted PCs is valuable for qualita-
tive analysis, an important question is how our single forward pass PCs fair against state-of-the-art
posterior samplers. To test this, we now compare NPPC to recent posterior samplers on CelebA-HQ
256× 256. Specifically, we compare NPPC to DDRM [19], DDNM [54], RePaint [26], and MAT
[23] on the tasks of image super-resolution/inpainting. We use each of these methods to generate
100 samples per test image, and compute PCA on those samples. We perform comparisons over 100
test images randomly sampled from the FFHQ dataset [18]. Note that NPPC and MAT were trained
on the training images of CelebA-HQ according to the original split of CelebA, whereas DDRM,
DDNM, and RePaint rely on DDPM [14] as a generative prior, which was trained on the entirety
of CelebA-HQ. The results are reported in Table 2. As can be seen, NPPC achieves similar root
MSE (RMSE) ∥x− x̂∥2, and residual error magnitude ∥e−WW⊤e∥2 using the first K = 5 PCs.
This is while being 100× faster than MAT, and 103 − 105× faster than diffusion-based methods.
It is interesting to note that the principal angle between the subspace computed by NPPC and that
computed by the baselines, is typically ≈ 90◦. Namely, they are nearly orthogonal. This can be
attributed to the severe ill-posedness of the tested settings, resulting in multiple different PCs with
roughly the same projected variance. This is also evident in the residual error magnitude, suggesting
that a very large number of PCs is required to handle such extreme degradations (see App. C).
Biological image-to-image translation image-to-image translation refers to translating images
from one domain into another [16]. In biological imaging, image-to-image translation has been
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(b) Super-resolution

Figure 5: CelebA-HQ inpainting and 8× noisy super-resolution. (a) Application of NPPC to
image inpainting with a mask around the mouth. NPPC received the masked image y and the mean
prediction x̂, and predicted the first 5 posterior PCs w1, . . . ,w5. On the bottom, we show a traversal
of 2 standard deviations around the mean estimate x̂ for w2 and w3, capturing uncertainty regarding
open/closed mouth, and background vs shadow next to the jawline. (b) Application of NPPC to 8×
noisy super-resolution with a noise standard deviation σε = 0.05. Similarly, the PC traversals on the
bottom capture uncertainty of eye size and cheek color/position.

Table 2: Quantitative comparison of ∥x − x̂∥2 ↓ / ∥e −WW⊤e∥2 ↓ with posterior samplers on
100 test images from FFHQ. Mean prediction and PCs were computed using 100 samples per test
image, and compute is reported in neural function evaluations (NFEs).

Super-resolution Inpainting

4× noiseless 4× noisy 8× noiseless 8× noisy Eyes Mouth NFEs↓
DDRM [19] 8.94/8.89 11.29/11.25 13.68/13.47 16.20/16.00 -/- -/- 2·103
DDNM [54] 8.43/8.38 10.74/10.70 13.12/12.95 15.73/15.55 13.27/11.24 13.30/10.37 10·103
RePaint [26] -/- -/- -/- -/- 12.24/10.3 12.55/9.72 457·103
MAT [23] -/- -/- -/- -/- 14.12/12.94 13.08/11.74 100
NPPC (Ours) 8.4/8.24 10.41/10.35 13.06/12.87 15.29/15.11 13.55/11.43 12.23/10.27 1

applied in several contexts, including for predicting fluorescent labels from bright-field images [35]
and for predicting one fluorescent label (e.g., nuclear stainings) from another (e.g., actin stainings)
[52]. However, unlike its use for artistic purposes, the use of image-to-image translation in biological
imaging requires caution. Specifically, without proper uncertainty quantification, predicting cell
nuclei from other fluorescent labels could lead to biased conclusions, as cell counting and tracking
play central roles in microscopy-based scientific experiments (e.g., drug testing). Here, we applied
NPPC to a dataset of migrating cells imaged live for 14h (1 picture every 10min) using a spinning-disk
microscope [52]. The dataset consisted of 1753 image pairs of resolution 1024× 1024, out of which
1748 were used for training, and 5 were used for testing following the original split by the authors.
We started by training a standard U-Net [11, 40] model using MSE minimization to predict nuclear
stainings from actin stainings (see Fig. 6), and then trained NPPC on the residuals. As we show
in Fig. 6, the PCs learned by NPPC convey important information to experimenters. For example,
the first PC highlights the fact that accurate intensity estimation is not possible in this task, and
thereby a global bias is a valid uncertainty component. Furthermore, the remaining PCs reflect
semantic uncertainty by adding/removing cells from the conditional mean estimate x̂, thereby clearly
communicating reconstruction ambiguity to the user.

5 Discussion

We proposed an approach for directly predicting posterior PCs and showed its applicability across
multiple tasks and datasets. Nonetheless, our method does not come without limitations. First, as
evident by both the PCs of NPPC and of posterior samplers, for severely ill-posed inverse problems a
linear subspace with a small number of PCs captures very little of the error. Hence, a large number
of PCs is required to faithfully reconstruct the error. However, the main premise of this work was
scientific imaging where scientists usually take reliable measurements, and the uncertainty is not as
severe as ultimately the result should drive scientific discovery. Second, throughout this paper, we
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Figure 6: Biological image-to-image translation. NPPC applied to the task of translating one
fluorescent label y (actin staining) to another fluorescent label x (nuclear staining) in migrating cells
(left). On the right, we show the predicted PCs at the top, and traversals along the rows. Yellow
arrows point to captured uncertain cells in x̂ (either deforming or being completely erased).

learned the PCs on the same training set of the conditional mean estimator. However, generalization
error between training and validation could lead to biased PCs estimation as the learning process is
usually stopped after some amount of overfitting (e.g., until the validation loss stagnates). This can be
solved by using an additional data split for “calibration” as is typically the case with distribution-free
methods [2, 3, 39, 45]. Third, different inputs yi may have posteriors of different complexities, and
may thus require a different number of PCs K. In our approach, K is hard-coded within the network’s
architecture (it is the number of network outputs). Namely, we treat K as a hyper-parameter that
needs to be set in advance prior to training, acting as an upper bound on the number of directions
the user may be interested in exploring at test time. However, recall that NPPC also predicts the
standard deviations along each of the K PCs. These may serve to decide whether to ignore some
of the PCs. Fourth, our learned PCs cover the entire image, whereas in some cases the interesting
uncertainty structure could be local (e.g., cell data). In such circumstances, NPPC should either be
applied patch-wise or the number of PCs K should be sufficiently increased. Finally, our method is
tailored towards capturing uncertainty and not sampling from the posterior. While we provide the
directed standard deviations, shifting along a certain direction does not guarantee samples along the
way to be on the image data manifold. This can be tackled by employing NPPC in the latent space of
a powerful encoder, in which case small enough steps could lead to changes on the manifold in the
output image. However, this is beyond the scope of this current work.

6 Conclusion

To conclude, in this work we proposed a technique for directly estimating the principal components
of the posterior distribution using a single forward pass in a neural network. We discussed key design
choices, including a Gram-Schmidt procedure with a Stopgrad operator, and a principled PCA loss
function. Through extensive experiments, we validated NPPC across tasks and domains, showing
its wide applicability. We showed that NPPC achieves comparable uncertainty quantification to the
naive approach of applying PCA on samples generated by posterior samplers while being orders of
magnitude faster. Finally, we applied NPPC to the challenging task of biological image-to-image
translation, demonstrating its practical benefit for safety-critical applications. In terms of broader
impact, proper uncertainty quantification is crucial for trustworthy interpretable systems, particularly
in healthcare applications. Thus, a method for reporting and conveniently visualizing prediction
uncertainty could support users and help them avoid making flawed decisions.
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