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Abstract

We introduce OpenIllumination, a real-world dataset containing over 108K im-
ages of 64 objects with diverse materials, captured under 72 camera views and
a large number of different illuminations. For each image in the dataset, we
provide accurate camera parameters, illumination ground truth, and foreground
segmentation masks. Our dataset enables the quantitative evaluation of most in-
verse rendering and material decomposition methods for real objects. We examine
several state-of-the-art inverse rendering methods on our dataset and compare
their performances. The dataset and code can be found on the project page:
https://oppo-us-research.github.io/OpenIllumination.

1 Introduction

Recovering object geometry, material, and lighting from images is a crucial task for various ap-
plications, such as image relighting and view synthesis. While recent works have shown promis-
ing results by using a differentiable renderer to optimize these parameters using the photometric
loss [51, 53, 52, 20, 32], they can only perform a quantitative evaluation on synthetic datasets since it
is easy to obtain ground-truth information. In contrast, they can only show qualitative results instead
of providing quantitative evaluations in real scenes.

Nevertheless, it is crucial to acknowledge the inherent gap between synthetic and real-world data,
for real-world scenes exhibit intricate complexities, such as natural illuminations, diverse materials,
and complex geometry, which may present challenges that synthetic data fails to model accurately.
Consequently, it becomes imperative to complement synthetic evaluation with real-world data to
validate and assess the ability of inverse rendering algorithms in practical settings.

It is highly challenging to capture real objects in practice. A common approach to capturing real-
world data is using a handheld camera [20, 53]. Unfortunately, this approach frequently introduces
the occlusion of ambient light by photographers and cameras, consequently resulting in different
illuminations for each photograph. Such discrepancies are unreasonable for most methods that
assume a single constant illumination. Furthermore, capturing images under multiple illuminations
with a handheld camera often produces images with highly different appearances and results in
inaccurate and even fail camera pose estimation, particularly for feature matching-based methods
such as COLMAP [37]. Recent efforts have introduced some datasets [33, 43, 21] that incorporate
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Figure 1: Some example images in the proposed dataset. The dataset contains images of various
objects with diverse materials, captured under different views and illuminations. The leftmost
column visualizes several different illumination patterns, with red and yellow indicating activated
and deactivated lights. The name and material for each object are listed in the first and second rows.
The materials are selected from the OpenSurfaces [3] dataset.

multiple illuminations in real-world settings. However, as shown in Tab. 1, most of them are limited
either in the number of views [33, 21] or the number of illuminations [21]; few of them provide
object-level data as well. Consequently, these existing datasets prove unsuitable for evaluating inverse
rendering methods on real-world objects.

To address this, we present a new dataset containing objects with a variety of materials, captured
under multiple views and illuminations, allowing for reliable evaluation of various inverse rendering
tasks with real data. Our dataset was acquired using a setup similar to a traditional light stage [10, 11],
where densely distributed cameras and controllable lights are attached to a static frame around a
central platform. In contrast to handheld capture, this setup allows us to precisely pre-calibrate all
cameras with carefully designed calibration patterns and reuse the same camera parameters for all the
target objects, leading to not only high calibration accuracy but also a consistent evaluation process
(with the same camera parameters) for all the scenes.

On the other hand, the equipped multiple controllable lights enable us to flexibly illuminate objects
with a large number of complex lighting patterns, facilitating the acquisition of illumination ground
truth.

Dataset Capturing device
Lighting
condition

Number of
illuminations

HDR
Number of

scenes/objects
Number of

views
DTU [19] gantry pattern 7 ✗ 80 scenes 49/64

NeRF-OSR [36] commodity camera env 5∼11 ✗ 9 scenes ∼360
DiLiGenT [39] commodity camera OLAT 96 ✓ 10 objects 1

DiLiGenT-MV [26] studio/desktop scanner OLAT 96 ✓ 5 objects 20
NeROIC [23] commodity camera env 4∼6 ✗ 3 objects 40

MIT-Intrinsic [15] commodity camera OLAT 10 ✗ 20 objects 1
Murmann et al. [33] light probe env 25 ✗ 1000 scenes 1

LSMI [21] light probe env 3 ✗ 2700 scenes 1
ReNe [43] gantry OLAT 40 ✗ 20 objects 50

Ours light stage pattern+OLAT
13 pattern+
142 OLAT

✓ 64 objects 72

Table 1: Comparison between representative multi-illumination real-world datasets. Env. stands
for environment lights.

With the help of high-speed cameras running at 30 fps, we are able to capture OLAT (One-Light-At-
a-Time) images with a very high efficiency, which is critical for capturing data at a large scale. In
the end, we have captured over 108K images, each with a well-calibrated camera and illumination
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parameters. Moreover, we also provide high-quality object segmentation masks by designing an
efficient semi-automatic mask labeling method.

We conduct baseline experiments on several tasks: (1) joint geometry-material-illumination esti-
mation; (2) joint geometry-material estimation under known illumination; (3) photometric stereo
reconstruction; (4) Novel view synthesis to showcase the ability to evaluate real objects on our dataset.
To the best of our knowledge, by the time of this paper’s submission, there are no other real datasets
that can be used to perform the quantitative evaluation for relighting on real data.

In summary, our contributions are as follows:

• We capture over 108K images for real objects with diverse materials under multiple view-
points and illuminations, which enables a more comprehensive analysis for inverse rendering
tasks across various material types.

• The proposed dataset provides precise camera calibrations, lighting ground truth and accurate
object segmentation masks.

• We evaluate and compare the performance of multiple state-of-the-art (SOTA) inverse
rendering and novel view synthesis methods. We perform quantitive evaluation of relighting
real object under unseen illuminations.

2 Related works

Inverse rendering. Inverse rendering has been a long-standing task in the fields of computer vision
and graphics, which focuses on reconstructing shapes and materials from multi-view 2D images. A
great amount of work [5, 14, 18, 25, 47, 34, 52, 54] has been proposed for this task. Some of them
make use of learned domain-specific priors [5, 12, 2, 27]. Some other works rely on controllable
capture settings to estimate the geometry and material, such as structure light [48], circular LED
lights [55], collocated camera and flashlight [50, 5, 4], and so on.

Recently, a lot of works use neural representations to support inverse rendering reconstruction under
unknown natural lighting conditions [20, 6, 52, 54, 7, 32, 51]. By combining the popular neural
representations such as NeRF [30] or SDF [45, 49] with physically-based rendering model [8], they
can achieve shape and reflectance reconstruction with image loss constraint. Although these works
can achieve high-quality reconstruction, they can only evaluate relighting performance under novel
illumination on synthetic data because of the lack of high-quality real object datasets.

Multi-illumination datasets. Multi-illumination observations intuitively provide more cues for
computer vision and graphics tasks like inverse rendering. Some works have utilized the temporal
variation of natural illumination, such as sunlight and outdoor lighting. These "in-the-wild" images
are typically captured using web cameras [46, 41, 36] or using controlled camera setups [40, 24].
Another line of work focuses on indoor scenes, while indoor scenes generally lack a readily available
source of illumination that exhibits significant variation. In this case, a common approach involves
using flash and no-flash pairs [35, 13, 1]. Applications like denoising, mixed-lighting white balance,
and BRDF capture benefits from these kinds of datasets. However, other applications like photometric
stereo and inverse rendering usually require more than two images and more lighting conditions for
reliable results, which these datasets often fail to provide.

3 Dataset construction

3.1 Dataset overview

The OpenIllumination dataset contains over 108K images of 64 objects with diverse materials. Each
object is captured by 48 DSLR cameras under 13 lighting patterns. Additionally, 20 objects are
captured by 24 high-speed cameras under 142 OLAT setting.

Fig. 1 shows some images captured under different lighting patterns, while the images captured under
OLAT illumination can be found in Fig. 5.
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(a) (b) (c)

Figure 2: (a) The capturing system contains 48 DSLR cameras (Canon EOS Rebel SL3), 24 high-
speed cameras (HR-12000SC), and 142 controllable linear polarized LED. (b) The calibrated DSLR
camera poses. (c) The reconstructed light positions.
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Our dataset includes a total of 24 diverse ma-
terial categories, such as plastic, glass, fabric,
ceramic, and more. Note that one object may
possess several different materials, thus the num-
ber of materials is larger than the number of
objects.

3.2 Camera calibration

The accuracy of camera calibration highly af-
fects the performance of most novel view syn-
thesis and inverse rendering methods. Previous
works [20, 53] typically capture images by handheld cameras and employ COLMAP [37] to estimate
camera parameters. However, this approach heavily relies on the object’s textural properties, which is
challenging in instances where the object lacks texture or exhibits specular reflections from certain
viewpoints. These challenges can obstruct accurate feature matching, consequently reducing the
precision of camera parameter estimation. Ultimately, the reliability of inverse rendering outcomes is
undermined, and finding out whether inaccuracies are caused by erroneous camera parameters or
limitations of the inverse rendering method itself becomes a challenging problem. Leveraging the
capabilities of our light stage, wherein camera intrinsics and extrinsic can be fixed when capturing
different objects, we employ COLMAP to recover the camera parameters on a rich textured and
low-specularity scene. For each subsequently captured object, we use this set of camera parameters
instead of performing recalibration. The results of camera calibration are visualized in Fig. 2(b).

3.3 Light calibration

In this section, we propose a chrome-ball-based lighting calibration method to obtain the ground-truth
illumination which plays a critical role in the relighting evaluation.

Our data are captured in a dark room where a set of linear polarized LEDs are placed on a sphere
uniformly as the only lighting source. Each light can be approximated by a Spherical Gaussian (SG),
defined as the following form [44]:

G(ν; ξ, λ,µ) = µ eλ(ν·ξ−1), (1)
where ν ∈ S2 is the function input, representing the incident lighting direction to query, ξ ∈ S2 is the
lobe axis, λ ∈ R+ is the lobe sharpness, and µ ∈ Rn

+ is the lobe amplitude.

We utilize a chrome ball to estimate the 3D position of each light. Assuming the chrome ball is
highly specular and isotropic, its position and radius are known, and cameras and lights are evenly
distributed around the chrome ball. For each LED single light, at least one camera can capture the
reflected light rays out from its starting location. The incident light direction can be computed via:

I = −T + 2(I ·N)N, (2)
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where I is the incident light direction that goes out from the point of incidence, N is the normal of
the intersection point on the surface, and T is the direction of the reflected light.

chrome 
ball

camera light

N
IT

For each LED light, its point of incidence on the chrome ball can be
captured by multiple cameras, and for each camera i, we can compute an
incident light direction Ii, which should have the least distance from the
LED light location p. Therefore, to leverage information from multiple
camera viewpoints, we seek to minimize the sum of distances between
the light position and incident light directions across different camera
views. This optimization is expressed as:

L(p) =
∑
i

d(p, Ii), ∥p∥ = 1, (3)

where p represents the light position to be determined, d(p, Ii) denotes the L2 distance between the
light and the incident light direction corresponding to view i, and the constraint ∥p∥ = 1 ensures
that the lights lie on the same spherical surface as the cameras. The reconstructed light distribution,
depicted in Fig. 2(c), closely aligns with the real-world distribution.

After estimating the 3D position for each light, we need to determine the lobe size for them. Since
the lights in our setup are of the same type, we can estimate a global lobe size for all lights. By taking
one OLAT image of the chrome ball as input, we flatten it into an environment map. Subsequently,
we optimize the parameters of the Spherical Gaussians (SGs) model to minimize the difference
between the computed environment map and the observed environment map. The final fitted lobe
size parameter we use is 236.9705.

Since all the lights have identical lighting intensities, and the lighting intensity can be of arbitrary
scale because of the scale ambiguity between the material and lighting, we set the lighting intensity
to 5 for all lights.

3.4 Semi-automatic high-quality mask labeling

To obtain high-quality segmentation masks, we use Segment-Anything [22] (SAM) to perform
instance segmentation. However, we find that the performance is not satisfactory. One reason is that
the object categories are highly undefined. In this case, even combining the bounding box and point
prompts cannot produce satisfactory results. To address this problem, we use multiple bounding-box
prompts to perform segmentation for each possible part and then calculate a union of the masks as the
final object mask. For objects with very detailed and thin structures, e.g. hair, we use an off-the-shelf
background matting method [28] to perform object segmentation.

4 Baseline experiments

4.1 Inverse rendering evaluation

In this section, we conduct experiments employing various learning-based inverse rendering methods
on our dataset. Throughout these experiments, we carefully select 10 objects exhibiting a diverse
range of materials, and we partition the images captured by DSLR cameras into training and testing
sets, containing 38 and 10 views respectively.

Baselines. We validate six recent learning-based inverse rendering approaches assuming single
illumination conditions: NeRD [6], Neural-PIL [7], PhySG [51], InvRender [54], nvdiffrec-mc [16],
and TensoIR [20]. Moreover, we validate three of them [6, 7, 20] that support multiple illumination
optimization.

Joint geometry-material-illumination estimation. For experiments under single illumination, we
use images captured with all lights activated, while for multi-illumination, we select images taken
under three different lighting patterns.

NeRD[6] is observed to exhibit high instability. In many cases, NeRD fails to learn a meaningful
environment map. Neural-PIL [7] generates fine environment maps and produces high-quality
renderings. However, the generated environment map incorporates the albedo of objects and fails
to produce reasonable diffuse results in multi-illumination conditions. Both NeRD and Neural-PIL
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Figure 3: The object reconstruction on our dataset from three inverse rendering baselines under single
illumination. Objects highlighted by green color are easier tasks in our dataset, while objects in red
color are more difficult tasks that involve more complicated materials like metal and clear plastic.

suffer from map fractures in roughness, normal, and albedo, providing visible circular cracks, which
we attribute to the overfitting of the environment map, where certain colors become embedded
within it. PhySG [51] applies specular BRDFs allowing for a better approximate evaluation of
light transport. PhySG shows commendable results on metal and coated materials, simulating a
few highlights. However its geometry learning was inaccurate, and it performed poorly in objects
with multiple specular parts, failing to reproduce any prominent highlights. InvRender [54] models
spacially-varying indirection illumination and the visibility of direct illumination. However, its
reconstructed geometry tends to lack detail and be over-smooth on some objects. nvdiffrec-mc [16]
incorporates Monte Carlo integration and a denoising module during rendering to achieve a more
efficient and stable convergence in optimization. It achieves satisfactory relighting results on most
objects. But the quality of geometry detail as shown in the reconstructed normal map is affected by
the grid resolution of DMTet [38]. TensoIR [20] also exhibits satisfactory performance. However,
it still encounters challenges in generating good results for highly specular surfaces, as shown in
the fourth row in Fig. 3. Moreover, since TensoIR models materials using a simplified version of
Disney BRDF [8], which fixes the F0 in the fresnel term to be 0.04, its representation capabilities are
limited, and certain materials such as metal and transparent plastic may not be accurately modeled, as
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illustrated in the fifth row in Fig. 3 and Tab. 2, where TensoIR only achieve about 22 PSNR on the
translucent plastic cup.

Overall, all the methods struggle with modeling transparency or complex reflectance because of the
relatively simple BRDF used in rendering. For concave objects, such as the metal bucket shown in
Fig. 3, NeRF-based methods have difficulty learning the correct geometry. In addition, compared to
single illumination, two of our baselines, NeRD and NeuralPIL show inferior performance under
multi-illumination, and the baseline TensoIR maintains a high quality of the reconstruction.

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

NeRD 33.40 27.20 26.81 22.80 23.81 27.64 22.06 26.78 25.54 26.14

Neural-PIL 34.42 29.41 29.17 25.49 27.59 30.14 22.55 31.01 31.61 27.73

PhySG 35.06 30.72 29.02 26.56 27.32 31.16 21.86 30.70 34.39 29.25

InvRender 31.52 25.51 24.96 23.80 25.43 22.79 21.62 24.20 29.34 26.18

nvdiffrec-mc 35.77 31.51 30.20 27.29 28.12 31.19 22.08 32.68 35.60 28.52

TensoIR 34.88 29.96 30.21 26.80 28.20 31.96 22.13 32.49 34.77 29.32

Table 2: Inverse rendering evaluation results under single illumination. We validate six inverse
rendering baselines with static illumination. We report the PSNR results for each object.

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

NeRD 26.32 24.20 24.34 21.05 18.74 23.14 21.59 17.73 21.22 16.48

Neural-PIL 30.84 28.48 28.47 25.45 25.74 29.80 22.44 29.41 30.59 26.06

TensoIR 34.51 29.88 30.21 26.53 27.96 31.58 22.09 31.87 34.35 28.91

Table 3: Inverse rendering evaluation results under multi-illumination. We select three light
patterns from our dataset to validate three baselines that support multiple illuminations. We report
the PSNR results for each object.

Reference Albedo Normal PBR
Novel Lighting 1 Novel Lighting 2

Rendering GT Rendering GT

Figure 4: Relighting results of TensoIR under novel illumination. We show the reconstructed albedo,
normal, and PBR results. For each novel illumination, we show the rendering and ground-truth
captured images.

Joint geometry-material estimation under known illumination. As introduced in Sec. 3.1, we
capture the objects under different illuminations. For each illumination, we provide illumination
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ground truth represented as a combination of Spherical Gaussian functions. This enables us to
evaluate the performance of relighting under novel illumination with the decomposed material and
geometry.

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

PSNR 31.99 31.07 30.16 27.57 27.16 32.38 22.96 30.86 32.13 27.13

Table 4: Performance of relighting under novel illumination using TensoIR.

Tab. 4 shows the relighting performance of TensoIR [20] on 10 objects. Fig. 4 shows the material
decomposition and the relighting visualizations. In general, TensoIR performs better on diffuse
objects than on metal and transparent objects.

4.2 Photometric stereo

Photometric stereo (PS) is a well-established technique to reconstruct a 3D surface of an object [18].
The method estimates the shape and recovers surface normals of a scene by utilizing several intensity
images obtained under varying illumination conditions with an identical viewpoint [17, 42]. By
default, PS assumes a Lambertian surface reflectance, in which normal vectors and image intensities
are linearly dependent on each other. During our capturing, we place circular polarizers over each
light source, we also place a circular polarizer of the same sense in front of the camera to cancel out
the specular reflections [29]. Fig. 5 shows the reconstructed albedo and normal map from the OLAT
images in our dataset.

OLAT images Albedo Normal

Figure 5: Results of photometric stereo using the OLAT images in our dataset.

4.3 Novel view synthesis

While our dataset was primarily proposed for evaluating inverse rendering approaches, the multi-view
images in it can also serve as a valuable resource for evaluating novel view synthesis methods. In
this section, we perform experiments utilizing several neural radiance field methods to validate the
data quality of our dataset. We conduct experiments employing the vanilla NeRF [30], TensoRF [9],
Instant-NGP [31], and NeuS [45]. The quantitative results, as presented in Tab. 5, demonstrate the
exceptional quality of our data and the precise camera calibration, as evidenced by the consistently
high PSNR scores attained.
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Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

NeRF [30] 33.53 29.32 29.64 25.38 26.95 31.29 22.52 31.36 33.65 28.54

TensoRF [9] 32.42 29.84 28.45 25.49 27.54 31.50 20.87 31.34 34.32 29.28

I-NGP [31] 34.07 30.62 29.91 25.83 27.93 32.51 22.51 32.71 34.98 29.72

NeuS [45] 33.43 29.78 30.00 25.47 27.83 31.93 22.13 32.44 34.17 29.99

Table 5: Novel-view-synthesis PSNR on NeRF, TensoRF, Instant-NGP, and NeuS.

4.4 Ablation study

（a） （b）

Hand-held camera reconstruction Our dataset reconstructionInconsistency between views

Figure 6: (a) Capturing using a handheld camera often introduces inconsistent illuminations. (b)
Geometry reconstruction using data in our dataset delivers higher completion than using data captured
by handheld cameras.

As depicted in Fig. 6 (a), the utilization of handheld cameras in the capture process frequently gives
rise to inconsistent illumination between different viewpoints because of the changing occlusion
of light caused by the moving photographer, thereby breaching the static illumination assumption
for most inverse rendering methods. In Fig. 6 (b), we use a handheld smartphone to capture data
under a similar setup in the dome. Experiments on handheld cameras tends to inadequately ensure an
extensive range of viewpoints, thereby frequently resulting in the incompleteness of the reconstructed
objects. Conversely, our dataset delivers a superior range of viewpoints and maintains consistency
across different objects, thereby producing a more complete reconstruction. This demonstrates the
high quality of our dataset and establishes its suitability as an evaluation benchmark for real-world
objects.

5 Limitation

There are several limitations and future directions to our work. (1) Since we use the light stage to
capture the images in a dark room, the illumination is controlled strictly. Thus there exists a gap
between the images in this dataset and in-the-wild captured images. (2) Although we use state-of-the-
art methods for segmentation, the mask consistency across different views for smaller objects with
fine details, such as hair, is not considered yet. (3) Due to the limited space, the sizes of the objects in
the dataset are restricted to 10∼20 cm, and the cameras are not highly densely distributed.

6 Conclusion

In this paper, we introduce a multi-illumination dataset OpenIllumination for inverse rendering
evaluation on real objects. This dataset offers crucial components such as precise camera parameters,
ground-truth illumination information, and segmentation masks for all the images. OpenIllumination
provides a valuable resource for quantitatively evaluating inverse rendering and material decomposi-
tion techniques applied to real objects for researchers. By analyzing various state-of-the-art inverse
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rendering pipelines using our dataset, we have been able to assess and compare their performance ef-
fectively. The release of both the dataset and accompanying code will be made available, encouraging
further exploration and advancement in this field.
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