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A Proofs & Mathematical Details

A.1 Proof of Theorem 1

Proof. We first prove that the set of slicing policies Σ is tight in P(Sdx−1 × Sdy−1).

Lemma 1 ((Villani, 2009)). Let X and Y be Polish spaces. Let P ⊂ P(X ) and Q ⊂ P(Y) be tight
subsets of the respective probability spaces. The set Σ(P ×Q) of policies whose marginals lie in P
and Q, respectively, is tight in P(X × Y).

Proof. Let µ ∈ P, ν ∈ Q, and σ ∈ Σ(µ, ν). We assume that, for any ϵ > 0, there exists compact sets
Kϵ ⊂ X , Lϵ ⊂ Y , independent of the choice of µ and ν, such that µ[X \Kϵ] ≤ ϵ and ν[Y \ Lϵ] ≤ ϵ.
Note that for any coupling (u, v) of (µ, ν):

Pr[(u, v) /∈ Kϵ × Lϵ] ≤ Pr[u /∈ Kϵ] + Pr[v /∈ Lϵ] ≤ 2ϵ.

The conclusion follows given that ϵ is arbitrary, and that Kϵ × Lϵ is compact in X × Y . □

Since Sd−1 is compact, the families of measures ΣωX
⊆ P(Sdx−1) and ΣωY

⊆ P(Sdy−1) are tight.
Therefore, Σ is tight in P(Sdx−1 × Sdy−1) as dictated by Lemma 1. Furthermore, by Prokhorov’s
theorem (Billingsley, 2013)2, the closure of this set is sequentially compact in the topology of weak
convergence.3

Lemma 2. For random variables S,Q satisfying our assumptions, I(S;Q) is continuous in the
topology of weak convergence.

Proof. Findings similar to this lemma have been studied in (Piera and Parada, 2009; Godavarti and
Hero, 2004; Ghourchian et al., 2017), we present the outline of our argument into three steps:

Step 1: For any r.v. X obeying our former assumptions, H(X) is bounded: Since supx f(x) <
∞, H(X) = −

∫
f log f ≥ − log supx f,. To show that H(X) is bounded from above, we use the

fact from Godavarti and Hero (2004), that is for any ϵ > 0, |
∫
∥x∥>K f(x) log f(x)dx| < ϵ for suffi-

ciently large K. It follows that H(X) ≤ |
∫
∥x∥≤K f(x) log f(x)dx|+ |

∫
∥x∥>K f(x) log f(x)dx| ≤

(supx f(x) log f(x))vol(∥x∥ ≤ K) + ϵ <∞.

Step 2: For any sequence (θ⊤nX)n∈N where θ⊤nX → θ⊤X and the pdfs fn := pθ⊤nX → f := pθ⊤X ,

lim sup
n→∞

H(θ⊤nX) ≤ H(θ⊤X).

This step follows from the observation that, ∀ϵ > 0, there exists sufficiently large M,N s.t. if
AM = R \ ⋃∞

k=M{x : fk(x) > Ω} for sufficiently large Ω > supx f(x), then for all n > N,
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2Prokhorov’s theorem (Billingsley, 2013) states that if (X , ρ) is a separable metric space, then K ⊂ P(X )

is tight iff the closure of K is sequentially compact in P(X ) with respect to the weak convergence.
3A sequence of probability measures πn ∈ P(X ) converges weakly to π, and we write πn → π, if for any

f ∈ C0
b (X ) we have

∫
X fdπn →

∫
X fdπ, where C0

b (X ) is the space of bounded and continuous functions on
X .
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|
∫
AM

fn log fn −
∫
AM

f log f | < ϵ. Also, we have H(θ⊤nX) +
∫
AM

fn log fn ≤ H(θ⊤X) +∫
AM

f log f .

Step 3: For any sequence (θ⊤nX)n∈N where θ⊤nX → θ⊤X and the pdfs fn := pθ⊤nX → f := pθ⊤X ,

lim inf
n→∞

H(θ⊤nX) ≥ H(θ⊤X).

We also arrive at the continuity of the differential joint entropy by considering the joint pdf and
proceeding in the same manner as before. Lastly, since I(S;Q) = H(S) +H(Q)−H(S,Q), the
conclusion follows. □

Next, let (σk)k∈N be a sequence of probability measures in P(Sdx−1 × Sdy−1) such that∮
I(θ⊤X;φ⊤Y )dσk converges to the supremum in Eq. (3); since Σ is compact, we know that

σk converges to some σ. Then, because of the continuity (Lemma 2), we can express I as the
pointwise limit of a nonincreasing collection (fl)l∈N of continuous real-valued functions, and∮

I(θ⊤X;φ⊤Y )dσ = lim
l→∞

∮
fl(θ, ϕ)dσ = lim

l→∞
lim
k→∞

∮
fldσk ≥ lim sup

k→∞

∮
I(θ⊤X;φ⊤Y )dσk.

Thus, σ is maximizing. ■

Remark 1. We could proceed differently by imposing stronger assumptions using the following
lemma:

Lemma 3 ((Yang and Chen, 2018)). For a continuous P0 ∈ P(R) and δ0 > 0, let B(P0, δ0) =
{P ∈ P(R) : dL(P, P0) ≤ δ0}.4 The robust KL divergence defined as infν∈B(P0,δ0) KL

(
µ||ν

)
is

continuous in µ with respect to the weak convergence.

Proof. We briefly discuss the outline of the proof for the sake of completeness. The interested reader
is encouraged to see Yang and Chen (2018) for full proof.

Step 1: Lower semicontinuity. Define B(P0, δ0) = {P ∈ M : dL(P, P0) ≤ δ0}, where M is
the space of finitely additive and nonnegative set functions on R and its Borel σ-algebra. Note
that B(P0, δ0) is closed with respect to the weak convergence, thus is compact since M is compact
(Loeve, 2017). It also can be shown that infν∈B(P0,δ0) KL

(
µ||ν

)
= infν∈B(P0,δ0)

KL
(
µ||ν

)
. Now

assume that µn → µ. We know from (Yang and Chen, 2018) that ∃νn ∈ B(P0, δ0),KL
(
µn||νn

)
=

infν∈B(P0,δ0) KL
(
µn||ν

)
. On the other hand, since B is compact, there exists a subsequence of

νn that converges to ν0 ∈ B. Thus, KL
(
µ||ν0

)
≤ lim infn→∞ KL

(
µn||νn

)
because of the lower

semicontinuity of KL
(
· || ·

)
and (µn, νn) → (µ, ν0). In conclusion,

inf
ν∈B(P0,δ0)

KL
(
µ||ν

)
= inf
ν∈B(P0,δ0)

KL
(
µ||ν

)
≤ KL

(
µ||ν0

)
≤ lim inf

n→∞
KL
(
µn||νn

)
= lim inf

n→∞
inf

ν∈B(P0,δ0)
KL
(
µn||ν

)
.

Step 2: Upper semicontinuity. The argument here depends on two important facts:

1. For δ, δ0 > 0 and µ0, P0 ∈ P(R), let µδx(t) = 111x<tmax(0, µ0(t − δ) − δ) +
111x≥tmin(1, µ0(t+ δ) + δ). We have:

sup
µ∈B(µ0,δ0)

inf
ν∈B(P0,δ0)

KL
(
µ||ν

)
= sup

x∈R
inf

ν∈B(P0,δ0)
KL
(
µδx||ν

)
.

2. The robust KL divergence is continuous in δ0 > 0, and its supremum is bounded:

sup
P0,µ∈P(R)

inf
ν∈B(P0,δ0)

KL
(
µ||ν

)
= log

1

δ0
.

4dL is the Lévy metric (Levy, 1955) between probability measures on the real line and is defined for
F,G : R → [0, 1] as dL(F,G) = inf{ϵ > 0 : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ,∀x ∈ R}.
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Based on the above, we can show that

lim
δ→0

sup
x∈R

inf
ν∈B(P0,δ0)

KL
(
µδx||ν

)
≤ lim
δ1→0

(
log

1

1− δ1
+ inf
ν∈B(P0,δ0−δ1)

KL
(
µ0||ν

))
= inf
ν∈B(P0,δ0)

KL
(
µ0||ν

)
. □

The existence of an optimal slicing policy follows then by assuming that I(θ⊤X;φ⊤Y ) =
infQX,Y ∈B(θ∗#PX⊗φ∗

#PY ,δ0) KL
(
(θ∗ × φ∗)#PX,Y ||QX,Y

)
≥ 0 for small enough δ0 (continuity at 0).

A.2 Proof of Theorem 2

1. SI∗(X;Y ) = SI∗(Y ;X) ≥ 0 is straightforward by the properties of the mutual information.□

2. Since the set of slicing policies Σ is compact and tight in P(Sdx−1 × Sdy−1) (see proof in
Appendix A.1), we may assume that σ∗ ∈ Σ is a slicing policy that maximizes the information
functional

∮
I(θ⊤X;ϕ⊤Y )dσ for a given coupling PX,Y ∈ P(Rdx × Rdy ). Now, if X and Y are

independent then I(X;Y ) = 0, since I(θ⊤X;ϕ⊤Y ) ≤ I(X;Y ) for all θ, ϕ (Theorem 3), then
SI∗(X;Y ) = 0. Conversely, let φX,Y (t, s)

def
= E

[
eitX+isY

]
be the joint characteristic function. If

SI∗(X;Y ) =

∮
Sdx−1×Sdy−1

I(Xθ;Yϕ)dσ∗(θ, ϕ) = 0

where Xθ
def
= θ⊤X and Yϕ

def
= ϕ⊤Y , it follows that (Xθ, Yϕ) are independent for all (θ, ϕ) ∈

Sdx−1 × Sdy−1, or, equivalently, φXθ,Yϕ
(t, s) = φXθ

(t)φYϕ
(s) for all t, s ∈ R. The latter is the

same as
φX,Y (tθ, sϕ) = φX(tθ)φY (sϕ), ∀t, s ∈ R, θ ∈ Sdx−1, ϕ ∈ Sdy−1.

If we change variables t′ = tθ and s′ = sϕ, we arrive at: φX,Y (t′, s′) = φX(t′)φY (s
′), ∀t′ ∈

Rdx , s′ ∈ Rdy , meaning that X and Y are independent. □

3. This follows from the continuity result established in Lemma 2. □

4. The mutual information I(X;Y ) can be expressed as I(X;Y ) = KL
(
PX,Y ||PX ⊗ PY

)
,

SI∗(X;Y ) = sup
σ

E(Θ,Φ)∼σ

[
KL
(
(Θ∗ × Φ∗)#PX,Y ||Θ∗

#PX ⊗ Φ∗
#PY

)]
= sup

σ
KL
(
σ ⊗ (Θ∗ × Φ∗)#PX,Y ||σ ⊗Θ∗

#PX ⊗ Φ∗
#PY

)
.

The expression follows from the fact that the joint distribution of (Θ⊤X,Φ⊤Y ) is (Θ∗ ×Φ∗)#PX,Y ,
while the corresponding conditional marginals are Θ∗

#PX and Φ∗
#PY , respectively. □

A.2.1 Proof of Corollary 1

Proof. This result follows directly from the characterization of the KL divergence using a discrimina-
tor function (Mescheder et al., 2017; Sønderby et al., 2016; Ghimire et al., 2021). ■

A.2.2 Proof of Corollary 2

Proof. We first define the sets FωX

def
= {f : f ∈ C(Sdx−1 × Sdy−1,Sdx−1), f#γγγ(Sdx−1 × Sdy−1) ∈

ΣωX
} and FωY

def
= {f : f ∈ C(Sdx−1 × Sdy−1,Sdy−1), f#γγγ(Sdx−1 × Sdy−1) ∈ ΣωY

}.
Note that for any optimal slicing policy σ, we can find a Borel map f : Sdx−1 × Sdy−1 → Sdx−1 ×
Sdy−1 such that σ = f#γγγ. Based on this observation and after defining I(θ, φ) def

= I(θ⊤X,φ⊤Y ),
we obtain

SI∗(X;Y ) =

∮
I(θ, φ)dσ(θ, φ) =

∮
I ◦ f(ψ, υ)dγγγ(ψ, υ).
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Now since the marginals of σ lie in ΣX and ΣY , we can write f as (f1, f2) where f1 ∈ FωX
and

f2 ∈ FωY
. Finally,

SI∗(X;Y ) = sup
f1∈FωX

,f2∈FωY

∮
I(f1(ψ, υ)⊤X; f2(ψ, υ)

⊤Y )dγγγ(ψ, υ)

= sup
f1∈FωX

,f2∈FωY

E(ψ,υ)∼γγγ(Sdx−1×Sdy−1)

[
I(f1(ψ, υ)⊤X; f2(ψ, υ)

⊤Y )
]

= sup
f1∈FωX

,f2∈FωY

KL
(
γγγ ⊗ (f1 × f2)(Ψ,Υ)∗#PX,Y ||γγγ ⊗ f1(Ψ,Υ)∗#PX ⊗ f2(Ψ,Υ)∗#PY

)
.

Using the Donsker-Varadhan representation (Donsker and Varadhan, 1975) of the KL divergence, we
arrive at our conclusion:

SI∗(X;Y ) = sup
T,f1,f2

{
E
[
T (Ψ,Υ, f1(Ψ,Υ)⊤X, f2(Ψ,Υ)⊤Y )

]
− logE

[
exp

(
T (Ψ,Υ, f1(Ψ,Υ)⊤X, f2(Ψ,Υ)⊤Y )

)] }
.

(1)

■

A.3 Proof of Theorem 3

Proof. The inequality I(X;Y ) ≥ SI∗(X;Y ) follows directly from the Data Processing Inequality
(DPI), where we note that:

I(θ⊤X;φ⊤Y ) ≤ I(X;Y ) ∀(θ, φ) ∈ Sdx−1 × Sdy−1,

and the conclusion follows. For the second inequality, we need to prove that SI∗(X;Y ) ≥∮
I(θ⊤X;φ⊤Y )dγγγ(θ) ⊗ γγγ(φ)

def
= SI(X;Y ). Thus, it suffices to show that γγγ(Sdx−1) ∈ ΣωX

and γγγ(Sdy−1) ∈ ΣωY
:

Ex,x′∼γγγ [arccos |x⊤x′|] =
∮
(Sd−1)2

arccos |x⊤x′|dγγγ(x)⊗ γγγ(x′) =

∮
Sd−1

arccos |x⊤α|dγγγ(x),

where α ∈ Sd−1. The last equation follows from the fact that since γγγ is uniform over Sd−1, the
integral

∮
arccos |x⊤x′|dγγγ(x) is the same for all x′.

Set α = (0, 0, . . . , 0, 1) and denote by xi the i-th entry of x:

I
def
=

∮
Sd−1

arccos |xd|dγγγ(x) =
1

A

∮
arccos |xd|dA,

where dA is the surface area element of Sd−1 and A =
∫
Sd−1 dA. We now represent x in terms of

angular parameters ϕ1 ∈ [0, 2π);ϕ2, . . . , ϕd−1 ∈ [0, π) as following:

xd = cos(ϕd−1)

xd−1 = sin(ϕd−1) cos(ϕd−2)

xd−2 = sin(ϕd−1) sin(ϕd−2) cos(ϕd−3)

...
x2 = sin(ϕd−1) sin(ϕd−2) . . . sin(ϕ2) cos(ϕ1)

x1 = sin(ϕd−1) sin(ϕd−2) . . . sin(ϕ2) sin(ϕ1)

This allows a more feasible definition of surface area element: dA =
√
detGdϕ1 . . . dϕd−1, where

G is the metric tensor; for 1 ≤ i, j ≤ d− 1:

Gij =

d∑
k=1

∂xk
∂ϕi

∂xk
∂ϕj
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Consequently, dA = sind−2(ϕd−1) sin
d−3(ϕd−2) . . . sin(ϕ2)dϕ1 . . . dϕd−1. Back to the integral,

and after applying Fubini’s theorem,

I =
1

A

(∫ π

0

arccos | cosϕd−1| sind−2(ϕd−1)dϕd−1

)(∫ π

0

sind−3(ϕd−2)dϕd−2

)
. . .

(∫ 2π

0

dϕ1

)
On the other hand,

A =

(∫ π

0

sind−2(ϕd−1)dϕd−1

)(∫ π

0

sind−3(ϕd−2)dϕd−2

)
. . .

(∫ 2π

0

dϕ1

)
Hence,

I =

(∫ π

0

arccos | cosϕd−1| sind−2(ϕd−1)dϕd−1

)/(∫ π

0

sind−2(ϕd−1)dϕd−1

)
=

(∫ π
2

0

ϕ
(
sind−2(ϕ) + cosd−2(ϕ)

)
dϕ

)/(∫ π

0

sind−2(ϕd−1)dϕd−1

)
=

(
1

2

∫ π
2

0

π

2

(
sind−2(ϕ) + cosd−2(ϕ)

)
dϕ

)/(∫ π

0

sind−2(ϕd−1)dϕd−1

)
=

(
π

4

(∫ π

0

sind−2(ϕd−1)dϕd−1

))/(∫ π

0

sind−2(ϕd−1)dϕd−1

)
=
π

4
.

In conclusion, for a given ω ≥ π/4, the set Σω contains the uniform distribution, which directly
implies that SI∗(X;Y ) ≥ SI(X;Y ). ■

A.4 Proof of Theorem 4

Proof. Let (Θ,Φ) ∼ σ and define IXY (θ, ϕ) := I(θ⊤X;ϕ⊤Y ). From here, we proceed similarly
to (Corollary S4 Nadjahi et al., 2020; Goldfeld and Greenewald, 2021, Theorem. 1). By the triangle
inequality, we have∣∣SI∗(X;Y )− ŜI∗

n,m(X;Y )
∣∣ ≤ |SI∗(X;Y )−A|+

∣∣∣A− ŜI∗
n,m(X;Y )

∣∣∣ ,
where

A = sup
σ

1

m

m∑
i=1

IXY (Θi,Φi) = sup
f1,f2

1

m

m∑
i=1

IXY (f1(Ψi,Υi), f2(Ψi,Υi)),

f1 ∈ FωX
, f2 ∈ FωY

, and (Ψ,Υ) ∼ γγγ(Sdx−1 × Sdy−1).

For the first term, since {(Θi,Φi)}mi=1 are i.i.d. and E
[
IXY (Θ,Φ)

]
= SI∗(X;Y ), we obtain

E

[∣∣∣∣∣SI∗(X;Y )− 1

m

m∑
i=1

IXY (Θi,Φi)
∣∣∣∣∣
]
≤

√√√√√E

(SI∗(X;Y )− 1

m

m∑
i=1

IXY (Θi,Φi)
)2


=

√
1

m
Var
(
IXY (Θ,Φ)

)
≤ U

2
√
m
.

The first inequality is a direct application of Cauchy-Schwarz inequality while the second
follows from Popoviciu’s inequality (Popoviciu, 1935). We should mention that U ∝√
∥FXY ∥op max(∥ΣX∥op , ∥ΣY ∥op)(d

−1
x + d−1

y )1/2, where FXY is the Fisher information matrix

of PXY and ∥.∥op is the operational norm of a matrix. ΣX ,ΣY are the marginal covariance matrices
of PXY . This proportionality follows from applying the Efron-Stein inequality on IXY (θ, ϕ) after
showing that it is a Lipschitz function on the Stiefel manifold (unit sphere), see Goldfeld et al. (2022).
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For the second term, we write

E

[∣∣∣∣∣ supf1,f2

1

m

m∑
i=1

IXY (f1(Ψi,Υi), f2(Ψi,Υi))− ŜI∗
n,m(X;Y )

∣∣∣∣∣
]

= E

[∣∣∣∣∣ supf1,f2

1

m

m∑
i=1

IXY (f1(Ψi,Υi), f2(Ψi,Υi))− sup
f1,f2

1

m

m∑
i=1

ÎXYn (f1(Ψi,Υi), f2(Ψi,Υi))

∣∣∣∣∣
]

≤ E

[
sup
f1,f2

∣∣∣∣∣ 1m
m∑
i=1

IXY (f1(Ψi,Υi), f2(Ψi,Υi))− ÎXYn (f1(Ψi,Υi), f2(Ψi,Υi))

∣∣∣∣∣
]

≤ E

[
sup
f1,f2

1

m

m∑
i=1

∣∣∣IXY (f1(Ψi,Υi), f2(Ψi,Υi))− ÎXYn (f1(Ψi,Υi), f2(Ψi,Υi))
∣∣∣]

≤ E

[
sup
f1,f2

max
Ψ,Υ

∣∣∣IXY (f1(Ψ,Υ), f2(Ψ,Υ))− ÎXYn (f1(Ψ,Υ), f2(Ψ,Υ))
∣∣∣]

= E
[∣∣∣I(S,Q)− În(S,Q)

∣∣∣ ∣∣∣∣ law(S,Q) = (f†1 (Ψ
‡,Υ‡)∗ × f†2 (Ψ

‡,Υ‡)∗)#PX,Y

]
≤ sup

PS,Q

E
[∣∣∣I(S,Q)− În(S,Q)

∣∣∣] ≤ δ(n).

The assumption that the supremum in the last equality is attained at f†1 , f
†
2 follows from the existence

of an optimal slicing policy σ∗ as demonstrated in A.1. ■

B Further Empirical Analysis

B.1 More on Behavior Analysis

Our results so far indicate that SI∗ is the first scalable dependence measure that can work excellently
in complicated scenarios, we now analyze its behavior in what follows:

3 and 3

2 a
nd

 2

1 
an

d 
1

(a) Random slicing policy

3 and 3

2 a
nd

 2

1 
an

d 
1

(b) Optimal slicing policy

Figure 1: Visualization of slicing policies on unit spheres.
Each point represents a slice (red for θ, green for ϕ).

Visualization of slicing directions.
We study the case where: Z ∼
N (0, I4),Λ ∼ N (0, 0.1I3), X =
[Z1, Z2, Z3]

⊤, and Y = [sin(Z2 +
Z3), Z2, Z4]

⊤ +Λ. Figure 1 contains
a 3D scatter of samples drawn from
the slicing distributions of Θ (red) and
Φ (green). In (b), the general pat-
tern of θ is the great circle θ1 = 0,
which is what we would expect since
X1 provides no information about Y .
ϕ also shows a pattern of a great cir-
cle ϕ3 = 0, but with a cluster of slices
around |ϕ1| = 1 since Y1 possesses
significant amount of information on
X .

Table 1: Effect of ωX , ωY .
ωY |ωX 0 π/6 π/4 π/2

0 0.71 0.80 0.91 0.93
π/6 0.78 0.95 0.96 0.98
π/4 0.89 0.98 1.00 1.00
π/2 0.92 0.96 1.00 0.96

Illustration of roles of ωX and ωY . We conduct experiments to show how ωX and ωY (the
diversity of slices) affect the accuracy of SI∗. Table 1 reports the AUC of the independence test
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of two r.v X,Y ∈ R10 with linear dependence, where the number of samples and slices used to
compute the SI∗ was set to 103 and the noise ratio to 0.6. Generally, the performance improves as
(ωX , ωY ) approaches (π/4, π/4), which indicates that (π/4, π/4) balances between slices diversity
and concentration around informative regions.

B.2 Additional Experiments on Sample and Slicing Efficiency

We showcase the scalability of our measure with higher dimensions of input in Figure 2.

102 103 104

n

.5

.6

.7

.8

.9

1

AU
C

Sinusoidal

102 103 104

n

Common Signal

102 103 104 105

n

Elliptical

SI  d=100
SI  d=200
SI * d=100
SI * d=200

Figure 2: Dependence detection power of SI∗ in higher dimensions. One notices the consistent
performance of SI∗, particularly in the more complex geometries cases.

B.3 More on computational complexity

Results in Table 2 show the computational complexity of the neural estimator SI∗
W.

Table 2: Computation speed of the neural estimators measured by second per minibatch.
CIFAR10: n = 100 n = 300 Hopper-v3: n = 128 n = 256

MI 0.39 0.75 MI 0.25 0.81
SI 0.42 0.98 SI 0.28 0.89
SI∗ 0.47 1.15 SI∗ 0.30 1.03

C Pseudocode for Estimators

For the neural estimator SI∗
W used in our representation and reinforcement learning experiments, we

proceed as follows: as in Equation (7), use the minibatch D to calculate ∇WF (W), where F (W) =
1
n

∑n
k=1 T (.)− log 1

n

∑n
k=1 exp (T (.)) + λ1

(
1
n2

∑
k,j arccos |.| − ωX

)
+ λ2

(
1
n2

∑
k,j arccos |.| −

ωY
)
. After performing a number of stochastic gradient ascent steps, we arrive at the fixed point in the

parameter space, which we denote it by W∗. The estimate of SI∗
W is then F (W∗). Next, we present

the pseudocode of ŜI∗
n,m which we studied in Appendix H.3, and we shall stick to the same choice

of notations..

D Implementation Details

All experiments were performed on a high performance computing system with a SLURM job
scheduler (Yoo et al., 2003). The compute nodes used each has two NVIDIA Volta V100 GPUs, and
a dual socket Intel Xeon Gold 6248 processor with 20 cores each socket.

D.1 Details of the Motivating Example

1. To satisfy the first criterion:
• θ1, ϕ1 ∼ N (0, ϵ) with probability p >> 0.5 and sufficiently small ϵ.
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Algorithm 1 ŜI∗
n,m Estimation

Initialize NNs f1 and f2 and the 1-dimensional MI estimator În
for number of iterations do

Sample ψ and υ independently and uniformly on spheres Sdx−1 and Sdy−1 respectively
Feed the random slices to f1 and f2: θ = f1(ψ, υ) and ϕ = f2(ψ, υ)
Calculate average MI over output slices: 1

m

∑m
i=0 În(θ

⊤
i X,ϕ

⊤
i Y )

Compute loss and update step for f1 and f2
end for
Feed random slices to f1 and f2: θ∗ = f1(ψ, υ) and ϕ∗ = f2(ψ, υ)
Calculate ŜI∗

n,m

• θ0 = S
√
1− θ21, S = −1, 1 with equal probability (Similarly for ϕ0).

2. To satisfy the second criterion: θ0, ϕ0 ∼ N (0, ϵ), with low probability which ensures that
slices are scattered around the circle.

D.2 Details of ‘Effectiveness of SI∗ as a Dependence Measure’

For each geometry, we generate 1000 datasets each with 104 samples, where 500 sets depict the
geometries with noise (positive samples)5, and the other 500 sets are noise, i.e. statistically inde-
pendent and uniformly-sampled data points (negative samples). Each measure of dependence is
estimated for each set, the test thresholds the dependence measure, with independence declared when
the dependence measure is below the threshold. Rather than choosing a single threshold, we report
the Area Under the ROC Curve, a standard way to illustrate the performance of detectors. The ROC
curve is found using the typical method: by varying over all possible thresholds and plotting the
probabilities of both types of error. Importantly, both SI and SI∗ were computed using 103 slices.
Also, error bars are too small to see due to the 100 random runs of each geometry in the experiment.
Now, we list the geometries used in our experiments: (The matrices PPP , P1, P2,Λ are realized at the
beginning of each iteration)

Linear/parabolic/sinusoidal: PPP ∈ {0, 1}d×d,PPPPPP⊤ = Id, X, Z ∼ γγγ(Sd−1), Y = f(PPPX) + Z,
where f is applied element-wise (PPP is called permutation and deletion matrix).

Common signal: P1, P2 ∈ Rd×k, X = P1V + Z1 and Y = P2V + Z2, V ∼ N (0, Ik), and
Z1, Z2 ∼ N (0, Id).

Elliptical distribution: Λ ∈ Rd×d, X, Z ∼ γγγ(Sd−1), Y = ΛX + Z

Harmonic surfaces:

X,Z ∼ γγγ(S2), Y = Z +

[
Y1
Y2
Y3

]
= Z + TSH1(X) = Z +


(X2

1−X
2
2

X2
1+X

2
2

)
(1−X2

3 )
2X1(X2

1−X
2
2

X2
1+X

2
2

)√
(1−X2

3 )
3

√
1+

√
1−X2

3

2 X2(X2
1−X

2
2

X2
1+X

2
2

)
(1−X2

3 )
2X3



X,Z ∼ γγγ(S2), Y = Z +

[
Y1
Y2
Y3

]
= Z + TSH2(X) = Z +


(X2

1−X
2
2

X2
1+X

2
2

)
(1− 4X2

3 (1−X3)
2)2X1(X2

1−X
2
2

X2
1+X

2
2

)
(1− 4X2

3 (1−X3)
2)2X2(X2

1−X
2
2

X2
1+X

2
2

)
(1− 4X2

3 (1−X3)
2)2X3


D.3 Details of Representation Learning & Reinforcement Learning

The discriminator T ’s architecture is:

Input → FC512 → ReLU → FC512 → ReLU → Output ∈ R
5Given PX,Y ∈ P(Rd ×Rd) with a specified geometry, we obtain the positive samples from the distribution

PX,Y ∗N (0, ϵI2d), where ϵ = 0.1 and ∗ is the convolution operator. Note that noise ratio × number of samples
= number of noisy data points in the positive samples set.
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For f1, f2, we use a two-layer perception with normalized output:

Input → FC400 → ReLU → FC300 → ReLU → Output

All networks use the Adam optimizer with lr=0.005, betas=(0.5, 0.999), to update their parameters.
The number of gradient updates to find f∗1 , f

∗
2 is constant throughout the experiments and is equal to

10. We ran our experiments on the STL-10 dataset (Coates et al., 2011) that uses (96× 96) images
and provides a labeled to unlabeled data ratio of one to 200 per class. As mentioned, we replicate the
settings of Hjelm et al. (2019): “data augmentation by taking random 64× 64 crops while flipping
horizontally during unsupervised learning”. For the encoder, we used an Alexnet (Krizhevsky et al.,
2012) architecture which can be found in Donahue et al. (2016); two hidden layers with 4096 units,
ReLU activations and batch norm (Ioffe and Szegedy, 2015) on every hidden layer.

For the Reinforcement Learning experiment, we use state-of-the-art SAC (Haarnoja et al., 2018)
PPO (Schulman et al., 2017) and TD3 (Fujimoto et al., 2018) learning models as baselines. For the
evaluation of SI∗, We augment the reward-maximizing objective of PPO with the adapted forward
information objective Equation (8) which uses SI∗ as a dependence measure. We further augment
with SI and MI versions of the same objective. Results were reported on three challenging Gym
environments using the MuJoco physics engine (Todorov et al., 2012).

Throughout our experiments, we tuned the hyperparameters by performing a grid search. We found
λ1 = λ2 = 0.2 for the Ant-v3 and the Hopper-v3 tasks, λ1 = λ2 = 0.1 for the Humanoid-v3 task.
Furthermore, ωX = ωY = π/4, ρ = 10 across all experiments.

E On Generalized Slicing Optimality

Goldfeld et al. (2022) discussed an interesting generalization of SI where instead of sampling slicing
vectors from a sphere, one can sample matrices from a Stiefel manifold with an appropriate dimension.
In what follows, we generalize our measure, SI∗, similarly and leave the exploration of the result to
future works:
Definition 1 (Generalized Slicing Optimality). Let k ∈ N. Define the collection of probability

measures Md,ω = {µ : µ ∈ P(Vk,d), EA,B∼µ
[
arccos

∣∣tr(A⊤B)/k
∣∣] ≥ ω}, where Vk,d def

= {X ∈
Rd×k, X⊤X = Ik} is the Stiefel manifold. The Generalized form of slicing optimality is:

GSI∗
k(X;Y ) = sup

∮
Vk,dx×Vk,dy

I(U⊤X;V ⊤Y )dσ(U, V ),

where the supremum is taken over σ ∈ P(Vk,dx ×Vk,dy ) with the constraint that its marginals should
lie in Mdx,ωX

and Mdy,ωY
, respectively.

GSI∗
k forms a general class of sliced information measures (if k = 1, GSI∗

k = SI∗).
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