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Figure 1: In the proposed interactive sketch question answering (ISQA) task, two collaborative players are
interacting to answer a question about an image. This task emphasizes multi-round interaction, which is essential
in daily human communication.

Abstract
Vision-based emergent communication (EC) aims to learn to communicate through
sketches and demystify the evolution of human communication. Ironically, pre-
vious works neglect multi-round interaction, which is indispensable in human
communication. To fill this gap, we first introduce a novel Interactive Sketch
Question Answering (ISQA) task, where two collaborative players are interacting
through sketches to answer a question about an image in a multi-round manner.
To accomplish this task, we design a new and efficient interactive EC system,
which can achieve an effective balance among three evaluation factors, including
the question answering accuracy, drawing complexity and human interpretability.
Our experimental results including human evaluation demonstrate that multi-round
interactive mechanism facilitates targeted and efficient communication between
intelligent agents with decent human interpretability. The code is available at here.

1 Introduction
Emergent communication aims for a better understanding of human language evolution and is a
promising direction for achieving human-like communication between intelligent agents [1, 2, 3, 4].
An ultimate EC system allows intelligent agents to interact and exchange information with one
another, facilitating collaboration in the completion of downstream tasks. EC is expected to play an
important role in a wide range of applications, including multi-robot navigation [5], collaborative
perception [6] and human-centric AI applications [7].

Previous methods on EC can be divided into language-based EC and vision-based EC. Language-
based EC aims to encode information into message vectors or nature language for transmission
between intelligent agents [1, 2, 3, 8, 9, 10, 11, 12]. Vision-based EC systems have been developed
with the aim of imitating the pictographic systems that were used in early human communication,
and have shown promising results in achieving human interpretability [13, 14]. A representative
vision-based EC approach [13] is inspired by the popular game “Draw & Guess," where the sender
acts as a sketcher while the receiver is responsible for making guesses. Sketch is a visible and
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universal form to transmit information, which is suitable for building human-interpretable systems.
Following this spirit, this work specifically focuses on sketch-based EC.

In this emerging direction, current works on sketch-based EC show two critical issues. First, from the
aspect of task setting, multi-round interaction is underexplored. As a fundamental aspect of human
communication, interaction involves ongoing feedback and adjustment, facilitating bidirectional
communication between intelligent agents. However, previous works on EC largely focused on
single-round communication for the tasks of image classification or Lewis’s game [15]. A recent
work [14] proposes a multi-round mechanism, but its receiver is still limited to producing binary flags,
indicating whether or not it is confident of its decision. This plain feedback cannot provide sufficient
feedback for the sender to promote meaningful interaction. Second, in terms of evaluation, previous
works on sketch-based EC primarily focus on optimizing for the performances of downstream tasks
without sufficient consideration of communication efficiency and quantitive interpretability. This
would result in complex and non-interpretable information interchange, which is not suitable for
human-centric AI systems.

To address the task setting issue, we propose a new multi-round interactive task, named interactive
sketch question answering (ISQA); see an illustration in Fig. 1. In this task, there are two players: a
sender and a receiver. An RBG image is provided to the sender and the question related to this image
is given to the receiver. Based on the image, the sender can generate a sketch and transmit it to the
receiver with certain drawing complexity constraints. According to the sketch, the receiver generates
an answer to the question. If the answer is wrong, the receiver can send spatial bounding boxes to
the sender as feedback, which indicate which parts of the sketch require more detailed drawing in
subsequent rounds. Through multiple rounds of interaction, the receiver gains more information
about the image and achieves better question answering performance. Compared to previous tasks,
the new task of ISQA calls more necessity of interaction because it creates a game of incomplete
information for both paricipants, where the sender does not have access to the language question and
the receiver does not know the original image. This setting prompts them to engage in bidirectional
information exchange through a multi-round interaction.

To address the evaluation issue, we develop a comprehensive set of metrics, covering the task
performance, drawing complexity and human interpretability, to evaluate the performance in the
ISQA tasks. The system’s task performance is assessed by measuring its accuracy in performing
ISQA tasks. The system’s drawing complexity is determined by analyzing the amount of pixels the
sender transmits and digits used in the interactive feedback. The system’s human interpretability is
determined by the CLIP distance metric between sketch and input image. By integrating these three
metrics, a comprehensive evaluation of the EC system’s effectiveness can be established.

Based on the ISQA task and the corresponding metrics, we propose and evaluate a novel EC system,
which consists of a sender module and a receiver module. The sender module is a variable drawing
complexity sketcher, and the receiver includes an SQA module and a feedback module which selects
region of high relevance about the question in the sketch. The SQA module is specifically trained to
adopt sketches and the feedback module provides a gradient analysis based on the answer distribution
calculated by the SQA module, enabling it to select high-relevance regions in the sketch and feedback
to the sender. Our experiments including human evaluation show that our EC system provides distinct
performance enhancements when compared to non-interaction sketch-based EC systems, and also
maintains adequate human interpretability across various complexity constraints. This validates
that based on sketches, intelligent agents can emerge interactive collaboration within constrained
complexity. The proposed method may pave a path to build interactive agents that can work with
both human and other agents by considering others’ priorities and exchanging crucial information to
promote effective collaboration. Our contribution can be summarized as four aspects:
• We propose a novel interactive sketch question answering (ISQA) task for EC.
• We design an efficient and interactive EC system to improve communication quality.
• We propose a novel three-factor evaluation metric, covering question answering performance,

drawing complexity and human-interpretability.
• Our experiments show that interactive EC system leverages a targeted and efficient communication.

2 Related work
2.1 Emergent communication
Emergent communication refers to the phenomenon where communication emerges among intelligent
agents that share a task or incentive which can be better achieved when intelligent agents cooperate
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with each other. One view of EC[16, 17] focuses on utility by framing messages to deliver high
performance in downstream task. The other view inspired by a cognitive science and information
theory perspective [18, 19, 20] focuses on task-agnostic communicative objectives as major forces
shaping human languages [21, 22]. [23] integrates these two views of communication by optimizing
a tradeoff among utility, informativeness and complexity.

Sketching is an efficient and direct way for communication. [13] designs a sender and receiver
structure which allows two agents to communicate by playing "Draw & Guess" game, which requires
the receiver to learn how to associate the sketch drawn by the sender with a corresponding image.
However, the game is played in only one round and the receiver does not provide any information to
the sender. [14] designs a multi-round communication game which allows the sender and receiver to
communicate in multiple rounds to explores the change of iconicity, symbolicity, and semanticity
during the iterations of training procedure. During the game, the sketch will be updated by the sender
which is built upon a reinforcement learning model [24] each round until the receiver is confident to
make a decision. Despite the multi-round mechanism being in place, the receiver is still constrained
to output a binary flag that simply indicates whether to continue drawing or not. This cannot provide
information to guide the generation of a better sketch in the subsequent round. To tackle this issue,
our work focuses on multi-round interaction and the receiver can provide informative feedback.

2.2 Visual question answering

Visual Question Answering [25] task enables the interaction between texts and images, which has
been a topic of concern in recent years. Early VQA models [26, 27, 28] often use CNN to extract
image feature and RNN to embed the question. Then attention-based models [29, 30, 31] are
introduced to focus on specific regions of images and questions. After transformer [32] is proposed,
transformer-based models [33, 34, 35] further boost the performance of VQA models. The deep
Modular Co-Attention Network (MCAN) [35] is one of the transformer-based models with high
performance. It was evaluated on the benchmark VQA-v2 dataset [36] and won the VQA Challenge
2019. Our SQA model uses the structure of MCAN to predict the answer from sketches and questions.

2.3 Sketch generation

Drawing is a direct and efficient way for communication. The endeavor of teaching neural models
to generate sketch is started by Sketch-RNN [37]. To extract more features and make the sketch
more explainable, the encoder-decoder structure is used in many sketching models [38, 39]. After
CLIP [40] is proposed, CLIP-guidance sketching methods [41, 42] are able to generate high-quality
sketches, but the efficiency is low due to the iterative methods. [43] uses depth information, CLIP
features, and the LSGAN setup [44] to train a sketch model, which achieves a good compromise
between sketch quality and efficiency. Our sketch generator in the SQA game is based on [43] model.

3 Interactive Sketch Question Answering

3.1 Task formulation

In the task of interactive sketch question answering (ISQA), two collaborative players, a sender and a
receiver, are interacting through sketches to answer a question about an image. The sender does not
know the question and the receiver cannot see the image. The sender takes an image as input and
generates a sketch with specific drawing complexity. This sketch is then transmitted to the receiver.
The receiver’s job is to answer a given question about the original image through the sketch from the
sender. If the receiver is uncertain about the answer, it will feedback a drawing with several bounding
boxes, indicating uncertain areas and requesting more detailed information about the original image
from the sender. The sender, in turn, generates a new sketch according on the receiver’s feedback to
assist the receiver to answer the question.

Mathematically, in the ith interaction round, let X ∈ RH×W×3 be an RGB image, a be the scalar
value to indicate the human-interpretability level, bi be the scalar indicator of the drawing complexity
level in the ith interaction round, Hi be the feedback provided by receiver in the ith round, which is
initialized by zeros. Then, the sender obtains the sketch as follows,

Si = fθs (X,Hi−1, bi, a) ∈ [0, 1]H×W , (1)
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where fθs (·) is the sketch generation network and Si is the sketch generated in ith interaction round.
Note that the value of each pixel in Si is ranging from 0, indicating a black and activated pixel to 1,
reflecting a white and unactivated pixel.

Correspondingly, let Q be a language-based question. In the ith interaction round, the receiver works
as follow,

Âi,Hi = fθr (Q, {Sτ}τ=1,2,··· ,i) , (2)

where fθr (·) is the sketch question answering network, Âi is the predicted answer distribution that
reflects the probability of each alternative answer, and Hi is a feedback sketch transmitted to sender,
which consists of a set of bounding boxes indicating the spatial areas that have a high correlation
with the problem.

3.2 Triangular evaluation

To quantify the overall performance of two collaborative players in both training and inference phases,
we consider three factors: question answering ability, drawing complexity, and human interpretability.

Question answering ability. To reflect the performance of SQA in the training phase, we consider
the binary cross-entropy (BCE) loss between the ground-truth answer A and the predicted answer Â;
that is, L1 = BCE(A, Â). Note that the binary cross-entropy(BCE) loss is commonly used in the
VQA task. In inference, we consider the asnwering accuracy following the common VQA methods.

Drawing complexity. To reflect the drawing complexity in both training and inference phases, we
count the number of activated pixels in a sketch. When provided with a complexity constraint bi,
and N denotes the number of pixels in original RGB image, only biN pixels are permitted to be
activated. In multi-round setting, the sender may not take full usage of bi in every round and we let
pi to be the actual pixels transmitted in ith round and pi ≤ biN . Besides, the feedback complexity is
also constrained. The complexity of feedback in ith round is 5hi, where hi denotes the numbers of
bounding boxes transmitted in the ith round since two points and a weight can represent a weighted
bounding boxes. Therefore, the total drawing complexity is B =

∑
i(pi + 5hi).

Human interpretability. In the training phase, to maximize the interpretability in human vision, we
can minimize the following loss,

L2 =
∑
ℓ

∥CLIPℓ (fs (X))− CLIPℓ (S)∥22 − cos-sim (CLIP (fs (X)) ,CLIP (S)) , (3)

where CLIPℓ (·)[40] is the CLIP visual encoder activation at layer ℓ, CLIP (·) is the CLIP visual
encoder that outputs a feature vector, cos-sim (·) is the cosine similarity function and fs(·) is a
pre-trained sketch generation network [43]. The first term of the loss function emphasizes local
geometric guidance, while the second term focuses on a semantic perspective to globally guide the
sketch generation process.

In the inference phase, we also utilize L2 in (3) as the evaluation criterion for human interpretability,
where a lower L2 loss indicates higher interpretability of the generated sketches for human perception.
By integrating distance of multilevel geometric features and high-level semantic features, this metric
leverages the CLIP model which is trained in 400 million (image, text) pairs and shows great zero-shot
performance in vision-related task to imitate human vision.

Overall, we aim to minimize L = L1+fbalance(a) ·L2, under various levels of complexity constraints.
The hyper-parameter a controls the relative weight of the L1 and L2 losses, determining whether the
model prioritizes human interpretability or SQA accuracy. To ensure a balanced trade-off between
the two loss terms, the function fbalance(a) is introduced to adjust the weight of L1 with respect to L2.
A default choice for fbalance(a) is to set it to fbalance(a) = 10a.

The proposed metric enables quantitative evaluation of both accuracy and human interpretability
across various drawing complexity levels. Utilizing a multi-level CLIP loss function, human inter-
pretability can be effectively measured, ranging from shallow geometric to deep semantic perspectives.
By optimizing both BCE loss and CLIP loss under different complexity constraints, the ISQA system
can achieve a decent tradeoff in the triangular metric.

4



4 Emergent Communication System

4.1 System overview

Based on the task formulation and the evaluation in the previous section, this section proposes an
emergent communication system to accomplish this task; see an overall illustration in Figure 2. The
proposed system comprises a sender module and a receiver module. Both are trainable networks to
realize the roles of the sender and receiver in this task. We now elaborate the details of each module.

4.2 Sender Module

Sender module is designed to improve the drawing ability given specific requirements, including the
drawing complexity and human-interpretability, so that the receiver can easily capture information.

Overall procedure. Here we consider a drawing pipeline with a varying complexity. Let X be the
input RGB image, Hi be the feedback sketch in the ith round, a be the human interpretability level
that determines the coefficient of L2 in Eq 3 and bi is the drawing complexity of the sketches. In the
ith round, the sketch Si generated by the sender can be obtained as,

Fgeo = fgeo (X), Fprag = fprag(X), (4a)
Ffusion = ffusion(Fgeo,Fprag, a), (4b)

Ŝ = fsketch

(
Ffusion,

i∑
τ=1

bτ

)
, (4c)

Si = fselect(Ŝ,Hi, bi), (4d)

where Fgeo,Fprag,Ffusion, are feature maps, Ŝ represents the sketch before undergoing the selection
procedure to obtain the hard complexity constraints.

Image encoding. In Step (4a), we consider two encoders: a geometric encoder, which extracts
geometric features for better sketching, and a pragmatic encoder, which extracts pragmatic fea-
tures for better semantic information. The geometric encoder fgeo(·) encodes an RGB image into
high-dimensional representations. The geometric encoder fgeo(·) is a pretrained model with fixed
parameters introduced in [43] with a generative adversarial network. This encoder is designed to
generate sketches with high geometrical similarity and can extract features that are closely relevant to
the process of sketch generation. In addition, another pragmatic encoder, fprag(·), which consists of
several ResNet[45] blocks, is trained to minimize loss L under the game setting. The inclusion of a
trainable pragmatic encoder in the proposed model provides the sender with the ability to encode
the input image into highly compressed features that are suited to situations where the complexity
constraint is set to be extremely low.

Feature fusion. In Step (4b), the feature fusion module ffusion(·) is used to fuse geometric features and
pragmatic features based on a given different human interpretability level. To implement, ffusion(·),
we consider a simple convex combination of geometric and pragmatic features:

Ffusion = Deconv (aFgeo + (1− a)Fprag) , (5)

where a is the hyper-parameter that controls the relative weight of the L1, L2 losses and Deconv ()
is a deconvlutional network. When a = 1, the objective is to minimize the CLIP distance between
the generated sketch and the original image, thereby maximizing human interpretability. Conversely,
when a = 0, the objective is to maximize the SQA performance without considering human inter-
pretability. By tuning the hyper-parameter a, the sender can adjust the weight balance between human
interpretability and downstream SQA task performance.

Sketch generation. Step (4c) generates the sketch from the fused feature with the drawing complexity
constraints. Initially, the drawing complexity bi is transformed into an indication vector, which is
further encoded using a multi-layer perceptron to produce the drawing-complexity matrix. The
drawing-complexity matrix is then concatenated to Ffusion, yielding a complexity-aware feature map.
This feature map is then fed to the decoder, which is composed of a U-Net[46] and multiple residual
blocks to decode the complexity-aware feature map into the reconstructed sketch Ŝ ∈ RH×W .

Pixel Selection. To ensure that the communication consumption does not exceed the upper bound, all
pixels are ranked according to their value, and the top biN pixels are selected to display in the final
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Figure 2: System overview with two interaction rounds.

sketch, while the other pixels are discarded, where N denotes the number of pixels in original RGB
image. By combining soft complexity encoding and hard selection procedures, we build a network
that is guided by complexity constraints to generate suitable sketches for different situations, while
the hard selection ensures that the complexity will not be exceeded. The selection mechanism can
be naturally extended to select crucial pixels in multi-round settings. After receiving Hi, the sender
rerank the importance of each pixel according to their value times corresponding weight in Hi. After
removing previously transmitted pixels, the sender adds the top n remaining pixels to the sketch in
subsequent rounds.

4.3 Receiver Module

The duty of the receiver module is to answer the question according to the sender module’s sketch
and provide feedback. The key of the receiver module is to associate the question with the critical
spatial areas in the sketch. Our receiver module consists of two parts: SQA and interactive feedback
mechanism. SQA is a modified VQA module that takes questions and sketches as input and select an
answer from all the options. Interactive feedback module consists of a reasoning module that couples
tightly with the detector-based vision encoder and a selection mechanism.

SQA module. The SQA module is primarily based on MCAN [35], with the addition of our
pretrained sketch Faster-RCNN. Let Q be the question, Si be the sketch, and Âi be the predicted
answer distribution in the ith round. The SQA module works as follow,

Flanguage = flanguage(Q), (6a)

Pi,Fvision,i = fvision(

i∑
τ=1

Sτ ), (6b)

Âi = fcoattn(Flanguage,Fvision,i), (6c)

where Pi, Fvision,i and Âi denote the proposals, vision feature and answer distribution in the i-th
round, respectively, and Flanguage is the language feature. In Step (6a), questions are tokenized into
words and transformed into vectors using pre-trained word embeddings flanguage(·) [47]. In Step (6b),
a Faster-RCNN-based [48] visual encoder fvision(·) extracts features from the accumulated sketch and
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return corresponding proposals Pi. To train this sketch encoder, we create the sketch-VG dataset[49]
by utilizing [43] and pretrain the vision encoder on that to replace RGB-based decoder on MCAN [35].
The visual and language features are subsequently passed on to the modular co-attention layers in the
MCAN architecture, fcoattn(·) in Step (6c) to calculate the Âi , while the proposals P are forwarded
to the interactive feedback module for further attention allocation.

Interactive feedback module. To facilitate efficient interactive feedback with human interpretability,
it is natural to return a feedback sketch that indicates which parts of the sketch are more relevant to
the question. To obtain this feedback sketch, our intuition is to analyze the relevance between the
predicted answer distribution and each feature via the well-known Grad-CAM [50] method. In the
ith round, the feedback module works as follow,

βk
i =

∑
j

∂
∑l

v=1 Â
v

∂Fk,j
vision,i

∈ R, (7a)

wj
i = ReLU

(∑
k

βk
i F

k,j
vision,i

)
∈ R, (7b)

Hj
i =

wj
i

Ej
i

Pj
i ∈ RH×W , (7c)

Hi =

n∑
j

Hj
i ∈ RH×W , (7d)

where βk
i represents the weight of the feature map in the kth channel, v denotes the index of top l

possible answer, Âv denotes the probability of answer index v, Fk,j
vision,i refers to the vision feature of

proposal j in channel k, Ej
i is the area of proposal j and Pj

i is a mask matrix reflecting the spatial
area of a proposal, where the element located in the j-th proposal is 1, and 0 elsewhere, Hj

i is a
weighted mask matrix associated with proposal j whose weight reflects its importance and Hi is the
feedback sketch in the ith round.

In Step (7a), we calculate the weight βk of each channel by computing the partial derivative Â with
respect to Fvision following the original Grad-CAM procedure. In Step (7b), we utilize βk to sum up
the channel dimension and get weight wj of each proposal j. Combining these two steps, we leverage
the gradient flowing to assign importance value to each feature vector of a particular proposal. In
Step (7c), the attention matrix for proposal j is computed by dividing the weight of the proposal by
its area, in order to avoid bias towards large proposals that may otherwise dominate the attention. In
Step (7d), we aggregate the bounding boxes of each proposal to obtain the final feedback sketch Hi.
Notably, Hi can be simply represented as a bounding box and the corresponding weight, which only
needs five numbers, significantly reducing the drawing complexity.

5 Experiments

5.1 Dataset

Visual Question Answering (VQA) v2.0 [36] is a dataset that containas open-ended questions about
images that require an understanding of vision, language and commonsense knowledge to answer. To
fit with our SQA game, we remove all questions that include color-related word since sketch has no
information about color. This reduces the size of dataset by about 15%. Visual Genome (VG) [49]
is a dataset that contains 108K images with densely annotated objects, attributes and relationships.
Based on VG dataset, we generate the corresponding sketches by the sketching model [43] to train
our Faster-RCNN model required by ISQA tasks. The evaluation metrics of VG datasets include the
mean average precision(mAP) with IOU theshold 0.5(mAP@50) and the mAP@0.5 weighted by the
number of boxes for each class(weighted mAP@50).

5.2 Experimental setting

With aforementioned optimazation object L, we trained three different models with SQA module
pretrained under VQAv2 dataset and the images are transferred to sketches with [43]:

1. Pragmatic: trained to minimize L1, equivalent to minimize L with a = 0.
2. Geometric: trained to minimize L2, equivalent to minimize L with a = 1.
3. PraGeo: trained to minimize L with a = 0.5.
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Figure 3: Comparison of Pragmatic, Geometric, Prageo(left) and Prageo models with different rounds(right).
The x-axis is

∑
bi.

Question: What are these animals?

Image Round1 sketch 
Round1 answer: Horse?

Round2 sketch Accumulated sketch: 
Round2 Answer: Giraffes!

Feedback sketch
(included masked Image)

Figure 4: Multi-round interactive SQA. From left to right we display RGB image, sketch transmitted in round 1,
RGB image masked with Hi, extra pixels added in round 2, and the whole sketches in round 2.

5.3 Quantitative evaluation

Fig 3 compares the ISQA accuracies of Pragmatic, Geometric and PraGeo models as a function of
the drawing complexity B , where x-axis is

∑
bi and y-axis is the answer accuracy. For PraGeo, we

consider both one-round and multi-round settings.

Comparison among Pragmatic, PraGeo and Geometric models. 1) When B is set to be lower than
0.3N , Pragmatic outperforms other methods in overall accuracy and PraGeo outperforms Geometric
in complexity situations. 2) When B is larger than 0.3N , the accuracy of geometric model catches
up with other methods’. 3) The peak accuracy of pragmatic model is lower than other models’
since Pragmatic is easier to overfit in low-complexity situations.
Effectiveness of interactive feedback mechanism. 1) Multi-round interaction can improve the
SQA accuracy. 2) The accuracy gap between one-round PraGeo and multi-round PraGeo are
more significant when complexity B ∈ (0.05N, 0.3N) since: when the complexity is too low
reasoning module is unable to infer sufficient useful information and interaction cost extra bandwidth
consumption; when complexity is appropriate, the bandwidth expended on this extra interaction
is relatively negligible and reasoning module generate effective feedback according to the round 1
sketches; when the complexity is too high, most of the crucial information is transmitted in round 1.
3) When comparing two-round interaction to three-round interaction, we see that the difference is
minor when compared to the gap observed between one-round and two-round interaction.

Human interpretability evaluation. Table 1 compares the human interpretability of Pragmatic,
Geometric and PraGeo by calculating CLIP distance. We see that i) without any constraint in training,
Pragmatic has a poor human interpretability, and ii) PraGeo is much closer to Geometric.

Pragmatic PragGeo Geometric
Human interpretability Score 0.998 ± 0.002 0.600 ± 0.068 0.478 ± 0.108

CLIP Distance 0.9077 0.1815 0.1193
Table 1: Average CLIP distances and human evaluation of three models.

To verify the consistency between CLIP and manual measurement, we conduct a human evaluation,
where 12 participants were tasked with assessing the human-interpretability of three different models.
Participants were presented with three corresponding images from each model simultaneously and
asked to score them based on judgment criteria ranging from 0 to 1. (lower is better, 0, 1 represent
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Figure 5: Sketches under multiple drawing complexities. From left to right, there are RGB-images, sketch
without complexity constraint, and sketch generated with PraGeo model, when B = 0.5N, 0.3Nand0.1N

fully understand and can not understand, respectively). We sampled 3,000 sets of images and each set
comprised images generated by the Pragmatic, PragGeo, and Geometric models from the same RGB
images. We see that: 1) the results in human experiments and the CLIP distance are consistent to
show the order of Geometric, PragGeo Pragmatic in terms of human interpretability; 2) both PragGeo
and Geometric models provide an human interpretable sketches while Pragmatic models can not be
understood; and 3) Comprehensively considering with Fig.3, the PragGeo achieves a more optimal
balance among the task performance and human interpretability.

Besides, to further verify the human interpretability, we sampled 300 images and questions pairs from
the dataset and test human substituting as the receiver. Ten people are involved in this experiment and
table. 2 shows the average accuracy and variance of people and machine receiver. We see that human
achieve better accuracy in number question but failed to outperform machine in Yes-or-No and other
question. The experiments show that our architecture can deliver a decent human interpretability and
our sender can work with human.

Yes-or-No Number Other
Human 66.22 ± 4 39.71 ± 4.33 28.57 ± 11.30

Machine 70 26 38
Table 2: Results of human substituting as the receiver.

5.4 Qualitative evaluation

Multi-round interaction. Fig. 4 illustrates the procedure of multi-round interaction. We see: i) the
receiver generates the feedback sketch which contains crucial region according to the preliminary
assessment; ii) the sender provides extra pixels when round is more than 1 according to the feedback
sketch; and iii) the receiver modifies the answer in accordance with the updated accumulated sketch.

Drawing complexity. Fig. 5 presents the sketches generated by PraGeo model under various drawing
complexities. We see that our PraGeo model can preserve human interpretability when the drawing
complexity is sufficiently large (B ≥ 0.1N ).

Human interpretability comparison. Fig. 6 shows examples of sketches generated by the three
models when B = 0.03N . We see that i) the sketches generated by the Pragmatic model are difficult
for humans to understand; ii) PraGeo model can still capture the outlines of the bowls and chopsticks
and outperform Pragmatic model.

Interactive feedback mechanism. Fig. 7 illustrates that interactive feedback mechanism generates H
according to specific questions. The first row shows the RGB image and corresponding sketch, from
left to right. When the question is "What are the people in the background doing?", the interactive
feedback module generates H that specifically focuses on people to request more information about
the area that is likely to contain humans. However, when the question is "What is he on top of?", the
interactive feedback module choose to request more information about the area under the man.

Insights brought by ISQA task. First, information disparity is the prerequisite for interaction.
Fig. 7 shows the feedback messages for the same image according two different questions. We
see that our feedback message transfers question-related information to the sender, enhancing
communication efficiency via a gradient-informed region of interest (can be displayed as sketch as
shown in Figure 2, which enables a human-like multi-round interaction for the first time in visual
emergent communication. This provides an insight that one of the reasons why interaction emerges
might be querying task-aligned information when receiver is more acquainted with the object than
sender. Second, the constrain of communication complexity promotes interaction. Fig. 3 shows the
ISQA performance comparison between multi-round and one-round communication. We see that the
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RGB Pragmatic

Geometric PraGeo

Figure 6: Sketches generated with different models
when B = 0.03N .

'What is he 
on top of?'

'What are the people in 
the background doing?'

RGB Sketch

Figure 7: For the same image, different questions lead
to distinct feedback sketches.

downstream performance can be boosted when interaction is introduced to the visual communication
pipeline. This provides an insight that the complexity constrains promote the agents to pursue a more
efficient communication leads to interaction. Third, it requires sufficient input information for the
feedback to be functional. Fig. 3 shows that functional feedback from the receiver relies on adequate
communication complexity. This offers the crucial realization that precise feedback hinges on a
foundational shared understanding.

5.5 ISQA study

Due to the differences in input modality between SQA and VQA, the RGB-based model is not
suitable for SQA. Two key components, Faster-RCNN vision encoder and MCAN question answering
module, thus need to be trained with a sketch-based dataset. Table 3 evaluates two Faster-RCNN
models. We see: i) the RGB-based model is not applicable to sketch-based dataset. ii) sketch-based
detector works normally on sketches but not as well as RGB-based model on RGB images.

Table 4 evaluates the performance of two MCAN models. We see that i) the RGB-based model suffers
significant performance degradation on sketch-based dataset. ii) the performance of sketch-based
MCAN is acceptable while 10.16 percent lower than RGB-based model in RGB-based datset, which
also serves as the upper-bound of ISQA task.

model dataset mAP@0.5 Weighted mAP@0.5

RGB-based RGB 0.082 0.149
RGB-based Sketch 0.003 0.010
Sketch-based Sketch 0.034 0.085

Table 3: Performance of Fast-RCNN-based mod-
els with ResNet50 backbone on VG and sketch-VG.
The RGB-based model is trained on color images
and the Sketch-based model is trained on sketches.

model dataset overall other yes-or-no numbers

RGB-based RGB 64.74 52.44 83.41 47.28
RGB-based Sketch 40.86 20.88 67.48 23.19
Sketch-based Sketch 54.58 40.81 74.81 37.01

Table 4: Accuracy of RGB-based MCAN and sketch-
based MCAN on RGB/sketch-based VQAv2 dataset.
The RGB-based model is trained on color images and
the Sketch-based model is trained on sketches.

6 Conclusion
This study proposes a new interactive sketch question-answering task along with an interactive
emergent communication (EC) system to facilitate bidirectional communication between two players.
Our approach employs an interactive feedback mechanism that allows the EC system to provide
feedbacks to guide sketch generation. Our experiments reveal that the proposed multi-round EC
system can achieve an effective balance among question answering ability, drawing complexity and
human interpretability.

Limitation and future work. The current interactive EC system is limited to two collaborative
players. In the future, we are going to explore interactive emergent communication among a group of
intelligent agents, which is more complex and tricky on the design of task and interactive process.
Collective intelligence has shown its capacity in applications such as collaborative perception, UAV
cluster technology, social network analysis, etc. We believe that multi-agent interaction is a promising
direction for artificial intelligence research in the future.
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