
A Mathematical optimization and feedback control

The fields of mathematical optimization and control theory are closely related. Many optimization
methods are inspired by natural dynamical systems, such as Polyak’s heavy ball method [Polyak,
1964]. On the other hand, the analysis of optimization algorithms also has fundamental connections
with the mathematics of dynamical systems. Besides the heavy ball method, [Wang et al., 2021a],
other examples where optimization algorithms are analyzed as dynamical systems include Nesterov
momentum for smooth functions [Su et al., 2014, Muehlebach and Jordan, 2019], and more recently
frameworks of analysis using Lyapunov stability theory [Lessard et al., 2016, Wilson, 2018].

By far the most widely used framework of control in optimization is that of Lyapunov’s stability
method, also known as Lyapunov’s direct method. This method (see e.g. Slotine et al. [1991])
proposes that if the system’s energy dissipates over time, then the system must be stable in some
sense. The use of an energy function makes the analysis of dynamical systems more tractable, since
computing the trajectories of high-dimensional or highly nonlinear systems can be cumbersome.
For a given optimization algorithm, if there exists a quantity that contracts with the evolution of the
algorithm, Lyapunov’s direct method can be applied to show convergence. This technique has been
used to analyze many existing optimization algorithms.

However, Lyapunov’s direct method does not provide optimality guarantees for control: prescriptive
suggestions for how to drive the system to the target state. Moreover, standard Lyapunov analysis
does not take disturbances to the system into account, even though they naturally arise in most
physical systems 2. To overcome these limitations, we consider Lyapunov’s second technique, the
so-called “indirect method". Instead of working directly with the nonlinear system, this method
studies the behavior of the system around the linearization about the equilibrium point. On one hand,
this technique is more limited: the analysis only applies to linear dynamical systems. On the other
hand, while it is an approach to determine stability, it is also amenable to optimal control theory. This
additional power can potentially guarantee convergence to the optimal method in optimization, which
is exactly our goal.

Nevertheless, optimal control has several limitations in this context of analyzing optimization algo-
rithms. Methods for optimal control, notably LQR theory, assume knowledge of the cost functions
and dynamics a priori, stochastic disturbances, and are limited to quadratic cost functions. Further,
learning the optimal controller in feedback control directly is not a convex problem. We circumvent
these difficulties by using new techniques in control theory devised in the context of machine learning.
The online nonstochastic control framework bypasses the computational hardness issue prevalent
in nonconvex problems by using convex relaxation and improper learning, leading to new regret
guarantees for online control. It is applicable for an online setting, where the dynamics and the
general convex costs are unknown ahead of time. Moreover, this framework provides guarantees
even in the presence of adversarial disturbances – disturbances that do not follow distributional
assumptions. It is very possible that optimal control theory has not been systematically applied to
optimization largely due to the limitations above 3.

B Lyapunov’s methods and their application to optimization

In this section we briefly describe how control theory, and in particular Lyapunov’s direct method,
has been used to analyze optimization methods. We also describe Lyapunov’s indirect method, which
to the best of our knowledge has not been applied to mathematical optimization extensively.

A dynamical system is a vector field mapping Rd onto itself. Using our notation, it can be written as

zt+1 = v(zt),

where v is the dynamics function. We use discrete time notation throughout this paper as optimization
methods implemented on a computer admit discrete-time representations. Dynamical systems can be
used to describe an optimization algorithm; for example, gradient descent for an objective f with
learning rate ⌘ can be written as

xt+1 = xt � ⌘rf(xt),

2An exception is the work of Lessard et al. [2016] .
3see related work section.

14



and similarly, other iterative preconditioned gradient (or higher-order) method can be described as a
dynamical system. The natural question of convergence to local or global minima, as well as the rate
of convergence, can be framed as a question about the stability of the dynamical system. A dynamical
system is said to be stable from a given starting point x0 if the dynamics converges to an equilibrium
from this point. There are numerous definitions of stability and equilibria of dynamical systems, and
we refer the interested reader to comprehensive discussions in [Slotine et al., 1991, Hazan and Singh,
2022]. In this introductory section we consider only the most intuitive notion of convergence to a
global minimum for a convex function, and the basic setting of noiseless dynamical systems in a
single trajectory.

In his foundational work [Lyapunov, 1992], Lyapunov introduced two methods for certifying stability
of dynamical systems.

B.1 Lyapunov’s direct method

Lyapunov’s direct method involves creating an energy or potential function, called the “Lyapunov
function". This function needs to be non-increasing along the trajectory of the dynamics, and strictly
positive except at the equilibirum (global minimum for an optimization problem) to certify stability.
A common example given in introductory courses on dynamics is that of the motion equations of the
pendulum. The Lyapunov function for this system is taken to be the total energy, kinetic and potential
[Tedrake, 2020].

For the discrete dynamics of gradient descent over a strongly convex objective f , the standard
Lyapunov energy function to use is simply the Euclidean distance to optimality, or E(x) = 1

2kx�x⇤
k
2,

where x⇤ is the global minimizer. It can be shown that with a sufficiently small learning rate depending
on the strong convexity parameter, that this energy function is monotone decreasing for the dynamics
of gradient descent, showing that the system is stable [Wilson, 2018].

At this time, various other conditions on the objective function f , such as smoothness, convexity, and
so forth, give rise to different energy functions that can prove stability, and even rates of convergence.

B.2 Lyupanov’s indirect method

Lyapunov’s second approach to stability is based on the idea of linearization around the trajectory
using the Taylor approximation, and then analyze the resulting linear dynamical system. More
formally, let z0, ..., zT be a given trajectory, then we can approximate the dynamics as

zt+1 = Atzt + wt,

where At is the Jacobian of the dynamics with respect to zt and wt is a noise that can model
misspecification or other disturbance. There are several shortcomings of this approach, especially
when applied to optimization, including:

1. The linearization depends on the state, i.e. At is actually a function of xt, and optimizing
the trajectory over a given sequence of linear dynamical systems does not imply global
optimality on the original system.

2. The linearization is a useful approximation of the dynamical system’s local behavior only if
the dynamics is smooth, and the time interval between measurements is small with respect
to this smoothness.

These limitations might explain, at least partially, why Lyapunov’s indirect method has not been used
to analyze mathematical optimization algorithms. However, there are also significant advantages to
this formulation. Most significantly, we can incorporate a control signal, as well as a disturbance,
into the nonlinear dynamics formulation,

zt+1 = v(zt, ut) + wt,

where ut can capture parameters of the optimization method, such as the learning rate and precondi-
tioner. Using Lyapunov’s method we can write

zt+1 = Atzt +Btut + wt,

where At, Bt are the Jacobians with respect to the state and control. We now have a linear time-
varying (LTV) dynamical system, and if the objective functions are quadratic and the disturbance is
stochastic, then the optimal controller can be computed using LQR theory [Kalman, 1960].

15



This observation is the starting point of our investigation. Numerous challenges arise when we
attempt to use this methodology to optimize the optimizer:

1. Optimal control theory requires the knowledge of all system matrices ahead of time, but in
optimization, they are only determined during the optimization process.

2. Efficient algorithms for optimal control, based on the Bellman equation and backward
induction, require quadratic cost functions. They are also usually less efficient than the
gradient-based meta-optimization methods we consider in the paper.

3. Optimal control requires the noise to be stochastic with mean zero, and it is not robust
to model misspecification, or adversarially chosen cost functions that arise in online or
stochastic optimization.

We show how to overcome these challenges using the newly established framework of online
nonstochastic control. The latter addresses these difficulties:

1. Online nonstochastic control does not require the knowledge of system matrices a-priori.
Further, it allows adversarially chosen systems and cost functions.

2. The methods for meta-optimization we consider are themselves gradient-based and scalable.
Thus we can hope to devise practical algorithms when the number of episodes increases, or
the problem dimension is high.

3. Online nonstochastic control methods have strong regret guarantees under adversarially
changing cost functions and systems, which naturally carries over to finite time provable
regret bounds in meta-optimization.

C Background on nonstochastic control

Our contributions build upon the recently developed methodology of online nonstochastic control
(ONC). This framework applies online convex optimization to new parametrizations of classical
control problems. This section gives the basic description of this framework, and a more detailed
exposition appears in [Hazan and Singh, 2022].

Problem setting. Consider first the simple case of a linear time invariant (LTI) dynamical system
in a single trajectory without resets. A linear dynamical system (LDS) evolves via the following
equation:

zt+1 = Azt +But + wt

Here zt 2 Rdz represents the state of the system, ut 2 Rdu represents a control input and wt 2 Rdx

is a disturbance introduced to the system. The goal of the controller is to produce a sequence of
control actions u1 . . . uT aimed at minimizing the cumulative control cost

P
T

t=1 ct(zt, ut). Many
systems do not exhibit full observation, and a well-studied model for capturing partial observation is
when the observation is a linear projection of the state, i.e.

yt = Cxt +Dut + ⇠t,

where yt 2 Rdy is the observation at time t and ⇠t 2 Rdy is an additional noise term that affects the
observed signal. We say that a system is fully observed if zt is observed by the controller, and usually
refer to this case unless specifically stated otherwise.

The control inputs, when correctly chosen, can modify the system to induce a particular desired
behavior. For example, controlling the thermostat in a data center to achieve a certain temperature,
applying a force to a pendulum to keep it upright, or driving a drone to a destination.

In classical control theory the cost functions are convex quadratic and known ahead of time, and
the disturbances are i.i.d. stochastic. In nonstochastic control, we instead consider a significantly
broader class of general (possibly non-quadratic) convex cost functions and norm-bounded (instead
of stochastic) disturbances. Both the costs and disturbances may be adversarially chosen, and only be
revealed to the controller in an online fashion.

16



A new objective: policy regret. This new objective builds upon the theory of online convex
optimization [Hazan et al., 2016] and regret minimization in games: instead of computing the optimal
policy in a certain class, we can compete with it using improper learning via convex relaxation of the
policy class. Formally, we measure the efficacy of a policy through the notion of policy regret.

Regret =
TX

t=1

ct(zt, ut)�min
⇡2⇧

TX

t=1

ct(z
⇡

t
, u⇡

t
), (7)

where z⇡
t

represents the state encountered when executing the policy ⇡. In particular, the second term
represents the total cost paid by the best (in hindsight) policy from the class ⇧ had we played it under
the same sequence of disturbances and cost functions. In this regard, the above notion of regret is
counterfactual and hence more challenging than the standard stateless notion of regret. Algorithms
which achieve low policy regret are naturally adaptive, as they can perform almost as well as the best
policy in the long run, regardless whether the disturbances and costs are adversarial.

But what policies are reasonable to compare against? We survey the state-of-the-art in control policies
next. Then we describe new methods arising from this theory that provably compete with the strongest
policy class.

C.1 Existing and new policy classes for control

Linear state-feedback policies. For a matrix K 2 Rdu⇥dz , we say a policy of the form ut = Kzt
is a linear state-feedback policy, or linear policy. In classical optimal control with full observation,
the cost function are quadratic in the state and control, i.e.

ct(z, u) = z>Qx+ u>Ru.

Under this assumption, if the system is LTI with stochastic disturbances, then the infinite-horizon
optimal policy can be computed using the Bellman optimality equations (see e.g. [Tedrake, 2020]).
This gives rise to the Discrete time Algebraic Riccati Equation (DARE), whose solution is the optimal
policy, and it is linear. The finite-horizon optimal policy can also be derived and shown to be linear.
It is thus reasonable to consider the class of all linear policies as a comparator class, especially for
LTI dynamical systems. Denote the class of all linear policies as

⇧Lin = {K 2 Rdz⇥du}.

Linear dynamical control policies. A generalization of static state-feedback policies is that of
linear dynamical controllers (LDCs). LDCs are particularly useful for partially observed LDS and
maintain their own internal dynamical system according to the observations, in order to recover the
hidden state of the system. A formal definition is below.
Definition C.1 (Linear Dynamical Controller). A linear dynamical controller ⇡ is a linear dynamical
system (A⇡, B⇡, C⇡, D⇡) with internal state st 2 Rd⇡ , input zt 2 Rdz and output ut 2 Rdu that
satisfies

st+1 = A⇡st +B⇡zt, ut = C⇡st +D⇡zt.

LDCs are state-of-the-art in terms of performance and prevalence in control applications of LDS, both
in the full and partial observation settings. They are known to be theoretically optimal for partially
observed LDS with quadratic cost functions and normally distributed disturbances, but are more
widely used in practice. Denote the class of all LDCs as

⇧LDC = {A 2 Rds⇥ds , B 2 Rds⇥dz , C 2 Rdu⇥ds , D 2 Rdu⇥dz}.

Disturbance-feedback controllers. An even more general class of policies is that of disturbance-
feedback control, defined below. The definition we give in the main text, Definition 3.1, does not
include the stabilizing controller K, since the system is already stable.
Definition C.2 (Disturbance-feedback controller). A disturbance-feedback controller (DFC) with
parameters (K,M) where M = [M1, . . . ,ML] outputs control ut at state zt,

ut = Kzt +
HX

i=1

M iwt�i,

where M i denotes the i-th matrix in M , instead of a matrix to its i-th power.

17



This policy class is more general than that of LDCs and linear controllers, in the sense that for every
LDS and every policy in ⇧LDC and ⇧Lin, there exists a DFC that outputs exactly the same controls
on the same system and sequence of disturbances. We henceforth study regret with respect to the
class of DFCs, which is the most powerful of the above policy classes, and thereby giving strong
performance guarantees.

Why is regret against DFCs meaningful? Since the class of DFCs is more general than ⇧LDC ,
competing with the best DFC translates to competing with the best LDC. The latter is know to be
the optimal policy for partially observed LDS with zero-mean Gaussian disturbances, a fundamental
problem for control theory known as the LQG (see e.g. [Simchowitz et al., 2020]).

It follows that sublinear regret against LDCs implies near-optimality in these widely-studied theoreti-
cal settings. In addition, this guarantee is meaningful even for adversarial disturbances and general
convex cost functions. Indeed, no explicit form of the optimal policy is known for general convex
cost functions, and it is conjectured to be intractable by Rockafellar [1987].

C.2 The gradient perturbation controller

The fundamental new technique introduced in [Agarwal et al., 2019] is a novel algorithm called
the Gradient Perturbation Controller (GPC) for the nonstochastic control problem. For simplicity,
assume that the dynamical system given by (A,B) is completely known to us and the state is fully
observable. Thus, given a sequence of controls and states, we can compute the corresponding
sequence of disturbances.

It can be shown that directly learning the optimal linear controller K is not a convex problem.
However, instead of learning K, we can learn a sequence of matrices {M i

}
t

i=1 that represents the
dependence of ut on wt�i under the execution of some linear policy. Schematically, we parameterize
our policy as a DFC, ut =

P
t

i=1 M
iwt�i. Since the states of the system are linear in the past

controls, and the choice of the controller ensures that the controls are linear in {M i
}
t

i=1, the states
are also linear in {M i

}
t

i=1. Moreover, since the cost functions are convex in the states and controls,
they are convex in {M i

}
t

i=1, the parameters of interest. We can thus hope to learn the parameters
using standard techniques such as gradient descent, Newton’s method, and so on.

However, there are two challenges with this approach. First, the number of parameters grows linearly
with time, and so can the regret and running time. And second, The decision a controller makes at a
particular instance affects the future through the state.

To deal with the first issue, we limit the history length of the GPC to grow very slowly with time. It
can be shown that for stable (and stabilizable given a stabilizing controller) systems, a history length
of O(log 1

✏
) is sufficient to capture the entire class of DFCs up to an " additive approximation in

terms of the average cost. This logarithmic dependence of the history length on the approximation
guarantee means that for the number of parameters to grow mildly, the policy regret is affected by no
more than a constant factor.

The second issue is more subtle. Luckily, online learning of loss functions with memory was a topic
studied before in [Anava et al., 2015]. It is shown that gradient methods guarantee near-optimal regret
if the learning rate is tuned as a function of the memory length.

With all the core components in place, we provide a brief specification of the GPC algorithm
in Algorithm 3 4 . The GPC algorithm accepts as input a stabilizing controller K that ensures
⇢(A+BK) < 1, where ⇢ is the spectral radius of the matrix A+BK. Such a controller K can be
computed for all stabilizable systems using semi-definite programming, see e.g. [Cohen et al., 2019].
The algorithm then proceeds to control using a DFC policy that is adapted to the online cost functions.
Notice that the gradient of the cost function ct is taken w.r.t. the policy variables Mt = M1:L

t
. This

is valid since both the control, and in turn the state, are a convex function of these variables. The
notation

Q
M(x) denotes the Euclidean projection of a vector x onto the set M, see [Hazan et al.,

2016] for more details on projections.

The GPC algorithm comes with a near-optimal regret guarantee vs. the class of DFC policies,

4where ct(M) is the truncated cost as a function of a fixed DFC policy M , for details see [Agarwal et al.,
2019].

18



Algorithm 3 Gradient perturbation controller
1: Input: Step size schedule ⌘t , history length L, constraint set M, stabilizing controller K.
2: Initialize M1:L

2 M arbitrarily.
3: for t = 1, . . . , T do
4: Choose the action: ut = Kzt +

P
L

l=1 M
l

t
wt�l.

5: Observe the new state zt+1, cost function ct, and record wt = zt+1 �Azt �But.
6: Online gradient update:

M t+1 = ⇧M(M t
� ⌘trct(M

t)).

7: end for

Theorem C.3 (Theorem 5.1 in [Agarwal et al., 2019]). Let ut be a sequence of controls generated
by Algorithm 3 for a known LDS. Then for any arbitrary bounded disturbance sequence and convex
cost functions, it holds that

TX

t=1

ct(zt, ut)� min
⇡2⇧DFC

TX

t=1

ct(z
⇡

t
, u⇡

t
) = Õ(

p

T ).

C.3 Significance of online nonstochastic control to meta-optimization

Significance of online nonstochastic control theory for online linear control. Online nonstochas-
tic control theory yields the first provably efficient method for LQR under general cost functions and
adversarial disturbances with finite time guarantees, which was an important open problem proposed
by Rockafellar [1987]. The LQR problem is a fundamental one, and a building block for more
sophisticated techniques in model predictive control.

Significance with respect to meta optimization. We formulate meta-optimization as a control
problem with adversarial disturbances. Furthermore, our goal is to minimize meta-regret which is an
adversarial notion with respect to the best policy in hindsight.

Regret minimization with nonstochastic disturbances was not known before the introduction of
the online nonstochastic control framework, and the new methods therein. In formulating meta-
optimization as a control problem, we make use of the crucial fact that these methods can tolerate
adversarial disturbances, which are chosen online along a path of optimization.

D Smooth convex meta-optimization

In this section, we present the details for meta-optimization when the objective functions are not
quadratic, but smooth and convex functions satisfying the following assumptions.
Assumption 4. The objective functions ft,i have uniformly bounded Hessians,

kr
2ft,i(x)k  �, 8 x, t, i.

In particular, the assumption above implies that he objective functions have Lipschitz gradients,

krft,i(x)�rft,i(y)k  �kx� yk,

and
krft,i(x)k  �kxk+ b (8)

for some b � 0, for all x, t, i.

D.1 The dynamics of smooth convex meta-optimization

For smooth convex meta-optimization, we can define the system evolution along the trajectory of the
iterates that are actually played during meta-optimization. Consider the gradient of ft,i, rft,i 2 Rd,

and let rf j

t,i
(x) denote the i-th coordinate of the gradient. Let r2f j

t,i
(x) =

@rf
j
t,i(x)

@x
2 Rd be the

19



gradient of rf j

t,i
(x), and define

Ht,i(y1, . . . , yd) =

2

64
r
2f1

t,i
(y1)

...
r
2fd

t,i
(yd)

3

75 .

The system evolution is

"
xt+1,i

xt,i

rft,i(xt,i)

#
=

"
(1� �)I 0 �⌘I

I 0 0
Ht,i �Ht,i 0

#
⇥

"
xt,i

xt�1,i

rft�1,i(xt�1,i)

#
+

"
I 0 0
0 0 0
0 0 0

#
⇥ut,i+

"
0
0

rft,i(xt�1,i)

#
,

(9)
where Ht,i satisfies

Ht,i = Ht,i(⇠
1
t,i
, . . . , ⇠d

t,i
)

for some ⇠j
t,i

on the line segment from xt�1,i to xt,i, for all j 2 [d]. By the mean value theorem, we
can find {⇠j

i,t
}
d

j=1 such that

rft,i(xt,i) = rft,i(xt�1,i) +Ht,i(xt,i � xt�1,i).

Further, we make the following assumption on Ht,i uniformly. In the case of smooth quadratic
objective functions, Ht,i is the Hessian, and the assumption is satisfied.

Assumption 5. For all (t, i), ⇢(Ht,i)  �.

Note that Ht,i is in fact not directly observable to us. Crucially, however, we do not need to use
Ht,i or any system information in our algorithm; all we need to know are the disturbances, which
can be computed by taking gradients of the objective functions.

Resets. The reset disturbance is the same, repeated here for completeness,

wT,i =

"
x1,i+1 � ((1� �)xT,i � ⌘rfT�1,i(xT�1,i) + ūT,i)

x1,i+1 � xT,i

rfT,i(xT�1,i)�rfT,i(xT,i)

#
, (10)

where ūT,i is the top d entries of the control signal uT,i. We again assume that the starting point in
each epoch has bounded norm by Assumption 2.

Cost functions. We again consider minimizing the function value: ct,i(zt,i, ut,i) = ft,i(Szt,i) =
ft,i(xt,i), where S is a matrix that selects the first d entries of zt,i.

Stability. We consider problems where Assumption 3 holds on the linearized dynamics.

D.2 Algorithm

Let M�M denote the Minkowski subset of M: M�M = {M 2 M : 1
1��M

M 2 M}, consider the
following bandit algorithm for smooth convex meta-optimization:

20



Algorithm 4 Smooth convex meta-optimization
1: Input: N,T, z1,1, ⌘, �, {⌘g

t,i
}, L, �M , starting points {x1,i}

N

i=1, , �
2: Set: M = {M = {M1, . . . ,ML

} : kM l
k  3(1� �)l}.

3: Initialize any M1,1 = · · · = ML,1 2 M�M .
4: Sample ✏1,1, . . . , ✏L,1 2R SL⇥3n⇥3n

1 , set fMl,1 = Ml,1 + �M ✏l,1 for l = 1, . . . , L.
5: for i = 1, . . . , N do
6: If i > 1, set z1,i = zT+1,i�1,M1,i = MT+1,i�1.
7: for t = 1, . . . , T do
8: Choose ut,i =

P
L

l=1
fM l

t,i
wt�l,i.

9: Receive ft,i, compute rft,i(xt,i),rft,i(xt�1,i). If t = T , then compute wT,i according to
4. // Now we have zt+1,i, wt,i.

10: Suffer control cost ct,i(zt,i) = ft,i(xt,i).

11: Store gt,i =
9n2L

�M
ct,i(zt,i)

LP
l=1

✏t�l,i if t � L else 0.

12: Perform gradient update on the controller parameters: Mt+1,i = ⇧M�M
(Mt,i�⌘g

t,i
gt�L,i).

13: Sample ✏t+1,i 2R SL⇥3n⇥3n
1 , set fMt+1,i = Mt+1,i + �M ✏t+1,i

14: end for
15: end for

The algorithm uses noise-based gradient estimators for the gradients with respect to M l

t,i
. At each

iteration, a noise is sampled in the unit sphere (Line 13) and added to the updated iterate of Mt+1,i.
Then, gradient estimators are constructed on Line 11 by using cost function evaluations, and an
update step is performed on Line 12.

E General dynamical system formulation

The most general formulation of the dynamical system for meta-optimization can have a number of
past states and gradients. For any given h  T/2, consider the time-variant, discrete linear dynamical
system of dimension 2hd as follows

zt+1,i =

2

66666664

xt+1,i
...

xt�h+2,i

rft,i(xt,i)
...

rft�h+1,i(xt�h+1,i)

3

77777775

= At,i ⇥

2

66666664

xt,i

...
xt�h+1,i

rft�1,i(xt�1,i)
...

rft�h,i(xt�h,i)

3

77777775

+B ⇥ ut,i +

2

6666666664

0
...
0

rft,i(xt�1,i)
0
...
0

3

7777777775

,

where

At,i =

2

64

(1� �)I 0 · · · · · · 0 �⌘Id 0 · · · 0
Id(h�1) 0 0 · · · · · · 0
Ht,i �Ht,i 0 · · · 0 0 0 · · · 0
0 · · · · · · · · · 0 Id(h�1) 0

3

75 , B =

2

664

Id 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0

3

775 .

(11)

This formulation holds for a similar reason to the simplified dynamical system (3), namely the relation
rft,i(xt,i) = rft,i(xt�1,i) +Ht,i(xt,i � xt�1,i).

In the deterministic setting, more expressive states can lead to a richer benchmark algorithm class and
a stronger guarantee. We have an LTI system in the deterministic setting, and the class of DFCs can
compete with the class of linear controllers, see Appendix C. In this more general formulation, the
states contain gradients and iterates further into the past, so the class of linear controllers correspond
to optimization algorithms that can use more past gradients and iterates. This benchmark algorithm
class can be potentially larger than the formulation considered in Section 3.

21



F Optimization settings

Our main theorem can be refined for each of the meta-optimization settings described in Section 1.1.

F.1 Deterministic optimization

Consider the setting where we receive the same quadratic function in each epoch, i.e. ft,i = f for
all t, i. In this case, we have an LTI system, and we can obtain stronger guarantees compared to
LTV systems. First, the sequential stability assumption on the system can be simplified to a standard
strong stability assumption.

Assumption 6. The system dynamics are (, �)-strongly stable, with  � 1.

A fundamental class of policies considered in control theory is the set of linear state-feedback policies.
It is well-understood that for certain classical control problems, such as the linear quadratic regulator,
linear policies are optimal. We give the formal definition of stable linear policies below.

Definition F.1 (Strongly stable linear policies). Given a system with dynamics (A,B), a policy K
is linear if ut = Kzt. A linear policy is (, �)-strongly stable if the dynamics A + BK is (, �)
strongly stable, and kKk  .

Remark F.2. It is natural to consider the relationship between policy classes. We say a class of
policies ⇧1 approximates another class ⇧2 if for all systems, for any ⇡2 2 ⇧2, there exists ⇡1 2 ⇧1

that incur average cost close to ⇡2. As shown in Agarwal et al. [2019], for stable LTI systems, ⇧DFC

can approximate the class of strongly stable linear policies, denoted as ⇧,�

lin . Therefore, we can
consider ⇧,�

lin as the benchmark policy class in this setting. The corresponding benchmark algorithm
class ⇧ is given below.

In the deterministic setting, we consider optimization algorithms parameterized by a matrix K =
[K1 K2 K3] 2 Rd⇥3d. Let xt,i be the iterates played by our algorithm, and

zK
t,i

=

2

4
xK

t,i

xK

t�1,i

r̂f(xK

t�1,i)

3

5 , where r̂f(xK

t�1,i) = rf(xK

t�1,i)�rf(xK

t�2,i) +rf(xt�2,i),

be the state at time (t, i) reached by the optimizer parameterized by K. The optimizer with parameter
K has the corresponding updates:

xK

t+1,i = ((1� �)I +K1)x
K

t,i
+K2x

K

t�1,i + (K3 � ⌘I)r̂f(xK

t�1,i). (12)

This class ⇧ can capture common optimization algorithms on time-delayed pseudo-gradients r̂f for
the deterministic setting, and we give some examples in the following table. For more details on the
class of algorithms and range of hyperparameters, see Appendix G; for a more concrete example of
learning the learning rate, see Appendix H.

Method K Update
GD with learning rate ⌘0 [0 0 (⌘ � ⌘0)I] xK

t+1,i = (1� �)xK

t,i
� ⌘0r̂f(xt�1,i)

Momentum [��I �I 0] xK

t+1,i = (1� � � �)xK

t,i
+ �xK

t�1,i � ⌘r̂f(xt�1,i)

Preconditioned methods [0 0 ⌘I � P ] xK

t+1,i = (1� �)xK

t,i
� P r̂f(xt�1,i)

The benchmark algorithm class we consider also includes any combination of the above methods,
which can be expressed by an appropriate choice of K.

Let x̄ = 1
TN

P
N

i=1

P
T

t=1 xt,i be the average iterate, and J̄(A) = 1
TN

P
N

i=1 Ji(A) denote the
average cost of the algorithm A. Then by convexity, Theorem 3.2 implies

f(x̄)  min
A2⇧

J̄(A) + Õ

✓
1

p
TN

◆
.

22



F.2 Stochastic optimization

In this setting, our functions are drawn randomly from distributions D1,D2, . . . ,DN that vary from
epoch to epoch. In epoch i, for each time step t 2 [T ], we draw a quadratic function ft,i ⇠ Di. Let E
denote the unconditional expectation with respect to the randomness of the functions, and define the
function f̄i(x) := EDi [ft,i(x)], then the guarantee can be written as

1

NT

NX

i=1

TX

t=1

E[f̄i(xt,i)] 
1

NT
min
A2⇧

NX

i=1

TX

t=1

E
⇥
f̄i(x

A
t,i
)
⇤
+ Õ

✓
1

p
TN

◆
.

F.3 Adversarial online optimization

Consider the setting where we have a new function at each time step of each epoch in the optimization
process. These functions can arrive in an online and adversarial manner; in other words, they do
not satisfy distributional assumptions such as ones presented in the last subsection. This setting
describes the meta-online convex optimization (meta-OCO) problem, and we give our guarantees in
the standard OCO metric – regret.

Let x⇤
i
= argmin

x

P
T

t=1 ft,i(x) be the optimum in hindsight in episode i, and denote Regret
i
(A)

as the regret suffered by the algorithm A in epoch i. Subtracting
P

N

i=1

P
T

t=1 ft,i(x
⇤
i
) on both sides,

1

TN

NX

i=1

Regret
i
 min

A2⇧

1

TN

NX

i=1

Regret
i
(A) + Õ

✓
1

p
NT

◆
,

that is, over episodes, the average regret approaches that of the best online learner in the class ⇧.

G Expressing optimization algorithms as policies

In this section, we give more details on algorithms that can be captured by the policy class we consider
in the deterministic setting, namely linear stabilizing policies. Let K be a stabilizing policy, then it
must satisfy

⇢(A+BK) < 1,

where A is the system dynamics. We can write

A+BK =

"
(1� �)I +K1 K2 �⌘I +K3

I 0 0
H �H 0

#
.

If � is an eigenvalue of A+BK, then

det

 "
(1� � � �)I +K1 K2 �⌘I +K3

I ��I 0
H �H ��I

#!
= 0.

We can compute the determinant by methods developed in Powell [2011]. Let

M1 = (1� � � �)I +K1 +
(K3 � ⌘I)H

�
,

M2 = K2 �
(K3 � ⌘I)H

�
,

then det(A+BK��I) = det(M1+
M2
�
) det(��I)2. For � 6= 0, this implies that det(M1+

M2
�
) =

0. Expanding the expression, we have

det

✓
(1� � � �)I +K1 +

�� 1

�2
(K3 � ⌘I)H +

K2

�

◆
= 0,

suggesting that �+ �� 1 is an eigenvalue of K1+
��1
�2 (K3� ⌘I)H + K2

�
. We show in the following

subsections that non-trivial algorithms can be expressed as stabilizing linear policies, by upper
bounding |�| using this relationship.

23



G.1 GD with fixed learning rates

We can take K1 = K2 = 0, K3 = ⌘0I to encode GD with learning rate ⌘0 � ⌘. By the following
lemma, any |⌘0 � ⌘|  1/8� is a stabilizing linear policy, where � = kHk.
Lemma G.1. Suppose the conditions in Lemma I.2 are satisfied. Let K3 = ⌘0I , then for ⌘0 such
that |⌘0 � ⌘|  1/8�, for any � 2 C where �+ � � 1 is an eigenvalue of ��1

�2 (⌘0 � ⌘)H , we have
|�| < 1� �/2.

Proof. The proof is similar to the proof of Lemma I.2. Let ⌃ii denote the i-th eigenvalue of H , then
� must satisfy, for some i,

�� 1

�2
(⌘0 � ⌘)⌃ii = �+ � � 1.

Rearranging and taking the absolute value, we obtain

|⌘ � ⌘0|⌃ii� = |�2
� (⌘0 � ⌘)⌃ii||�� 1 + �|.

Suppose |�| � 1� �/2, then

|⌘ � ⌘0|⌃ii� � (|�|2 � |⌘0 � ⌘|⌃ii)(|�|� (1� �))

� (|�|2 � |⌘0 � ⌘|⌃ii)�/2,

and 2|⌘ � ⌘0|⌃ii � |�|2 � |⌘0 � ⌘|⌃ii ) |⌘ � ⌘0|⌃ii � (1 � �/2)2/3. Since |⌘ � ⌘0|  1/8�,
|⌘ � ⌘0|⌃ii  1/8, while the right hand side is at least 3/16, and we have a contradiction.

G.2 Momentum

In this case, K3 = 0, K1 = �vI,K2 = vI describes momentum with parameter v, and we show for
v  �, the corresponding linear policy is stabilizing.
Lemma G.2. Suppose ⌘, � satisfy the conditions in Lemma I.2. Then for v 2 [0, �], for any � 2 C
where �+ � � 1 is an eigenvalue of �vI � ⌘(��1)

�2 H + v

�
I , we have |�| < 1� �/4.

Proof. Let ⌃ii denote the i-th eigenvalue of H , and let ci = ⌘⌃ii. Then � must satisfy, for some i,

v

�
� v �

ci(�� 1)

�2
= �+ � � 1.

Rearranging and taking the absolute value, we obtain

|�2
� v + ci||�� (1� � � v)| = |v � (� + v)(v � ci)|.

Since 0  v  1/2, the right hand side is equal to v� (�+ v)(v� ci). This can be seen as follows: if
v  ci, then the statement is true; if v � ci, then v � v�ci � (�+v)(v�ci). Assume |�| � 1��/4,
and we show the lemma by contradiction. We first write,

ci + (1� � � v)(v � ci) � |�2
� v + ci||�� (1� � � v)| � (|�|2 � |v � ci|)(|�|� (1� � � v))

� ((1� �/4)2 � |v � ci|)((1� �/4)� (1� � � v))

If v  ci, the expression becomes

ci + 2(1� � � v)(v � ci) + (ci � v)(1�
�

4
) = 2(� + v)(ci � v) + v �

�

4
(ci � v) � (1�

�

4
)2(

3�

4
+ v).

Note that the left hand side is upper bounded by �+v

4 + v because ci  1/8, and we have

�

4
+

5v

4
�

49

64
(
3�

4
+ v),

which is a contradiction, because v  �. Now, suppose v > ci, we have

ci + (v � ci)(1� �/4) + (1� � � v)(1� �/4)2 � (1� �/4)3.

We upper bound the left hand side using 1 � 1 � �/4, and obtain 1 � � � (1 � �/4)3, which is a
contradiction for � 2 [0, 1/2).

24



G.3 Preconditioned methods

Similar to the learning rate case, we set K1 = K2 = 0, and K3 = ⌘I � P , where P is the
preconditioner. The following lemma shows that for P such that ⇢(PH)  1/8, the linear policy
specified by K1,K2,K3 is stabilizing.
Lemma G.3. Suppose ⌘, � satisfy the conditions in Lemma I.2. Then for P such that ⇢(PH)  1/8,
for any � 2 C where �+ � � 1 is an eigenvalue of ���1

�2 PH , we have |�| < 1� �/2.

Proof. Let ci denote the i-th eigenvalue of PH . Then for some i,

1� �

�2
ci = �+ � � 1.

Assume |�| � 1� �/2. After algebraic manipulation and taking the absolute value, we have

|�2 + ci||�+ � � 1| = �|ci| � (|�|2 � |ci|)(|�|� (1� �)) � (|�|2 � |ci|)�/2.

The above inequality implies that 3|ci| � |�|2 � 9/16, which is a contradiction, since|ci|  1/8 by
definition.

H Example: learning the learning rate for convex quadratics

Consider the deterministic setting , where we receive a quadratic objective function f(x) = 1
2x

>Hx
that remains invariant over the course of meta-optimization. Assume kHk = � � 1. For gradient
descent, a good choice of learning rate is 1

�
, but often we only have an upper bound �̂ such that

�̂ � �. As we show in the sequel, we can do almost as well as gradient descent with learning rate
1
8� on average using meta-optimization, which is a constant factor away.

Suppose we choose ⌘g, L, � according to Theorem 3.2, and set ⌘ = 1
8�̂

. Then by Lemma I.2, the
dynamical system is stable, and Assumptions 6,2,1 are satisfied. By Theorem 3.2, we can compete
with the best stabilizing linear policy. For a linear policy K, let

zK
t,i

=

2

4
xK

t,i

xK

t�1,i

r̂fK(xK

t�1,i)

3

5

denote the state reached at time (t, i) by playing policy K. Let [K1 K2 K3] 2 Rd⇥3d represent the
top d rows of K, where the submatrices have dimension d ⇥ d. The closed-loop dynamics of the
linear policy K is

zK
t+1,i =

2

4
(1� �)I +K1 K2 �

1
8�̂

I +K3

I 0 0
Ht,i �Ht,i 0

3

5 zK
t,i

+ wt,i.

Setting K1 = 0, K2 = 0, K3 = �( 1
8� �

1
8�̂

)I , the dynamics is time-delayed gradient descent (using
pseudo-gradients) with learning rate 1

8� and weight decay. By Lemma I.2, the closed-loop dynamics
is stable, so K is a stabilizing linear policy and we do at least as well as playing K on average.

I System stability

In this section, we discuss the stability of the system in our dynamical systems formulation under
the deterministic setting. Since the system is LTI, only strong stability is required for applying
nonstochastic control, instead of sequential stability. We start with the usual definition of a stable
system.

A system xt+1 = Axt +But +wt is said to be stable if the spectral radius of A, denoted as ⇢(A), is
bounded away from 1. The following lemma shows that if a system is stable, it is also strongly stable
with some parameters (, �).

25



Lemma I.1 (Lemma B.3 in Cohen et al. [2018]). If the system A is stable with ⇢(A) < 1�� for some
� > 0, it is also (, �)-strongly stable, where  = max{kPk, kP�1

k} with P =
P1

i=0(A
i)>Ai.

Therefore, we focus on showing that the dynamical system we consider is stable in the usual sense.
The lemma below shows that if we set the learning rate of the base gradient descent dynamics to be
sufficiently small, then the system is stable without control signals. This restriction on ⌘ is natural
since we expect gradient descent to converge with step size smaller than 1/�.
Lemma I.2. Consider the dynamical system formulation (3), and suppose 0 � Ht,i � �I , then for
⌘ 

1
8� , � 2 (0, 1

2 ], we have

⇢

 "
(1� �)I 0 �⌘I

I 0 0
Ht,i �Ht,i 0

#!
< 1�

�

2
< 1.

Proof of Lemma I.2. Let A =

"
(1� �)I 0 �⌘I

I 0 0
H �H 0

#
By definition, if � is an eigenvalue of A,

then

det

 "
(1� � � �)I 0 �⌘I

I ��I 0
H �H ��I

#!
= 0.

We can then use Section 4.2 of Powell [2011] to compute the determinant of A � �I . Write

A� �I =

"
S11 S12 S13

S21 S22 S23

S31 S32 S33

#
, we have

S11 � S13S
�1
33 S31 = (1� � � �)I � (�⌘I)(�

1

�
I)H = (1� � � �)I �

⌘

�
H.

S12 � S13S
�1
33 S32 = 0� (�⌘I)(�

1

�
I)(�H) =

⌘

�
H.

S22 � S23S
�1
33 S32 = ��I.

S21 � S23S
�1
33 S31 = I.

By Equation 4.8 in Powell [2011],

det(A� �I) = det((1� � � �)I �
⌘

�
H �

⌘

�
H(�

1

�
I)) det(��I)2

= det((1� � � �)I �
⌘

�
H +

⌘

�2
H) det(��I)2.

Therefore, if � is an eigenvalue of A, it must hold that det((1� � � �)I � ⌘

�
H + ⌘

�2H) = 0. Let
H = U⌃U> be the eigenvalue decomposition of H . Since

det((1� � � �)I �
⌘

�
H +

⌘

�2
H) =

dY

i=1

(1� �� � �
⌘

�
⌃ii +

⌘

�2
⌃ii),

it follows that for some i,
1� �� � �

⌘

�
⌃ii +

⌘

�2
⌃ii = 0.

Let ⌘⌃ii = ci, and by our choice of ⌘, |ci|  1
8 for all i 2 [d]. We can re-write the above cubic

equation as
�3

� (1� �)�2 + ci�� ci = 0,

and we will prove the lemma by contradiction. First, observe that �3
� (1� �)�2 + ci�� ci = 0 )

(�2 + ci)(�� 1 + �) = �ci. Suppose |�| � 1� �/2 � 3/4. By triangle inequality of the complex
modulus, |��1+�| � |�|� |1��| � �/2. Since |�2+ci||��1+�| = �|ci| � |�2+ci|�/2, it must
be that |ci| � |�2 + ci|/2 � (|�|2 � |ci|)/2, and 3|ci| � |�|2 � 9/16, which is a contradiction.

We also give an analogous lemma for the general system formulation given in (11).

26



Lemma I.3. Suppose 0 � Ht � �I , then for � 2 (0, 1
2 ], ⌘ < �

16� , for At,i defined in 11,

⇢(At,i) < 1�
�

2
< 1.

Proof. We again use Powell [2011] to determine the eigenvalues of the dynamics matrix. First, we
decompose At into blocks and write

At � �I =


S11 S12

S21 S22

�
,

where Sij 2 Rdh⇥dh. Then we have

det(At � �I) = det(S11 � S12S
�1
22 S21) det(S22).

Since S22 is a lower triangular matrix with �� on the diagonal, det(S22) = 0 if and only if
� = 0. Thus for � 6= 0, det(At � �I) = 0 if and only if det(S11 � S12S

�1
22 S21) = 0. Now, let

S�1
22 =


A 0
C D

�
where A 2 Rd⇥d, and D 2 Rd(h�1)⇥d(h�1). Then

S12S
�1
22 S21 =


�⌘A 0
0 0

�
S21 =


�⌘AHt ⌘AHt 0 · · · 0

0 · · · 0 · · · 0

�

=


⌘

�
Ht �

⌘

�
Ht 0 · · · 0

0 · · · 0 · · · 0

�
2 Rdh⇥dh

where the last equality holds because A = �
1
�
Id.

S11 � S12S
�1
22 S21 =

2

66664

(1� � � �)Id 0 0 · · · 0
Id ��Id 0 · · · 0
0 Id ��Id 0 · · · 0
...
0 · · · Id ��Id

3

77775
+

2

66664

�
⌘

�
Ht

⌘

�
Ht 0 · · · 0

0 0 0 · · · 0
0 0 0 0 · · · 0
...
0 · · · 0 0

3

77775

= S11 + E.

Suppose |�| � 1� �/2, then S11 is invertible. By an identity for the determinant of sum of matrices,
we have

det(S11 + E) = det(I + S�1
11 E) det(S11),

and since det(S11) 6= 0, it must be that det(I+S�1
11 E) = 0. In other words, S�1

11 E has an eigenvalue
of �1. Write

S�1
11 =


D1 0
D2 D3

�
2 Rdh⇥dh,

where D1 2 Rd⇥d, D4 2 Rd(h�1)⇥d(h�1). Then

S�1
11 E =


�

⌘

�
D1Ht

⌘

�
D1Ht 0

�
⌘

�
D2Ht

⌘

�
D2Ht 0

�
.

By Lemma I.4, we can write

S�1
11 E = F ⌦Ht,

where

F =
⌘

�(1� � � �)

2

6664

�1 1 0 · · · 0
1
�

�
1
�

0 · · · 0
...
1

�d(h�1) �
1

�d(h�1) 0 · · · 0

3

7775
2 Rd⇥d.

27



The eigenvalues of S�1
11 E are therefore products of eigenvalues of F and Ht. Note that the only

nonzero eigenvalue of F is � ⌘(1+�)
�2(1����) , so there must be an eigenvalue of Ht, denoted by ci such

that
ci⌘(1 + �)

�2(1� � � �)
= 1.

Rearranging, and taking the absolute value on both sides, we have
ci⌘|1 + �| = |�|2|1� � � �| � |�|2(|�|� (1� �)) � |�|2�/2.

By our choice of ⌘, ci⌘  �/16, so we have �(1 + |�|) � 8|�|2�, which is a contradiction, because
for |�| � 0.5, 8|�|2 > (1 + |�|). We conclude that |�| < 1� �/2.

Lemma I.4. Let S11 be the upper left submatrix of dimension dh ⇥ dh in At � �I , and write

S�1
11 =


A 0
C D

�
, then A = 1

1����
Id, and

C =

2

66664

�
1

(1����)�Id
�

1
(1����)�2 Id

...
�

1
(1����)�d(h�1) Id

3

77775

Proof. Let S11 =


D1 0
D2 D3

�
, where D1 2 Rd⇥d and D3 2 Rd(h�1)⇥d(h�1). Then

S�1
11 =


D�1

1 0
D�1

3 D2D
�1
1 D�1

3

�
=

 1
1����

I 0
1

1����
D�1

3 D2 D�1
3

�
.

We prove the lemma by computing the inverse of D3,

D�1
3 =

2

666664

�
1
�
Id 0 0 · · · 0

�
1
�2 Id �

1
�
Id 0 · · · 0

�
1
�3 Id

1
�2 Id

1
�
Id 0 · · · 0

...
�

1
�d(h�1) Id · · · �

1
�2 Id �

1
�
Id

3

777775

We conclude that

D�1
3 D2 =

2

6664

�
1
�
Id

�
1
�2 Id
...

�
1

�d(h�1)Id

3

7775
.

J Additional experimental details

In this section, we report additional experiment details and setups. All experiments are run on a
cluster of 4 TPUv3’s, and implemented using the Jax and Optax frameworks Bradbury et al. [2018],
Babuschkin et al. [2020].

Linear regression We consider two experiments with logistic regression. The first experiment is
described in Section 4, and we provide the sweep details below.

Hypeparameter Range
learning rate 1e-6, 1e-4, 1e-3, 1e-2, 1e-1
momentum 0.9, 0.95, 0.99

�1 0.9, 0.95, 0.99
�2 0.9, 0.95, 0.99
⌘g 1e-10, 1e-5, 1e-3, 1e-2, 1e-1

28



Figure 3: Linear regression with synthetic data. While other baselines have consistent average loss
over episodes, indicated by the tight bands, the meta-optimization algorithm is able to learn as more
episodes become available. Our algorithm converges faster over time, as demonstrated by the sharp
drop in average loss at the beginning of each episode. The Momentum training curve is occluded by
the Nesterov momentum curve, and is not as easy to see. The MP algorithm’s average loss exceeds
200.

Figure 4: Linear regression with changing synthetic data. Similar to the last experiment, the meta-
optimization algorithm is able to learn better updates as more episodes are revealed, while other
baseline algorithms do not improve significantly over episodes.

The MP algorithm does not have hyperparameters, but we found that if the gradient updates are not
clipped, the algorithm often results in NaN loss values. Therefore, we clip the stepsize of the gradient
update to be at most one over the `2 norm of the design matrix. For the meta-optimization algorithm,
we learn over matrices of size d ⇥ d instead of 3d ⇥ 3d as in Algorithm 2, since the disturbances
only have d nonzero entries except when reinitializing the iterate. For the base learning rate ⌘ of the
algorithm, we use the best tuned learning rate for GD, which is 1e-3, and only tune ⌘g .

In addition to GD, MP, Nesterov momentum, and Momentum, we also compare with Adam, and plot
the overlayed episodic loss in Figure 3. The bands around the training curves indicate the range of
losses over the N episodes, and the solid line is the mean.

In the second experiment, we add episodic noise to the design matrix. The experiment setup is the
same as in the first experiment, but in each episode, we add an additional entry-wise Gaussian noise
with standard deviation 0.5 to the design matrix. Compared to the first experiment, the objective
functions have larger shift between time steps and episodes, and thus the task is more difficult. We
tune the algorithms using the same range of hyperparameters, and plot the moving average of their
losses in Figure 4. We do not compare with the MP algorithm in this experiment, since it requires
parameters that depend on the Hessian of the objective functions, which is changing in this setting.

Logistic regression for MNIST classification We consider learning a multinomial logistic regres-
sion model for the task of MNIST classification. When preprocessing data, we split the training
dataset into 50k training examples and 10k validation examples. We again consider the episodic
setting; we run for 5 episodes and in each episode, we train for 50 epochs on the training examples
with a batch size of 256. Between episodes, we shuffle the training examples and reset the model
parameters to the same initialization, randomly generated from a Gaussian distribution. We compare

29



Figure 5: Logistic regression for MNIST classification. Meta-optimization outperforms SGD and
momentum. Nesterov momentum is on par with meta-optimization (line occluded in the figure),
and Adam performs the best out of all the algorithms. Adam’s performance is possibly due to the
inclusion of �2. Note that even though in theory meta-optimization can compete with a single fixed
preconditioner, similar to the guarantee of AdaGrad, Adam uses a moving average of the second
moment instead of the diagonal AdaGrad update.

Figure 6: Validation losses on MNIST with logistic regression. Meta-optimization does surprisingly
well in generalization, outperforming all baselines including Adam.

with SGD, Nesterov acceleration, Momentum, and Adam, and plot the moving average of their
training losses in Figure 5 with a window of 100 steps. In addition, we evaluate the loss on the
validation examples every epoch, and plot the results in Figure 6. We use the Optax implementations
for the baseline algorithms, and give their tuning details in the table below.

Hypeparameter Range
learning rate 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1.0, 10.
momentum 0.9, 0.95, 0.99

�1 0.9, 0.95, 0.99
�2 0.9, 0.95, 0.99
� 1e-5, 1e-4, 1e-3, 1e-2
⌘g 1e-10, 1e-5, 1e-3, 1e-2, 1e-1

For our meta-optimization algorithm, we use the best learning rate from SGD as ⌘, and tune ⌘g , the
meta learning rate, and �, the regularization parameter. The final values are: � = 0.0001, L = 3,
⌘g = 0.01, ⌘ = 1.0. Since this setting is relatively high-dimensional, instead of learning over
matrices as in Algorithm 2, we learn over scalar-valued M l’s. The algorithm is still well-defined, and
this variant is more practical for large-scale problems.

Neural networks for MNIST classification We consider two experiments for classification on
MNIST with neural networks. The first experiment is given in the main text, where we investigate
the behavior of meta-optimization given a suboptimal learning rate. In the following experiment,
we perform a sanity check and show that there is also improvement when the learning rate is set
to the optimal 1.0. The architecture of the network and the hyperparameter sweep ranges for both
experiments are the same, and the sweep ranges are as the table above. The plot demonstrates that

30



Figure 7: Comparison plot for the training performance of meta-optimization and other baselines on
the MNSIT classification task.

given this learning rate, meta-optimization can improve upon not just SGD, but also Adam and
momentum.

31


	Introduction
	The setting of meta-optimization
	Main theorem statements
	Related Work
	Structure of the paper

	Online control formulation of meta-optimization 
	Algorithm and main theorem statements
	Guarantees for quadratic and smooth meta-optimization
	The benchmark algorithm class

	Experiments
	Conclusion.
	Mathematical optimization and feedback control
	Lyapunov's methods and their application to optimization
	Lyapunov's direct method
	Lyupanov's indirect method

	Background on nonstochastic control
	Existing and new policy classes for control
	The gradient perturbation controller
	Significance of online nonstochastic control to meta-optimization

	Smooth convex meta-optimization
	The dynamics of smooth convex meta-optimization
	Algorithm

	General dynamical system formulation
	Optimization settings
	Deterministic optimization
	Stochastic optimization
	Adversarial online optimization

	Expressing optimization algorithms as policies
	GD with fixed learning rates
	Momentum
	Preconditioned methods

	Example: learning the learning rate for convex quadratics
	System stability
	Additional experimental details

