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Abstract

Finite-difference methods are a class of algorithms designed to solve black-box
optimization problems by approximating a gradient of the target function on a set
of directions. In black-box optimization, the non-smooth setting is particularly
relevant since, in practice, differentiability and smoothness assumptions cannot be
verified. To cope with nonsmoothness, several authors use a smooth approximation
of the target function and show that finite difference methods approximate its
gradient. Recently, it has been proved that imposing a structure in the directions
allows improving performance. However, only the smooth setting was considered.
To close this gap, we introduce and analyze O-ZD, the first structured finite-
difference algorithm for non-smooth black-box optimization. Our method exploits
a smooth approximation of the target function and we prove that it approximates its
gradient on a subset of random orthogonal directions. We analyze the convergence
of O-ZD under different assumptions. For non-smooth convex functions, we obtain
the optimal complexity. In the non-smooth non-convex setting, we characterize
the number of iterations needed to bound the expected norm of the smoothed
gradient. For smooth functions, our analysis recovers existing results for structured
zeroth-order methods for the convex case and extends them to the non-convex
setting. We conclude with numerical simulations where assumptions are satisfied,
observing that our algorithm has very good practical performances.

1 Introduction

Black-box optimization problems are a class of problems for which only values of the target function
are available and no first-order information is provided. Typically, these problems arise when the
evaluation of the objective function is based on a simulation and no analytical form of the gradient is
accessible or its explicit calculation is too expensive [14, 45, 36, 35].

To face these problems, different methods that do not require first-order information have been
proposed - see for instance [39, 47, 19, 26, 20, 30, 33] and references therein. These techniques are
called derivative-free methods and a wide class of these is the class of finite-difference algorithms
[31, 39, 17]. These iterative procedures mimic first-order optimization strategies by replacing the
gradient of the objective function with an approximation built through finite differences in random
directions.

Two types of finite-difference methods can be identified: unstructured and structured ones, depending
on the way in which the random directions are generated. In the former, directions are sampled i.i.d.
from some distribution [39, 17, 10, 46] while in the latter, directions have to satisfy some structural
constraints, e.g. orthogonality [32, 42]. Several authors [32, 42, 5, 12] theoretically and empirically
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observed that imposing orthogonality among the directions provides better performance than using
unstructured directions. Intuitively, imposing orthogonality allows us to avoid cases in which the
gradient approximation is built using similar or redundant directions.

Notably, methods based on structured finite differences have been analyzed only for smooth and
convex (or specific non-convex) target functions. This represents a strong limitation, since smoothness
and convexity are in practice hardly verifiable, due to the nature of black-box optimization problems.
The aim of this paper is the analysis of structured finite difference algorithms dropping smoothness
and convexity assumptions.

For unstructured finite-difference methods, a common way to face nonsmoothness consists in intro-
ducing a smooth approximation of the target function, also known as "smoothing" [6, 16] and using
it as a surrogate of the target. Although the gradient of the smoothing is not computable, different
authors showed that for certain types of smoothing the unstructured finite-difference approximation
provides an unbiased estimation of such a gradient - see, for example, [39, 46, 18, 22, 21, 24]. This
key observation allows to prove that unstructured finite-difference methods approximate a solution in
different nonsmooth settings [17, 39, 46, 18, 22, 34].

For structured finite-difference methods, the analysis in the nonsmooth setting is not available. A key
step which is missing is the proof of the fact that the surrogate of the gradient built with structured
directions is an estimation of the gradient of a suitable smoothing.

In this paper, we close the gap, and introduce O-ZD, a structured finite-difference algorithm in the
non-smooth setting. The algorithm builds an approximation of the gradient of a smoothed target using
a set of ℓ ≤ d orthogonal directions. We analyze the procedure proving that our finite-difference
surrogate is an unbiased estimation of the gradient of a smoothing. We provide convergence rates
for non-smooth convex functions with optimal dependence on the dimension [17] and rates for
the non-smooth non-convex setting (for which lower bounds are not known [34]). Moreover, for
non-smooth convex functions we provide the first proof of convergence of the iterates for structured
finite differences in this setting. For smooth convex functions, we recover the standard results for
structured zeroth-order methods [32, 42]. We conclude with numerical illustrations. To the best of our
knowledge, this is the first work on nonsmooth finite-difference method with structured directions.

The paper is organized as follows. In Section 2, we introduce the problem and the algorithm. In
Section 3, we state and discuss the main results. In Section 4 we provide some experiments and in 5
some final remarks.

2 Problem Setting & Algorithm

Given a function f : Rd → R and assuming that f has at least a minimizer in Rd, we consider the
problem to find

x∗ ∈ argmin
x∈Rd

f(x). (1)

In particular, we consider the non-smooth setting where f might be non-differentiable. To solve
problem (1), we propose a zeroth-order algorithm, namely an iterative procedure that uses only
function values. At every iteration k ∈ N, a first-order information of f is approximated with
finite-differences using a set of ℓ ≤ d random orthogonal directions (p

(i)
k )ℓi=1. Such orthogonal

directions are represented as rotations (and reflections) of the first ℓ vectors of the canonical basis
(ei)

ℓ
i=1. We set p(i)k = Gkei, where Gk belongs to the orthogonal group defined as

O(d) := {G ∈ Rd×d | detG ̸= 0 ∧ G−1 = G⊺}.

Methods for generating orthogonal matrices are discussed in Appendix D. Given G ∈ O(d), 0 < ℓ ≤
d and h > 0, we consider the following central finite-difference surrogate of the gradient information

g(G,h)(x) =
d

ℓ

ℓ∑
i=1

f(x+ hGei)− f(x− hGei)

2h
Gei. (2)

Then, we introduce the following algorithm.
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Algorithm 1 O-ZD: Orthogonal Zeroth-order Descent
Input: x0 ∈ Rd, (αk)k∈N ⊂ R+, (hk)k∈N ⊂ R+, ℓ ∈ N s.t. 1 ≤ ℓ ≤ d
for k = 1, · · · do

sample Gk i.i.d. from O(d)
xk+1 = xk − αkg(Gk,hk)(xk)

end for

Starting from an initial guess x0 ∈ Rd, at every iteration k ∈ N, the algorithm samples an orthog-
onal matrix Gk i.i.d. from the orthogonal group O(d) and computes a surrogate g(Gk,hk) of the
gradient at the current iterate xk. Then, it computes xk+1 by moving in the opposite direction of
g(Gk,hk)(xk). This approach belongs to the class of structured finite-difference methods, where a
bunch of orthogonal directions is used to approximate a gradient of the target function [32, 42]. Such
algorithms have been proposed and analyzed only for smooth functions. To cope with this limitation,
and extend the analysis to the nonsmooth setting, we exploit a smoothing technique. For a fixed a
probability measure ρ on Rd and a positive parameter h > 0 called smoothing parameter, we define
the following smooth surrogate of f

fh,ρ(x) :=

∫
f(x+ hu) dρ(u). (3)

As shown in [6], fh,ρ is differentiable even when f is not. In the literature, different authors have used
this strategy to face non-smooth zeroth-order optimization with random finite-difference methods
[18, 39, 49, 22] fixing specific smoothing distribution, but no one applied and analyze it for structured
methods.

In this work, ρ is the uniform distribution over the ℓ2 unit ball Bd, defining the smooth surrogate

fh(x) =
1

vol(Bd)

∫
Bd

f(x+ hu) du, (4)

where vol(Bd) denotes the volume of Bd. One of our main contributions is the following Lemma
which shows that the surrogate proposed in (2) is an unbiased estimator of the gradient of the
smoothing in (4).
Lemma 1 (Smoothing Lemma). Given a probability space (Ω,F ,P), let G : Ω → O(d) be a random
variable where O(d) is the orthogonal group endowed with the Borel σ-algebra. Assume that the
probability distribution of G is the (normalized) Haar measure. Let h > 0 and let g be the gradient
surrogate defined in eq. (2). Then,

(∀x ∈ Rd) EG[g(G,h)(x)] = ∇fh(x),

where fh is the smooth approximation of the target function f defined in eq. (4).

The proof of Lemma 1 is provided in Appendix A.1.
Remark 1. Note that Lemma 1 holds also using gF(G,h) or gS(G,h) defined as

gF(G,h)(x) :=
d

ℓ

ℓ∑
i=1

f(x+ hGei)− f(x)

h
Gei and gS(G,h)(x) :=

d

ℓ

ℓ∑
i=1

f(x+ hGei)

h
Gei,

since EG[g(G,h)(x)] = EG[g
F
(G,h)(x)] = EG[g

S
(G,h)(x)]. Despite these two estimators being com-

putationally cheaper than the proposed one, we use central finite differences since they allow us to
derive a better bound for EG[∥g(G,h)(x)∥2] as observed in [46] for the case ℓ = 1.

Thanks to Lemma 1, we can interpret each step of Algorithm 1 as a Stochastic Gradient Descent
(SGD) on the smoothed function fhk

. But the analysis of the proposed algorithm does not follow
from the SGD one for two reasons. First, the smoothing parameter hk changes along the iterations;
second (and more importantly), the set of minimizers of fh and f are different in general. However,
we will take advantage of the fact that fh can be seen as an approximation of f . The relationship
between f and its approximation fh depends on the properties of f - see Proposition 1 in Appendix
A.

Our main contributions are the theoretical and numerical analysis of Algorithm 1 under different
choices of the free parameters αk, hk, namely the stepsize and the smoothing parameter. To the best of
our knowledge, Algorithm 1 is the first structured zeroth-order method for non-smooth optimization.
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2.1 Related Work

In practice, the advantage of the use of structured directions in finite-difference methods has been
observed in several applications [12] and motivated their study. In [5], the authors theoretically
and empirically observed that structured directions provide a better approximation of the gradient
with respect to unstructured (Gaussian and spherical) ones. Next, we review the most related works,
showing the differences with our algorithm.

Unstructured Finite-differences. Most of existing works focused on the theoretical analysis of
methods using a single direction to approximate the gradient - see e.g. [39, 46, 22, 45, 18, 24,
34, 17, 10]. The main results existing so far analyze the convergence of the function values in
expectation. They provide convergence rates in terms of the number of function evaluations and
explicitly characterize the dependence on the dimension of the ambient space.
Smooth setting: In [39, 17], a finite difference algorithm with a single direction is analyzed. Rates
on the expected function values are shown. In [39] the dependence on the dimension in the rates
is not optimal. In [17], both single and multiple direction cases are analyzed and lower bounds
are derived. However, only the convex setting is considered. In [24], both convex and non-convex
settings are analyzed. They obtain optimal dependence on dimension in the complexity for convex
functions. However, only the single-direction case is considered and only the smooth setting is
analyzed. Comparing the result with our rates, Algorithm 1 achieves the same dependence on the
dimension in the complexity taking ℓ as a fraction of d. Note that, by parallelizing the computation of
the function evaluations, we can get a better result.
Non-smooth setting: In [39, 17] the non-smooth setting is also analyzed. However, only the single
direction case has been considered and both algorithms do not achieve the lower bound. More
precisely, for convex functions, a complexity of O(d2ε−2) is achieved by [39] and O(d log(d)ε−2)
by [17] while our algorithm gets the optimal dependence. Moreover, note that in [17] the strategy
adopted (also called "double smoothing") requires tuning one more sequence of parameters, which
is a challenging problem in practice, and only the convex setting is considered. In [39], also the
non-convex setting is analyzed by bounding the expected norm of the smoothed gradient. However,
they obtain a complexity of O(d3ε−2h−1) while our algorithm gets a better dependence on the
dimension. In [46], the optimal complexity is obtained for convex functions. However, the author
does not analyze the non-convex setting. Moreover, note that, despite the complexity in terms of
function evaluations being the same, our algorithm gets a better complexity in terms of the number of
iterations since it uses multiple directions (and this is an advantage if we can parallelize the function
evaluations). Furthermore, note that the method proposed in [46] can be seen as the special case
of Algorithm 1 with ℓ = 1. In [34] the single direction case is analyzed only in the non-convex
setting. The dependence on the dimension of the complexity in the number of function evaluations
achieved matches our result in this setting (again, in the number of iterations our method obtains a
better dependence).

Structured Finite-difference. In [32, 42], authors analyze structured finite differences in both
deterministic and stochastic settings. However, only the smooth convex setting is considered. In [12]
orthogonal matrices are used to build directions but no analysis is provided. In [25], finite-difference
with coordinate directions is analyzed. At every iteration, d+ 1 function evaluations are performed
to compute the estimator and only the smooth setting is considered.

3 Main Results

In this section, we analyze Algorithm 1 considering both non-smooth and smooth problems. We
present the rates obtained by our method for convex and non-convex settings and compare them with
those obtained by state-of-the-art methods. Proofs are provided in Appendix B. In the following,
we call complexity in the number of iterations / function evaluations, respectively, the number of
iterations / function evaluations required to achieve an accuracy ε ∈ (0, 1).

3.1 Non-smooth Convex Setting

In this section, we provide the main results for non-smooth convex functions. In particular, we will
assume that the target function is convex and satisfy the following hypothesis.
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Assumption 1 (L0-Lipschitz continuous). The function f is L0-Lipschitz continuous; i.e., for some
L0 > 0,

(∀x, y ∈ Rd) |f(x)− f(y)| ≤ L0∥x− y∥.

Note that this assumption implies that also fh is L0-Lipschitz continuous - see Proposition 1.
Moreover, to analyze the algorithm, we will consider the following parameter setting.
Assumption 2 (Zeroth-order non-smooth convergence conditions). The step-size sequence αk and
the sequence of smoothing parameters hk satisfy the following conditions:

αk ̸∈ ℓ1, α2
k ∈ ℓ1 and αkhk ∈ ℓ1.

The assumption above is required to guarantee convergence to a solution. In particular, the first
two conditions are common for subgradient method and stochastic gradient descent, while the third
condition was already used in structured zeroth-order methods [32, 42] and links the decay of the
smoothing parameter with the stepsize’s one. An example of αk, hk that satisfy Assumption 2 is
αk = k−θ and hk = k−ρ with θ ∈ (1/2, 1) and ρ s.t. θ + ρ > 1.

We state now the main theorem for non-smooth convex functions.
Theorem 1 (Non-smooth convex). Under Assumption 1, assume that f is convex and let (xk)k∈N
be a sequence generated by Algorithm 1. For every k ∈ N, denote Ak =

∑k
i=0 αi and set x̄k :=∑k

i=0 αixi/Ak. Then

E[f(x̄k)−min f ] ≤ Sk/Ak with Sk :=
∥x0 − x∗∥2

2
+ c

dL2
0

ℓ

k∑
i=0

α2
i + L0

k∑
i=0

αihi,

where c > 0 is a constant independent of the dimension and x∗ is any solution in argmin f . Moreover,
under Assumption 2, we have

lim
k→+∞

f(xk) = min f a.s,

and that there exists a random variable x∗ taking values in argmin f s.t. xk → x∗ a.s.

In the next corollary, we derive explicit rates for specific choices of the parameters.
Corollary 1. Under the assumptions of Theorem 1, let x∗ ∈ argmin f . Then, the following hold:

(i) Let θ ∈ (1/2, 1) and ρ ∈ R such that θ + ρ > 1. For every k ∈ N, let αk = α(k + 1)−θ

and hk = h(k + 1)−ρ with α > 0 and h > 0. Then

E[f(x̄k)−min f ] ≤ C

αk1−θ
+ o
( 1

k1−θ

)
,

for some constant C provided in the proof.

(ii) For every k ∈ N, let αk = α and hk = h with α, h > 0. Then

E[f(x̄k)−min f ] ≤ ∥x0 − x∗∥2

2αk
+

cdL2
0

ℓ
α+ L0h,

where c is a constant independent of the dimension.

(iii) Fix an accuracy ε ∈ (0, 1) and let K ≥ 8(cL2
0∥x0−x∗∥2)(d/ℓ)ε−2. Set αk =

√
ℓ
d
∥x0−x∗∥√

2cKL0
,

and hk = h ≤ ε/(2L0) for every k ≤ K. Then

E[f(x̄K)−min f ] ≤ ε

and the complexity in terms of number of iterations is O((d/ℓ)ε−2).

Discussion. The bound in Theorem 1 depends on the initialization and on an additional quantity
that can be interpreted as an approximation error. The latter is composed of two parts. The first one is
generated by the approximation of the gradient of the smoothed function; while the second, involving
hk, is generated by the smoothing. Since the rate depends on 1/

∑k
i=0 αi, we would like to choose the

stepsize as large as possible. However, to get convergence, we need to make the approximation errors
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vanish sufficiently fast. To guarantee this, as we can observe from Theorem 1, we need to impose
some conditions on the stepsize αk and on the smoothing parameter hk (i.e. Assumption 2), that will
slow down the decay of the first term. In Corollary 1, we provide two choices of parameters: the first
one satisfies Assumption 2 and ensures convergence; the second one corresponds to constant stepsize
and smoothing parameter. For the first choice, we recover the rate of the subgradient method in terms
of k. In particular, for θ approaching 1/2, the convergence rate is arbitrarily close to O(k−1/2) and
is similar to the one derived in [17, Theorem 2]. The dependence on the dimension depends on the
choice of the constant α. The optimal dependence is obtained with the choice α =

√
ℓ/d. Indeed, in

that case, the complexity in the number of iterations is of the order O((d/ℓ)ε−2), which is better than
the one achieved by [17, Theorem 2] and [39]. Note that also [46, Corollary 1] and [22, Theorem
2.4] obtain a worse complexity in terms of the number of iterations (since they use a single direction),
but the same complexity in the number of function evaluations. Clearly, since multiple directions are
used, a single iteration of O-ZD will be more expensive than one iteration of [46, 22]. However, our
algorithm is more efficient if the ℓ function evaluations required at each iteration can be parallelized.
On the more theoretical side, we observe that the advantage of multiple orthogonal directions is in
the tighter bounds for the variance of the estimator, namely for E[∥g(Gk,hk)(xk)∥2] - see [46, Lemma
5] and Lemma 4.

3.2 Non-smooth Non-convex Setting

To analyze the non-convex setting, following [39], we provide a bound on the averaged expected
square norm of the gradient of the smoothed target. In particular, we use the following notation:

η
(h)
k :=

(
k∑

i=0

αi E[∥∇fh(xi)∥2]

)
/Ak, where Ak :=

k∑
i=0

αi.

Next, we state the main theorem for the non-convex non-smooth setting.

Theorem 2 (Non-smooth non-convex). Under Assumption 1, let (xk)k∈N be a sequence generated
by Algorithm 1 with, for every k ∈ N, hk = h for some h > 0. Then

η
(h)
k ≤ Sk/Ak with Sk := fh(x0)−min f + c

L3
0d
√
d

ℓ

k∑
i=0

α2
i

h
.

In the next corollary, we derive the rates for specific choices of the parameters.

Corollary 2. Under the assumptions of Theorem 2, the following statements hold.

(i) If αk = α(k + 1)−θ with α > 0 and θ ∈ (1/2, 1), then

η
(h)
k ≤ C

fh(x0)−min f

αk1−θ
+ o
( 1

k1−θ

)
,

where C is a constant independent of the dimension.

(ii) If αk = α with α > 0 for every k ∈ N, then

η
(h)
k ≤ fh(x0)−min f

αk
+

cL3
0d
√
d

ℓh
α,

where c is a constant independent of the dimension.

(iii) Let ε ∈ (0, 1), let K ≥ 4(fh(x0) − min f)cL3
0d
√
dε−2/(ℓh) and choose α =√

(fh(x0)−min f)ℓh

KcL3
0d

√
d

. Then we have that η(h)K ≤ ε. Thus, the number of function evalua-

tions required to get a precision ηhk ≤ ε is of the order O(d
√
dh−1ε−2).

Relying on the results in [34], we show that this is related to a precise notion of approximate
stationarity. To do so, we need to introduce a definition of subdifferential which is suitable to this
setting. As shown in [34] the Clarke subdifferential is not the right notion, and the approximate
Goldstein subdifferential should be used instead.
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Definition 1 (Goldstein subdifferential and stationary point). Under Assumption 1, let x ∈ Rd and
h > 0. The h-Goldstein subdifferential of f at x is ∂hf(x) := conv(∪y∈Bd

h(x)
∂f(y)) where ∂f is

the Clarke subdifferential [13] and Bd
h(x) is the ball centered in x with radius h. For ε ∈ (0, 1), a

point x ∈ Rd is a (h, ε)-Goldstein stationary point for the function f if min{∥g∥ | g ∈ ∂hf(x)} ≤ ε.
Corollary 3. Under the same assumptions of Theorem 2, fix K ∈ N and let I be a random variable
taking values in {0, . . . ,K − 1} such that, for all i, P[I = i] = αi/AK−1. Let also Sk be defined as
in Theorem 2. Then

EI

[
min{∥η∥2 : η ∈ ∂fh(xI)}

]
≤ SK/AK .

In the setting of Corollary 2 (iii), we have also that EI

[
min{∥η∥2 : η ∈ ∂fh(xI)}

]
≤ ε.

Discussion. In Theorem 2, we fix the smoothing of the target, i.e. we consider hk constant, and we
analyze the non-smooth non-convex setting providing a rate on the expected norm of the smoothed
gradient. The resulting bound is composed of two parts. The first part is very natural, and due to
the functional value at the initialization. The second part is the approximation error. Recall that
Assumption 1 holds, and therefore fh ≤ f + L0h due to Proposition 1. This suggests taking h
as small as possible in order to reduce the gap between fh and f . However, taking h too small
would make the approximation error very big. In our analysis, we consider the case with h constant.
Moreover, as for the convex case, the speed of the rate depends on Ak and so we would like to take
the stepsize as large as possible. But to control the approximation error, we need to assume α2

k ∈ ℓ1.
In Corollary 2, we consider two choices of stepsize. The first choice satisfies the property of α2

k ∈ ℓ1,
while the second one analyzes the case of constant step-size. Comparing our rate to the one in [39]
we see that we obtain a better dependence on the dimension in the complexity, both in terms of
iterations and function evaluations. Our results match the one of [34, Theorem 3.2] in terms of rate
and in terms of function evaluations. We get a better dependence on the dimension in the number of
iterations. Note again that, despite the complexity in terms of the number of function evaluations
being the same, the possibility of parallelization for the function evaluations yields a better result for
our method. As for the convex setting, we have a tighter upper-bound on the variance of the estimator
of the smoothed gradient with respect to the dimension - see [34, Lemma D.1]. Goldstein stationarity
has been used to assess the approximate stationarity for first-order methods as well, see [15]. The
latter work shows that a cutting plane algorithm achieves a rate of O(dε−3) for Lipschitz functions.

3.3 Smooth Convex setting

We consider now the smooth setting, i.e. we assume that the target function satisfies the following
hypothesis.
Assumption 3 (L1-Smooth). The function f is L1-smooth; i.e. the function f is differentiable and,
for some L1 > 0,

(∀x, y ∈ Rd) ∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥.

This is the standard assumption for analyzing first-order methods and has been used in many other
works in the literature for zeroth-order algorithms - see e.g. [39, 17]. As shown in previous works,
if f satisfies Assumption 3 then also fh satisfies it - see Proposition 1. We will consider also the
following assumptions on the stepsize and the smoothing in order to guarantee convergence.
Assumption 4 (Smooth zeroth-order convergence conditions). The stepsize sequence (αk)k∈N and
the smoothing sequence (hk)k∈N satisfy the following conditions:

αk ̸∈ ℓ1 and αkhk ∈ ℓ1.

Moreover, αk ≤ ᾱ < ℓ/dL1 for every k ∈ N.

Note that this is a weaker version of Assumption 2. Next, we state the main theorem for convex
smooth functions.
Theorem 3 (Smooth convex). Under Assumptions 3 and 4, let (xk)k∈N be a sequence generated by

Algorithm 1 and x∗ ∈ argmin f . For every k ∈ N, set Ak =
∑k

i=0 αi and x̄k =
k∑

i=0

αixi/Ak. Then,

for every k ∈ N,

E[f(x̄k)−min f ] ≤ Dk

Ak
with Dk :=

ℓ∆+ dᾱ

2ℓ∆

(
Sk +

k∑
i=0

ρi

(√
Si +

i∑
j=0

ρj

))
,
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where Sk := ∥x0 − x∗∥2 +
∑k

i=0
L2

1d
2

2ℓ α2
ih

2
i , ρk := L1dαkhk, and ∆ :=

(
1
L1

− d
ℓ ᾱ
)

.

Corollary 4. Under the same Assumptions of Theorem 3, the following hold.

(i) If for every k ∈ N we set αk = α > 0 and hk = h(k + 1)−θ for h > 0 and θ > 1, then

E[f(x̄k)−min f ] ≤ C

αk
,

where C is a constant provided in the proof. Moreover, if α < ℓ/(2dL1), lim
k→∞

f(xk) =

min f a.s. and there exists a random variable x̂ taking values in argmin f s.t. xk → x̂ a.s.

(ii) If for every k ∈ N we set αk = α > 0 and 0 < hk ≤ h, then

E[f(x̄k)−min f ] ≤ C1

k
+ C2αh+ C3α

2h2
√
k + C4α

2h2k,

where C1, C2, C3 and C4 are non-negative constants.

Discussion. As in the previous cases, the bound in Theorem 3 is composed by two terms: the error
due to the initialization and the one due to the approximation. An important difference with the
results in the non-smooth setting is that every term in the approximation error is decreasing with
respect to the smoothing parameter hk. This allows obtaining convergence also with the constant
step-size scheme, taking hk ∈ ℓ1. In Corollary 4 (i), we recover the result of [32, Theorem 5.4] with
a specific choice of parameters α, h (up to constants). The complexity depends on the choice of α.
Note that by Assumption 4, α < ℓ/(L1d) thus the dependence on the dimension in the rate will be
at least d/ℓ. In particular, taking α = ℓ/(2dL1), we obtain the optimal complexity of O(dε−1) in
terms of function evaluations. This result has a better dependence on the dimension than [39]. In
Corollary 4 (ii), the dependence on the dimension in the complexity depends on the choice of α
and h. Moreover, the rate obtained is equal (up to constants) to the rate obtained in [32] in the same
setting, i.e. O(1/k) (in which we hide the dependence on d and ℓ). As for [32], for the first setting
we can prove the almost sure convergence of the iterates.

3.4 Smooth Non-Convex setting

To analyze the smooth non-convex setting, we introduce the following notation:

(∀k ∈ Rd) Ak :=

k∑
i=0

αi, ηk :=

(
k∑

i=0

αi E[∥∇f(xi)∥2]

)
/Ak.

Note that, in comparison with the quantity defined in Section 3.2, here ηk is related to the exact
objective function f and not to its smoothed version fh. Next, we state the main result for smooth
non-convex functions.
Theorem 4 (Smooth non-convex). Suppose that Assumption 3 holds and assume that, for every
k ∈ N, αk ≤ ᾱ < ℓ/(2dL1). Let (xk)k∈N be a sequence generated by Algorithm 1. Then

ηk ≤ 1

∆Ak

(
f(x0)−min f +

L2
1d

2

8

k∑
i=0

αih
2
i +

L3
1d

2

4ℓ

k∑
i=0

α2
ih

2
i

)
, ∆ :=

(1
2
− L1d

ℓ
ᾱ
)
.

Corollary 5. Under the assumptions of Theorem 4, the following hold.

(i) If αk = α ≤ ᾱ and hk = hk−θ with h > 0 and θ > 1, then

ηk ≤
[
f(x0)−min f

∆α
+

C1d
2h2

∆
+

C2αh
2d2

∆ℓ

]
· 1
k
,

where C1 and C2 are constants provided in the proof.

(ii) If αk = α ≤ ᾱ and hk = h > 0, then

ηk ≤ f(x0)−min f

∆αk
+

C1d
2h2

∆
+

C2αh
2d2

∆ℓ
,

where C1 and C2 are constants provided in the proof.
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Discussion. As for the convex case, every term in the approximation error depends on the smoothing
parameter hk. In Corollary 5 (i), we take constant step-size and hk ∈ ℓ1. With this choice of
parameters, we get a rate of O(1/k) which matches with the result obtained by [39]. The dependence
on the dimension depends on the choice of α and h. Note that α < ℓ/(2dL1), thus taking h = O(1/d),
in the rate we get a dependence on the dimension of d/ℓ. Taking for instance α = ℓ/(3dL1) and
h = O(1/d), we get a complexity of O(dε−1) in terms of function evaluations.

4 Numerical Results

In this section, we provide some numerical experiments to assess the performances of our algorithm.
We consider two target functions: a convex smooth one and a convex non-smooth one. Details on
target functions and parameters of the algorithms are reported in Appendix C. To report our findings,
we run the experiments 10 times and provide the mean and standard deviation of the results.

How to choose the number of directions? In these experiments, we set a fixed budget of 4000
function evaluations and we consider d = 50. We investigate how the performance of Algorithm 1
changes as the value of ℓ increases. In Figure 1, we observe the mean sequence f(xk)− f(x∗) after
each function evaluation. If ℓ > 1, then the target function values are repeated 2ℓ times, since we
need to perform 2ℓ function evaluations to do one iteration. For a sufficiently large budget, increasing
the number of directions ℓ leads to better results compared to using a single direction in both smooth
and non-smooth settings.

0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations

101

102

103

f(x
k)

−
f(x

* )

Smooth Convex function

ℓ= 1
ℓ= 5
ℓ= 10
ℓ= 20
ℓ= 50

0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations

103

7 × 102

8 × 102

9 × 102

f(x
k)

−
f(x

* )

NonSmooth Convex function

Figure 1: From left to right, function values per function evaluation in optimizing smooth and
non-smooth target functions with different numbers of directions.

Comparison with finite-difference methods. Now, we compare Algorithm 1 with other finite-
difference methods. More precisely, we consider finite differences with single (and multiple) Gaussian
(and spherical) directions. The budget of function evaluations is 1000 and the ambient dimension is
d = 10. For multiple direction methods, we fix the number of directions ℓ = d. Further experiments
are provided in Appendix F.

0 200 400 600 800 1000
function evaluations

10−2

10−1

100

101

f(x
k)

−
f(x

* )

Smooth Convex Target

Single Gaussian
Single Spherical
Multi Gaussian
Multi Spherical
Ours

0 200 400 600 800 1000
function evaluations

100

101

f(x
k)

−
f(x

* )

NonSmooth Convex Target

Figure 2: From left to right, function values per function evaluation in optimizing smooth and
non-smooth convex functions with different finite-difference algorithms.
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In Figure 2, we plot the sequence f(xk)− f(x∗) with respect to the number of function evaluations.
While in terms of rates and complexity the different algorithms are the same, Algorithm 1 shows
better performances than random directions approaches, and we believe this is due to the use of
structured (i.e. orthogonal) directions. Indeed, orthogonal directions yield a better approximation
of first-order information with respect to other methods. The practical advantages of structured
directions were already observed in [32, 42, 5, 12] and these experiments confirm that the good
practical behavior holds even in the nonsmooth setting.

5 Conclusion

We introduced and analyzed O-ZD a zeroth-order algorithm for non-smooth zeroth-order optimization.
We analyzed the algorithm and derived rates for non-smooth and smooth functions. This work opens
different research directions. An interesting one would be the introduction of a learning procedure
for the orthogonal directions. Such an approach could have significant practical applications.
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A Auxiliary Results

In this appendix, we state and collect lemmas and propositions required to prove the main results.

Notation. In the following sections, we denote with Fk the filtration σ(G1, · · · , Gk−1). Moreover,
to simplify the notation, we define gk as the gradient surrogate in eq.(2) at time-step k i.e. gk :=
g(Gk,hk)(xk) and g(·) := g(G,h)(·) for an arbitrary G ∈ O(d) and h > 0. We denote the normalized
Haar measure [37] by µ. We define the unit ball Bd and the unit sphere Sd−1 as follow

Bd := {v ∈ Rd | ∥v∥ ≤ 1} and Sd−1 := {v ∈ Rd | ∥v∥ = 1}.

We denote by σ and σN the spherical measure and the normalized spherical measure on Sd−1,
respectively. Moreover, we denote with Id,ℓ ∈ Rd×ℓ the (truncated) identity matrix.

Lemma 2. Let β(Sd−1) be the surface area of Sd−1 and let I ∈ Rd×d be the identity matrix. Then,∫
Sd−1

vv⊺ dσ(v) =
β(Sd−1)

d
I.

Proof. This result is proved in [21, Lemma 7.3, point (b)].

Lemma 3. Let ϕ : Rd → R be a L-Lipschitz function . If u is uniformly distributed on Sd−1, then

(E[ϕ(u)− E[ϕ(u)]])2 ≤ c
L2

d
,

for some numerical constant c > 0.

Proof. The proof follows the same line as [46, Lemma 9].

A.1 Smoothing Lemma & Properties

In this appendix, we provide the proof of the Smoothing Lemma (i.e. Lemma 1).

Proof of Smoothing Lemma. By eq. (2),

EG[g(G,h)(x)] =
d

ℓ

ℓ∑
i=1

∫
O(d)

f(x+ hGei)− f(x− hGei)

2h
Gei dµ(G).

By [37, Theorem 3.7],

EG[g(G,h)(x)] =
d

2ℓh

ℓ∑
i=1

∫
Sd−1

(f(x+ hv(i))− f(x− hv(i)))v(i) dσN (v(i)).

Since v(i) is uniformly distributed on the sphere, which is symmetric with respect to the origin, we
have

EG[g(G,h)(x)] =
d

ℓh

ℓ∑
i=1

∫
Sd−1

f(x+ hv(i))v(i) dσN (v(i)).

As a consequence of Stokes’ Theorem (details in [18, Lemma 1] and [1, Theorem A8.8]), we get

E[g(G,h)(x)] =
1

ℓ

ℓ∑
i=1

∇fh(x) with fh(x) :=
1

vol(Bd)

∫
Bd

f(x+ hu) du.

Rearranging terms, we get the claim.
Proposition 1 (Smoothing properties). Let fh be the smooth approximation of f defined in eq. (4).
Then the following hold:
If f is convex then fh is convex and, for every x ∈ Rd,

f(x) ≤ fh(x).
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If f is L0-Lipschitz continuous - i.e. ∀x, y ∈ Rd, |f(x)−f(y)| ≤ L0∥x−y∥, then fh is L0-Lipschitz
continuous, differentiable and for every x, y ∈ Rd

∥∇fh(x)−∇fh(y)∥ ≤ L0

√
d

h
∥x− y∥ and fh(x) ≤ f(x) + L0h.

If f is L1-smooth - i.e. f is differentiable and ∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥ then fh
is L1-smooth and for every x ∈ Rd,

∥∇fh(x)−∇f(x)∥ ≤ hdL1

2
and fh(x) ≤ f(x) +

L1

2
h2.

Proof. These are standard results proposed and proved in different works - see for example [16,
Lemma 8],[21, Proposition 7.5],[34, Proposition 2.2],[49].

Lemma 4 (Approximation Error). Let g(·) be the surrogate defined in eq. (2) for arbitrary h > 0
and G ∈ O(d). Then the following hold:

(i) If f is L0-Lipschitz (see Assumption 1), then, for every x ∈ Rd,

EG[∥g(x)∥2] ≤ 2c
dL2

0

ℓ
,

where c is a numerical constant.

(ii) If f is L1-smooth (see Assumption 3), then, for every x ∈ Rd,

EG[∥g(x)∥2] ≤
2d

ℓ
∥∇f(x)∥2 + L2

1d
2

2ℓ
h2.

Proof. Note that, since directions are orthogonal, we have

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

EG[(f(x+ hGei)− f(x− hGei))
2∥Gei∥2].

By [37, Theorem 3.7],

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

Evi [(f(x+ hv(i))− f(x− hv(i)))2∥v(i)∥2], (5)

where each v(i) is uniformly distributed on Sd−1.
(i): Set γ = Ev(i) [f(x+ hv(i))] for every i (this expectation does not depend on i). Then

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− f(x− hv(i)) + γ − γ)2∥v(i)∥2]

=
d2

4ℓ2h2

ℓ∑
i=1

Ev(i) [((f(x+ hv(i))− γ)− (f(x− hv(i))− γ))2∥v(i)∥2]

≤ d2

2ℓ2h2

ℓ∑
i=1

Ev(i) [((f(x+ hv(i))− γ)2 + (f(x− hv(i))− γ)2)∥v(i)∥2]

=
d2

2ℓ2h2

ℓ∑
i=1

[
Ev(i) [(f(x+ hv(i))− γ)2∥v(i)∥2]

+ Ev(i) [(f(x− hv(i))− γ)2∥v(i)∥2]
]
.

Since v(i) is uniformly distributed on Sd−1, it satisfies ∥v(i)∥2 = 1 and by symmetry we have

EG[∥g(x)∥2] ≤
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− γ)2].
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The definition of γ yields

EG[∥g(x)∥2] ≤
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [((f(x+ hv(i))− γ)2]

=
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− Ev(i) [f(x+ hv(i))])2].

The claim follows by Lemma 3 and the fact that f(x+ hv(i)) is hL0-Lipschitz continuous w.r.t to
v(i).
(ii): Equation (5) yields

EG[∥g(x)∥2] =
d2

4ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− f(x− hv(i))− f(x) + f(x))2∥v(i)∥2]

≤ d2

2ℓ2h2

ℓ∑
i=1

[
Ev(i) [(f(x+ hv(i))− f(x))2∥v(i)∥2]

+ Ev(i) [(f(x− hv(i))− f(x))2∥v(i)∥2]
]

=
d2

ℓ2h2

ℓ∑
i=1

Ev(i) [(f(x+ hv(i))− f(x))2],

where the last equation follows by symmetry. Adding and subtracting
〈
∇f(x), hv(i)

〉
we derive

EG[∥g(x)∥2] ≤
d2

ℓ2h2

ℓ∑
i=1

Ev(i)

[(
f(x+ hv(i))− f(x)−

〈
∇f(x), hv(i)

〉
+
〈
∇f(x), hv(i)

〉)2]

≤ 2d2

ℓ2h2

ℓ∑
i=1

(
Ev(i)

[(
f(x+ hv(i))− f(x)−

〈
∇f(x), hv(i)

〉)2]

+ Ev(i)

[(〈
∇f(x), hv(i)

〉)2])
.

Denote by β(Sd−1) the surface area of Sd−1. The Descent Lemma [41] implies

EG[∥g(x)∥2] ≤
2d2

ℓ2h2

ℓ∑
i=1

[(L2
1

4
h4
)
+ E

[(〈
∇f(x), hv(i)

〉)2]]

=
L2
1d

2

2ℓ
h2 +

2d2

ℓ2h2

ℓ∑
i=1

E

[(〈
∇f(x), hv(i)

〉)2]

=
L2
1d

2

2ℓ
h2 +

2d2

ℓ2β(Sd−1)

ℓ∑
i=1

∫
Sd−1

∇f(x)⊺v(i)v(i)⊺∇f(x) dσ(v).

By Lemma 2, we get the claim. Indeed,

EG[∥g(x)∥2] ≤
L2
1d

2

2ℓ
h2 +

2d2

ℓ2β(Sd−1)

ℓ∑
i=1

(β(Sd−1)

d
∥∇f(x)∥2

)
=

2d

ℓ
∥∇f(x)∥2 + L2

1d
2

2ℓ
h2.

A.2 Auxiliary results and proofs for the nonsmooth setting, convex, and nonconvex.

In this subsection, for every k, we will denote by Fk the σ-algebra σ(G0, . . . , Gk−1).
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Lemma 5. Let f : Rd → R be a lower semi-continuous function and denote with S = argmin f
and f∗ = min f . Then,{

(A) ∀x∗ ∈ S, ∃ lim
k

∥xk − x∗∥
(B) lim inf

k
f(xk) = f∗ =⇒ ∃x∞ ∈ S s.t. xk → x∞.

Proof. Since (B) holds, we have that exists (xkj )j∈N subsequence of (xk)k∈N such that f(xkj ) → f∗.
Since S ̸= ∅ and (A) we have that

∃x∗ ∈ S and ∃ lim
k

∥xk − x∗∥.

Thus, the sequence (xk)k∈N is bounded and, therefore, also (xkj
)j∈N is bounded. Taking a convergent

subsequence (xkjn
)n∈N of (xkj )j∈N, we have that exists x∞ s.t.

xkjn
→ x∞.

Since f is assumed to be lower semi-continuous, we have that
f(x∞) ≤ lim inf

n
f(xkjn

) = f∗ = lim
j

f(xkj
).

Thus, we have that x∞ ∈ S which implies, by (A), that
∃ lim

k
∥xk − x∞∥ and lim

n
∥xkjn

− x∞∥ = 0.

Hence, since xkjn
is a subsequence of xk,

lim
k

∥xk − x∞∥ = 0,

and, therefore, xk → x∞ ∈ S.

Lemma 6 (Convergence: convex non-smooth). Assume that f is convex and L0 Lipschitz continuous.
Let (xk)k∈N be the sequence generated by Algorithm 1 and let x∗ ∈ argmin f . Then, for every
k ∈ N, the following inequality holds:

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 + 2αk(f(xk)− f(x∗)) ≤ 2c
L2
0d

ℓ
α2
k + 2L0αkhk,

where c is some non-negative constant independent from the dimension. Moreover, if the stepsizes
satisfy Assumption 2, we have

lim
k→+∞

f(xk) = f(x∗) a.s,

and there exists a random variable x̂ taking values in in argmin f such that xk → x̂ a.s.

Proof. Let k ∈ N. By Algorithm 1,
∥xk+1 − x∗∥2 − ∥xk − x∗∥2 = α2

k∥gk∥2 − 2αk ⟨gk, xk − x∗⟩ . (6)
Since fhk

is convex by Proposition 1 and E[gk|Fk] = ∇fhk
(xk) (see Lemma 1), we have

−⟨∇fhk
(xk), xk − x∗⟩ ≤ fhk

(x∗)− fhk
(xk).

Thus, taking the conditional expectation with respect to Fk, by Lemma 4, we get,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2c
L2
0d

ℓ
α2
k︸ ︷︷ ︸

=:Ck

−2αk(fhk
(xk)− fhk

(x∗)).

Then, by Proposition 1,
E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ Ck − 2αk(f(xk)− f(x∗)) + 2L0αkhk.

Next suppose that Assumption 2 holds. Rearranging the terms,
E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 + 2αk(f(xk)− f(x∗)) ≤ Ck + 2L0αkhk,

with Ck ∈ ℓ1 and αkhk ∈ ℓ1. Therefore, Robbins-Siegmund Theorem [43] implies that (∥xk −
x∗∥)k∈N is a.s. convergent, αk(f(xk)− f(x∗)) ∈ ℓ1 a.s. and thus, since αk ̸∈ ℓ1,

lim inf
k→∞

f(xk) = f(x∗) a.s. (7)

We derive from [32, Lemma 9.9] and Lemma 5 that there exists a random variable x̂ taking values in
argmin f such that xk → x̂ a.s. Finally, continuity of f yields that lim

k
f(xk) = f(x∗) a.s.
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In the next Lemma, to derive bounds on function values, we study the sequence (fhk
(xk+1) −

fhk
(xk))k∈N. It is the difference between the smoothed function at iteration k evaluated at xk and

at xk+1. It corresponds to the function value decrease between the iterations k + 1 and k if hk is
constant.
Lemma 7 (Function Value decrease: nonconvex non-smooth setting). Under Assumption 1, let
(xk)k∈N be the sequence generated by Algorithm 1. Then,

E[fhk
(xk+1)|Fk]− fhk

(xk) ≤ −αk∥∇fhk
(xk)∥2 + c

L3
0d
√
d

ℓ

α2
k

hk
,

where c is a numerical constant.

Proof. By Lemma 1, we have that fhk
is L0

√
d/hk-smooth. Thus, by the Descent Lemma [41],

fhk
(xk+1)− fhk

(xk) ≤ −αk ⟨∇fhk
(xk), gk⟩+

L0

√
d

2hk
α2
k∥gk∥2.

Taking the conditional expectation with respect to Fk,

E[fhk
(xk+1)|Fk]− fhk

(xk) ≤ −αk∥∇fhk
(xk)∥2 +

L0

√
d

2hk
α2
k E[∥gk∥2|Fk]. (8)

The claim follows from Lemma 4.

A.3 Auxiliary results for smooth setting.

Lemma 8 (Function value decrease: convex smooth setting). Under Assumption 3 , let (xk)k∈N be
the sequence generated by Algorithm 1. Then the following holds:

E[f(xk+1)|Fk]− f(xk) ≤ −αk

(1
2
− L1d

ℓ
αk

)
∥∇f(xk)∥2 +

L2
1d

2αkh
2
k

8
+

L3
1d

2

4ℓ
α2
kh

2
k.

Proof. By the Descent Lemma [41] and Algorithm 1,

f(xk+1)− f(xk) ≤ −αk ⟨∇f(xk), gk⟩+
L1

2
α2
k∥gk∥2.

Taking the conditional expectation and by Lemma 4,

E[f(xk+1)|Fk]− f(xk) ≤ −αk ⟨∇f(xk),∇fhk
(xk)⟩+

L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

Adding and subtracting ∇f(xk),

E[f(xk+1)|Fk]− f(xk) ≤ −αk ⟨∇f(xk),∇fhk
(xk)−∇f(xk)⟩ − αk∥∇f(xk)∥2

+
L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

By Cauchy-Schwarz inequality and Proposition 1,

E[f(xk+1)|Fk]− f(xk) ≤ αk

(L1d

2
hk

)
∥∇f(xk)∥ − αk∥∇f(xk)∥2

+
L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

By Young’s inequality,

E[f(xk+1)|Fk]− f(xk) ≤
L2
1d

2αkh
2
k

8
+

αk

2
∥∇f(xk)∥2 − αk∥∇f(xk)∥2

+
L1

2
α2
k

[2d
ℓ
∥∇f(xk)∥2 +

L2
1d

2

2ℓ
h2
k

]
.

= −αk

(1
2
− L1d

ℓ
αk

)
∥∇f(xk)∥2 +

L2
1d

2αkh
2
k

8
+

L3
1d

2

4ℓ
α2
kh

2
k.

This concludes the proof.
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Lemma 9 (Convergence in smooth setting). Let (xk)k∈N be the sequence generated by Algorithm 1
and let x∗ ∈ argmin

x∈Rd

f(x). Then, under Assumption 3, the following inequality holds

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+ L1dαkhk∥xk − x∗∥ − 2αk ⟨∇f(xk), xk − x∗⟩ .
Moreover, if f is convex, Assumption 4 holds and αk ≤ ᾱ < ℓ/(2dL1). Then

• (αk∥∇f(xk)∥2)k∈N ∈ ℓ1 a.s.

• (∥xk − x∗∥)k∈N is a.s. convergent.

• (αk(f(xk)− f(x∗)))k∈N ∈ ℓ1 a.s.

• there exists a random variable x̂ taking values in argmin f such that xk → x̂ a.s. and
lim
k→∞

f(xk) = min f .

Proof. We have

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 = α2
k∥gk∥2 − 2αk ⟨gk, xk − x∗⟩ .

Taking the conditional expectation,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 = α2
k E[∥gk∥2|Fk]− 2αk ⟨∇fhk

(xk), xk − x∗⟩ .
For every k, set uk = ∥xk − x∗∥. By Lemma 4,

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k − 2αk ⟨∇fhk

(xk), xk − x∗⟩ .

Note that

−2αk ⟨∇fhk
(xk), xk − x∗⟩ = 2αk ⟨∇fhk

(xk)−∇f(xk), x
∗ − xk⟩ − 2αk ⟨∇f(xk), xk − x∗⟩ .

Thus,

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+ 2αk ⟨∇fhk
(xk)−∇f(xk), x

∗ − xk⟩ − 2αk ⟨∇f(xk), xk − x∗⟩ .
By the Cauchy-Schwarz inequality,

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+ 2αk∥∇fhk
(xk)−∇f(xk)∥uk − 2αk ⟨∇f(xk), xk − x∗⟩ .

The first claim follows from Proposition 1. By Proposition 1 and Young’s inequality with parameter
τk = αkhk, we get

E[u2
k+1|Fk]− u2

k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+
L1d

2τk
α2
kh

2
k +

L1dτk
2

u2
k − 2αk ⟨∇f(xk), xk − x∗⟩ .

=
2d

ℓ
α2
k∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+
L1d

2
αkhk +

L1d

2
αkhku

2
k

− 2αk ⟨∇f(xk), xk − x∗⟩ .

(9)

Since f is convex, by Baillon-Haddad Theorem [3], we derive that

E[u2
k+1|Fk]− u2

k ≤ −2
( 1

L1
− d

ℓ
αk

)
αk∥∇f(xk)∥2 +

L2
1d

2

2ℓ
α2
kh

2
k

+
L1d

2
αkhk +

L1d

2
αkhku

2
k.
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By Assumption 4,

E[u2
k+1|Fk]− u2

k ≤ −2
( 1

L1
− d

ℓ
ᾱ
)

︸ ︷︷ ︸
=:∆

αk∥∇f(xk)∥2 +
L1d

2
αkhk︸ ︷︷ ︸

=:ρk

u2
k

+
L1d

2
αkhk +

L2
1d

2

2ℓ
α2
kh

2
k︸ ︷︷ ︸

=:Ck

.

Note that ∆ > 0. Thus, rearranging the terms

E[u2
k+1|Fk]− (1 + ρk)u

2
k + 2∆αk∥∇f(xk)∥2 ≤ Ck.

Since ρk, Ck ∈ ℓ1 by Assumption 4, Robbins-Siegmund Theorem [43] ensures that (u2
k)k∈N is

convergent and (αk∥∇f(xk)∥2)k∈N ∈ ℓ1 a.s. Since f is convex, it follows from (9) that

E[u2
k+1|Fk]− (1 + ρk)u

2
k ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 − 2αk(f(xk)− f(x∗)) + Ck.

Robbins-Siegmund Theorem [43] implies that (αk(f(xk) − f(x∗)))k∈N ∈ ℓ1 a.s. Assumption 4
implies that αk ̸∈ ℓ1 therefore

lim inf
k

f(xk)− f(x∗) = 0 a.s. (10)

By Lemma 8 and Assumption 4, we have that the sequence E[f(xk+1)−f(x∗)|Fk]−(f(xk)−f(x∗))
is upper-bounded by a sequence in ℓ1. Thus, by Robbins-Siegmund Theorem [43], limk(f(xk)−
f(x∗)) exists a.s. Then, it follows from (10) that

lim
k→∞

f(xk) = f(x∗) a.s.

Moreover, as we saw before, (∥xk − x∗∥)k∈N is convergent a.s. for every x∗ ∈ argmin f . Then, by
Opial’s Lemma [40], there exists a random variable x̂ taking values in argmin f such that xk → x̂
a.s.

Lemma 10 (Gradient bound: convex smooth setting). Suppose that Assumptions 3 and 4 hold, and
assume f to be convex. Let (xk)k∈N be the sequence generated by Algorithm 1. Then, for every
k ∈ N and every x∗ ∈ argmin f ,

k∑
i=0

αi E[∥∇f(xi)∥2] ≤
1

2∆

(
Sk +

k∑
i=0

ρi
√
E[∥xi − x∗∥2]

)
,

and √
E[∥xk − x∗∥2] ≤

√
Sk−1 +

k∑
i=0

ρi,

where

∆ :=
( 1

L1
− d

ℓ
ᾱ
)
, Sk := ∥x0 − x∗∥+

k∑
i=0

Ci

Ck :=
L2
1d

2

2ℓ
α2
kh

2
k and ρk := L1dαkhk.

Proof. By Lemma 9 we derive

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 + Ck

+ ρk∥xk − x∗∥ − 2αk ⟨∇f(xk), xk − x∗⟩ .

By Baillon-Haddad Theorem and Assumption 4,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ −2∆αk∥∇f(xk)∥2 + Ck + ρk∥xk − x∗∥.
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Let uk :=
√
E[∥xk − x∗∥2]. Taking the full expectation, by Jensen inequality we have

u2
k+1 − u2

k ≤ −2∆αk E[∥∇f(xk)∥2] + ρkuk + Ck.

Summing the previous inequality from i = 0, · · · , k, we get

u2
k+1 + 2∆

k∑
i=0

αi E[∥∇f(xi)∥2] ≤ u2
0 +

k∑
i=0

Ci︸ ︷︷ ︸
=:Sk

+

k∑
i=0

ρiui.
(11)

Since uk is non-negative, the first claim of the lemma follows. Since ∆ > 0, ρk ≥ 0, Sk is non
decreasing, and Sk ≥ u2

0 in (11), then

u2
k+1 ≤ Sk +

k∑
i=0

ρiui.

Thus, the (discrete) Bihari’s Lemma [32, Lemma 9.8] yields

uk+1 ≤ 1

2

k∑
i=0

ρi +
[
Sk +

(1
2

k∑
i=0

ρi

)2]1/2
≤
√

Sk +
k∑

i=0

ρi,

concluding the proof.

B Proofs of Main Results

B.1 Proof of Theorem 1

By Lemma 6,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 + 2αk(f(xk)− f(x∗)) ≤ 2c
L2
0d

ℓ
α2
k + 2L0αkhk.

Rearranging the terms, taking the full expectation, and summing the first k iterations

k∑
i=0

αi E[(f(xi)− f(x∗))] ≤ ∥x0 − x∗∥2

2
+ c

dL2
0

ℓ

k∑
i=0

α2
i + L0

k∑
i=0

αihi.

Let x̄k :=
k∑

i=0

αixi/(
k∑

i=0

αi). Dividing by
k∑

i=0

αi and observing that by convexity we have

E[f(x̄k)−min f ] ≤

k∑
i=0

αi E[(f(xi)− f(x∗))]

k∑
i=0

αi

,

we get the first claim. Under Assumption 2, the second claim holds by Lemma 6.

B.2 Proof of Corollary 1

By Theorem 1,

E[f(x̄k)−min f ] ≤ 1
k∑

i=0

αi

(
∥x0 − x∗∥2

2
+ c

dL2
0

ℓ

k∑
i=0

α2
i + L0

k∑
i=0

αihi

)
.

Replacing αk and hk with the sequences in the statement,

E[f(x̄k)− f(x∗)] ≤ C1

αk1−θ
+

C2

kρ
h+

d

ℓ

C3

kθ
α,
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with

C1 :=
(1− θ)∥x0 − x∗∥2

2
, C2 :=

L0(1− θ)

(1− θ − ρ)
and C3 :=

cL2
0(1− θ)

(1− 2θ)
.

The second point of the corollary can be proved replacing αk = α and hk = h. Now, to prove the
third point, fix ε ∈ (0, 1). Since we want E[f(x̄k)− f(x∗)] ≤ ε, we impose

∥x0 − x∗∥2

2αk
+

cdL2
0

ℓ
α+ L0h ≤ ε.

Choosing hk = h ≤ ε
2L0

, to get the previous inequality it is sufficient to impose

∥x0 − x∗∥2

2αk
+

cdL2
0

ℓ
α ≤ ε

2
.

We fix a priori a number of iterations K and we minimize the left handside with respect to α, obtaining

α =

√
ℓ

d

∥x0 − x∗∥√
2cKL0

.

Thus, for hk = h ≤ ε
2L0

, α as above and

K ≥ 8∥x0 − x∗∥2L2
0cd

ℓε2
,

we have E[f(x̄k)−f(x∗)] ≤ ε. Note that, since the computation of the surrogate requires 2ℓ function
evaluations, to ensure an error of ε we need to perform a number of function evaluations of the order

O(dε−2).

This concludes the proof.

B.3 Proof of Theorem 2

By Lemma 7,

E[fh(xk+1)|Fk]− fh(xk) ≤ −αk∥∇fh(xk)∥2 + c
L3
0d
√
d

ℓ

α2
k

h
.

Taking the full expectation and rearranging the terms,

αk E[∥∇fh(xk)∥2] ≤ E[fh(xk)− fh(xk+1)] + c
L3
0d
√
d

ℓ

α2
k

h
.

Next sum from i = 0 to i = k. By definition of fh, we have fh(x) ≥ min f for every x ∈ Rd, thus,

k∑
i=0

αi E[∥∇fh(xi)∥2] ≤ E[fh(x0)−min f ] + c
L3
0d
√
d

ℓ

k∑
i=0

α2
i

h
. (12)

The claim follows.

B.4 Proof of Corollaries 2 and 3

By Theorem 2,

η
(h)
k ≤

(
(fh(x0)− f(x∗)) + c

L3
0d
√
d

ℓ

k∑
i=0

α2
i

h

)
/
( k∑
i=0

αi

)
.

Due to the choice of αk = α(k + 1)−θ with θ ∈ (1/2, 1) and α > 0, we get

η
(h)
k ≤ C1

α(k + 1)1−θ
+

C2d
√
dα

ℓh

1

(k + 1)θ
,
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where

C1 := ∥x0 − x∗∥2(1− θ) and C2 :=
cL3

0(1− θ)

(1− 2θ)
.

If we choose αk = α, we derive

η
(h)
k ≤ fh(x0)−min f

αk
+

cL3
0d
√
dα

ℓh
. (13)

If we fix a priori a number of iteration K and we minimize the right handside with respect to α, we
get

α̂ =

√
(fh(x0)− f(x∗))ℓh

KcL3
0d
√
d

.

Let ε ∈ (0, 1). Choosing α = α̂, we get η(h)K ≤ ε for

K ≥ 4
(fh(x0)− f(x∗))cL3

0d
√
d

ℓh
ε−2. (14)

This concludes the proof of Corollary 2. To prove Corollary 3, we fix a maximum number of
iterations K ∈ N and consider the random variable I of the statement. Let ∂hf be the h-Goldstein
subdifferential defined in Definition 1. It follows from [34, Theorem 3.1] that ∇fh(xI) ∈ ∂hf(xI)
almost surely, therefore

EI min[∥η∥2 : η ∈ ∂hf(xI)] ≤ EI E[∥∇fh(xI)∥2].
In addition, Theorem 2 yields

EI EG[∥∇fh(xI)∥2] =

(K−1∑
j=0

αj EG[∥∇fh(xj)∥2]
)
/

K−1∑
j=0

αj

≤ E[fh(x0)−min f ] + c
L3
0d
√
d

ℓ

k∑
i=0

α2
i

h
.

Thus,
EI [∥η∥2 : η ∈ ∂hf(xI)] ≤ EI E[∥∇fh(xI)∥2] = η

(h)
k .

Hence, for α = ᾱ and K chosen s.t. inequality (14) holds, we have

EI [∥η∥2 : η ∈ ∂hf(xI)] ≤ ε.

This concludes the proof.

B.5 Proof of Theorem 3

By Lemma 9,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 + 2αk ⟨∇f(xk), x

∗ − xk⟩

+ L1dαkhk︸ ︷︷ ︸
=:ρk

∥x∗ − xk∥+
L2
1d

2

2ℓ
α2
kh

2
k︸ ︷︷ ︸

=:Ck

.

By convexity,

E[∥xk+1 − x∗∥2|Fk]− ∥xk − x∗∥2 ≤ 2d

ℓ
α2
k∥∇f(xk)∥2 − 2αk(f(xk)− f(x∗))

+ ρk∥x∗ − xk∥+ Ck.

Rearranging the terms and taking the full expectation,

2E[αk(f(xk)− f(x∗))] ≤ E[∥xk − x∗∥2 − ∥xk+1 − x∗∥2] + 2d

ℓ
α2
k E[∥∇f(xk)∥2]

+ ρk E[∥x∗ − xk∥] + Ck.
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Since E[∥x∗ − xk∥] = E[
√
∥x∗ − xk∥2], Jensen’s inequality implies that

2E[αk(f(xk)− f(x∗))] ≤ E[∥xk − x∗∥2 − ∥xk+1 − x∗∥2] + 2d

ℓ
α2
k E[∥∇f(xk)∥2]

+ ρk
√

E[∥x∗ − xk∥2] + Ck.

Denoting with uk = E[∥xk − x∗∥2] and taking the sum from i = 0 to i = k,

2

k∑
i=0

αi E[f(xi)− f(x∗)] ≤ u2
0 +

k∑
i=0

Ci︸ ︷︷ ︸
=:Sk

+
2d

ℓ

k∑
i=0

α2
i E[∥∇f(xi)∥2] +

k∑
i=0

ρiui

≤ Sk +
2d

ℓ
ᾱ

k∑
i=0

αi E[∥∇f(xi)∥2] +
k∑

i=0

ρiui,

where the last inequality holds by Assumption 4. Let ∆ := (1/L1 − (d/ℓ)ᾱ). By Lemma 10, we
have

k∑
i=0

αi E[f(xi)− f(x∗)] ≤ 1

2

(
Sk +

dᾱ

∆ℓ

[
Sk +

k∑
i=0

ρiui

]
+

k∑
i=0

ρiui

)
=

ℓ∆+ dᾱ

2ℓ∆

(
Sk +

k∑
i=0

ρiui

)
≤ ℓ∆+ dᾱ

2ℓ∆

(
Sk +

k∑
i=0

ρi(
√

Si +

i∑
j=0

ρj)
)
.

Let x̄k :=
k∑

i=0

αixi/(
k∑

i=0

αi). Dividing both sides by
k∑

i=0

αi, convexity yields

E[f(x̄k)−min f ] ≤

k∑
i=0

αi E[(f(xi)− f(x∗))]

k∑
i=0

αi

.

B.6 Proof of Corollary 4

In this proof, we use the same notation as the one in the proof of Theorem 3. By the choices of the
parameters, we have

k∑
i=0

ρi ≤ C1dαh with C1 :=
L1θ

θ − 1
,

Sk ≤ ∥x0 − x∗∥2 + C2
d2

ℓ
α2h2 with C2 :=

L2
1θ

2θ − 1
.

Thus, using these inequalities in Theorem 3, we get

Dk ≤ ℓ∆+ dᾱ

2ℓ∆

(
∥x0 − x∗∥2 + C2

d2α2h2

ℓ
+
√
∥x0 − x∗∥2C3dαh

+ C4
dαh√

ℓ
+ C5d

2α2h2
)
,

with

C3 :=
L2
1θ

θ − 1
, C4 :=

L2
1√
2
, C5 :=

L2
1θ

(θ − 1)2
.

Dividing by
k∑

i=0

αi, we get

E[f(x̄k)−min f ] ≤ C

αk
.
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Note that by Assumption 4, α < ℓ/(dL1), thus 1/α > (dL1)/ℓ. The algorithm performs 2ℓ function
evaluations at each iteration. Thus, to guarantee E[f(x̄k)−min f ] ≤ ε for ε ∈ (0, 1), the algorithm
has to perform a number of function evaluations in the order of

O(dε−1).

Assuming, instead, αk ≤ ᾱ < ℓ/(2dL1), by Lemma 9 we get the last claim; i.e, there exists a random
variable x̂ taking values in argmin f s.t. xk → x̂ a.s.

B.7 Proof of Theorem 4

Set C1 = (dL1)/2. It follows from Lemma 8 that

E[f(xk+1)|Fk]− f(xk) ≤ −
(1
2
− L1d

ℓ
ᾱ
)
αk∥∇f(xk)∥2 +

C2
1αkh

2
k

2
+

L3
1d

2

4ℓ
α2
kh

2
k.

Taking the full expectation and rearranging the terms, and recalling the definition of ∆,

∆αk E[∥∇f(xk)∥2] ≤ E[f(xk)− f(xk+1)] +
C2

1αkh
2
k

2
+

L3
1d

2

4ℓ
α2
kh

2
k.

Summing for i = 0, · · · , k and observing that min f ≤ f(x) for every x,

∆

k∑
i=0

αi E[∥∇f(xi)∥2] ≤ f(x0)−min f +
k∑

i=0

C2
1αih

2
i

2
+

L3
1d

2

4ℓ

k∑
i=0

α2
ih

2
i .

Divinding by ∆
k∑

i=0

αi we get the claim.

B.8 Proof of Corollary 5

(i): From the choice of αk and hk, we have
k∑

i=0

αih
2
i ≤ 2θαh2

2θ − 1

k∑
i=0

α2
ih

2
i ≤ 2θα2h2

2θ − 1
.

It follows from Theorem 4 that

ηk ≤ 1

∆αk

(
f(x0)−min f + C1d

2αh2 +
C2α

2h2d2

ℓ

)
,

with C1 =
L2

1θ
4(2θ−1) and C2 =

L3
1θ

2(2θ−1) .
(ii): It follows directly from Theorem 4 taking into account that

k∑
i=0

αih
2
i = kαh2,

k∑
i=0

α2
ih

2
i = kα2h2,

and setting C1 = L2
1/8 and C2 = L3

1/4.

C Experimental Details

In this appendix, we report details on the experiments performed. We implemented every script in
Python3 (version 3.9.11) and used numpy (version 1.22.2) [27] and matplotlib (version 3.5.1) [29]
libraries.

Machine used to perform the experiments. In the following table, we describe the features of the
machine used to perform the experiments in Section 4.

Table 1: Machine used to perform the experiments

Feature

OS Debian GNU/Linux 11
CPU(s) 4 x Intel(R) Core(TM) i7-1165G7 11th Gen @ 2.80GHz
CPU Core(s) 4
RAM 8 GB
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Target Functions. We considered two synthetic target functions: a convex smooth function f1 and
a convex non-smooth function f2 defined as follows

(Convex Smooth) f1(x) :=
1

2
∥Ax∥2 with A ∈ Rd×d

(Convex Non-smooth) f2(x) := ∥x− v̄∥1
where A is a random Gaussian matrix (i.e. Ai,j ∼ N (0, 1)) and v̄ := [0, 1, · · · , d− 1]⊺.

Choice of the number of directions. We report here the details of the first experiment of Section 4.
For these experiments, we consider d = 50 and we use, for the smooth convex case, the following
parameters

αk = 0.99
ℓ

dL1
and hk =

10−5

k + 1
.

The constant L1 is computed as the maximum eigenvalue of the matrix A⊺A. Note that this parameter
choice satisfies Assumption 4. For the non-smooth target, we used

αk =

√
ℓ

d
k−1/2−10−5

and hk =
10−7

k + 1
.

Note that this parameter configuration satisfies Assumption 2. The maximum number of function
evaluations considered is 4000. The direction matrices Gk are generated with the QR method - see
Appendix D.

Comparison with Finite-difference methods. In Section 4, we compare finite-difference method
with different choice of directions. In order to make a fair comparison we consider only central finite-
differences. However, note that Algorithm 1 can be modified (in practice) considering computationally
cheaper gradient estimators - see Remark 1. For these experiments, we consider d = 10 and ℓ = d
for methods with multiple directions. The maximum number of function evaluations is 1000 for both
smooth and non-smooth targets and the direction matrices Gk for Algorithm 1 are generated with the
QR method - see Appendix D. To solve the smooth problem we consider the following parameter
choice for every method

αk = c
ℓ

dL1
and hk =

10−7

d2(k + 1)
,

where L1 is computed taking the maximum eigenvalue of A⊺A. For Algorithm 1 and finite-difference
with single and multiple spherical directions c = 0.99 while it is equal to c = 0.11 for finite-difference
with single and multiple Gaussian directions. We made this choice since for finite-difference methods
with Gaussian directions we observed divergence for larger choices of c - see Figure 3.
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Figure 3: From left to right, comparison of finite-difference methods for smooth convex target with
c = 0.99 and c = 0.2 for methods with Gaussian directions.

For the non-smooth convex target, we considered the following parameter choice

αk = c
ℓ

d
k−1/2−10−5

and hk =
1

d2(k + 1)
.
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For every method, we selected c = 0.65 except for the method with multiple Gaussian directions in
which we selected c = 0.08 since it provided better performances - see Figure 4.
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Figure 4: From left to right and up to down, comparison of finite difference method with different
directions and different values of c for multiple Gaussian directions. The values of c considered are
the following [0.085, 0.089, 0.09, 0.1, 0.2, 0.3, 0.5, 0.65]

D Techniques to Generate Orthogonal Direction Matrices

In the literature, different algorithms were proposed to generate orthogonal matrices - see for instance
[23, 38, 11, 28, 7, 2, 4, 44, 8] and references therein. Such methods can be used to generate the
direction matrices Gk required for the iteration proposed in Algorithm (1). In this appendix, we
briefly discuss three of them.

QR factorization. As observed in [32, 42], a way to generate orthogonal consists in generating
a random Gaussian matrix A ∈ Rd×d with Ai,j ∼ N (0, 1) and perform the QR factorization i.e.
A = QR. Then, the direction matrix is the truncation of the Q matrix i.e. QId,ℓ.

Householder Reflection. To obtain a direction matrix, we can use a Householder reflector. This
can be done by sampling a vector v from the unit sphere Sd−1. The direction matrix G is defined as a
Householder reflector, given by

G := I − 2vv⊺,

with I ∈ Rd×d identity matrix. To obtain the desired matrix, we compute the product of G with Id,ℓ,
i.e., we take the first ℓ columns. The (truncated) identity matrix can be generated and stored offline
(note that since it is very sparse, it can be stored using a sparse format (e.g. the COO format proposed
in scikit-learn library[9]). In this way, we can save resources in high-dimensional settings. In order to
quantify the time-cost of this procedure, we compared the time of generating this kind of matrix with
random matrices with different dimensions. For this experiment, we consider the ℓ = d case i.e. the
most expensive. Matrices are computed in CPU and the details of the machine used are described in
Appendix C. We report the mean and standard deviation of the time using 500 repetitions. In Figure
5, we compare the time-cost of generating orthogonal matrices with this procedure against generating
random matrices while in Table 2 we report the mean and standard deviation of the results.
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Figure 5: Time comparison in CPU of different methods to generate direction matrices.

In Figure 5, we can observe that using this strategy we can limit the cost of generating random
orthogonal matrices. In particular, for dimensions larger than 32, our method is faster than random
gaussian and spherical directions.

Table 2: Comparison of the time-cost (seconds) of generating random and orthogonal matrices with
different dimensions

d Random Gaussian Random Spherical Householder

2 9.27× 10−7 ± 7.96× 10−7 5.49× 10−6 ± 2.05× 10−6 9.32× 10−6 ± 3.34× 10−6

4 1.30× 10−6 ± 7.21× 10−7 6.56× 10−6 ± 2.63× 10−6 1.12× 10−5 ± 5.79× 10−6

8 2.18× 10−6 ± 6.06× 10−7 8.01× 10−6 ± 5.32× 10−6 1.11× 10−5 ± 5.20× 10−6

8 2.18× 10−6 ± 6.06× 10−7 8.01× 10−6 ± 5.32× 10−6 1.11× 10−5 ± 5.20× 10−6

16 5.69× 10−6 ± 1.61× 10−6 1.15× 10−5 ± 4.10× 10−6 1.18× 10−5 ± 7.20× 10−6

32 1.78× 10−5 ± 6.42× 10−6 2.49× 10−5 ± 1.33× 10−5 1.16× 10−5 ± 7.25× 10−6

64 6.58× 10−5 ± 7.03× 10−6 7.74× 10−5 ± 1.95× 10−5 1.62× 10−5 ± 3.79× 10−6

128 2.73× 10−4 ± 2.37× 10−5 2.98× 10−4 ± 2.45× 10−5 3.32× 10−5 ± 4.02× 10−6

256 1.26× 10−3 ± 2.79× 10−5 1.36× 10−3 ± 2.90× 10−5 1.20× 10−4 ± 1.04× 10−4

512 5.50× 10−3 ± 1.63× 10−4 5.91× 10−3 ± 1.22× 10−4 1.22× 10−3 ± 3.82× 10−4

1024 2.16× 10−2 ± 6.92× 10−4 2.41× 10−2 ± 7.35× 10−4 4.83× 10−3 ± 2.26× 10−3

2048 8.92× 10−2 ± 8.19× 10−2 1.04× 10−1 ± 1.03× 10−1 2.40× 10−2 ± 3.87× 10−2

Moreover, if more computational resources are available, we can build m > 1 Householder reflectors
G1, · · · , Gm using m random vectors v1, · · · , vm sampled i.i.d from Sd−1 and define the direction
matrix as

G1G2 · · ·GmId,ℓ.

It is important to note that when m = d, this procedure is equivalent to using the QR factorization.

Haar Butterfly matrices. We can build orthogonal matrices using Butterfly matrices [48]. Let
G(0) := [1], we can build an orthogonal matrix of dimension d = 2n with the following recursion

G(n) =

[
cos(θn)G

(n−1) sin(θn)G
(n−1)

− sin(θn)G
(n−1) cos(θn)G

(n−1)

]
where θn is sampled uniformly in [0, 2π]. Then we compute GId,ℓ (we take the first ℓ columns).
The construction of Haar butterfly matrices is faster than previous methods because it only requires
simple operations. However, this procedure allows to build only matrices with d = 2n for n ≥ 0. In
literature, different methods were proposed to cope with this limitation e.g. [23].
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E Limitations

In this appendix, we discuss the main practical limitations of Algorithm 1. Like all finite-difference
methods with multiple directions, O-ZD requires multiple function evaluations to execute a single
step. In many practical applications, function evaluations can be time-consuming, leading to the use
of a small number of directions ℓ. This may result in poor performance as observed in numerical
experiments. As for the subgradient method, in O-ZD the step size significantly affects performance,
and tuning it can be challenging. To address this limitation, an adaptive stepsize selection method
could be proposed. Furthermore, decreasing the sequence hk too quickly can lead to numerical
instability, as noted in [42].

F Other Experiments

We performed other experiments in minimizing convex functions. We considered the targets defined
in Table 3 and, for each experiment, we reported the mean and standard deviation using 20 repetitions.
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Figure 6: Function values per function evaluation in optimizing functions with different algorithms.

In Figure 6, we can observe that structured finite-difference performs better than unstructured
methods.

Table 3: Functions used and relative dimension and number of directions considered.

Name Definition d ℓ

Sparse Group Lasso f(x) :=
p∑

i=1

∥x(βi)∥ 50 25

Huber Loss f(x) :=

{
0.5∥x∥22 ∥x∥2 ≤ δ

δ∥x∥2 − 0.5δ2 otherwise for δ > 0 50 25

Elastic Net f(x) := α∥x∥1 + 0.5β∥x∥22 50 25
L1 f(x) := ∥x∥1 50 25
Infinity Norm f(x) := ∥x∥∞ 50 20
Total Variation f(x) := ∥x∥TV 50 25

In Table 3, we define the function used for the experiments. In particular:
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• Sparse Group Lasso: p is set to 3 and given an x ∈ Rd, x(βi) is a vector obtained by taking
3 entries of x.

• Huber Loss: δ is set to 0.5.
• Elastic Net: α, β are set to 0.5.
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