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Abstract

This paper presents Decorate3D, a versatile and user-friendly method for the cre-
ation and editing of 3D objects using images. Decorate3D models a real-world
object of interest by neural radiance field (NeRF) and decomposes the NeRF rep-
resentation into an explicit mesh representation, a view-dependent texture, and
a diffuse UV texture. Subsequently, users can either manually edit the UV or
provide a prompt for the automatic generation of a new 3D-consistent texture. To
achieve high-quality 3D texture generation, we propose a structure-aware score
distillation sampling method to optimize a neural UV texture based on user-defined
text and empower an image diffusion model with 3D-consistent generation ca-
pability. Furthermore, we introduce a few-view resampling training method and
utilize a super-resolution model to obtain refined high-resolution UV textures
(2048×2048) for 3D texturing. Extensive experiments collectively validate the
superior performance of Decorate3D in retexturing real-world 3D objects. Project
page: https://decorate3d.github.io/Decorate3D/.

1 Introduction

The recent development of effective neural 3D reconstruction techniques such as neural radiance field
(NeRF) [12] has facilitated the creation of realistic digital replicas for real-world 3D scenes. While
significant progress has been made in realistic 3D reconstruction, one remaining challenge is how
to allow users to edit or retexture the acquired 3D objects or assets in the digital scene. To address
this issue, this paper introduces Decorate 3D, a user-friendly approach to editing 3D objects through
either easy-to-use manual editing or text prompt guided texture generation, as showcased in Fig. 1.

Since the implicit representations of the NeRF model are tightly coupled, it is not trivial to achieve
the aforementioned operations for the 3D scene’s decoration. To facilitate the modifiability of the 3D
representations, we bake the NeRF model into a triangle mesh representation with a view-dependent
texture in UV space, which is called a Decomposition phase in this paper. The decoupled geometry
and UV texture representation make the subsequent Decoration phase more manageable. In the
decoration phase, Decorate3D allows flexible texture editing and controllable generation of UV
textures with the instruction of prompts.

The success of the decoration phase demands a solution to the text-to-3D synthesis problem, which
has been so far restricted by the lack of paired text and 3D assets. Recent advancements in text-
to-image models [23, 19, 15] greatly facilitate text-driven 3D editing or generation [32, 1, 16, 11].
Researchers have proposed approaches using pre-trained text-to-2D diffusion models to optimize
NeRF in the zero-shot setting via the Score Distillation Sampling (SDS) [16] strategy. Although
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impressive results have been achieved, the naive SDS optimization based on 2D diffusion models
lacks 3D awareness, resulting in inharmonious textures that misalign with the geometry.

To address the above issues, during the decoration phase of Decorate3D , we carry out a direct update
of the global UV texture map via a structure-aware SDS optimization. We employ a pre-trained
depth-guided text-to-image latent diffusion model [29, 23] and incorporate the initial decoupled UV
texture from the decomposition phase as an additional form of structural guidance. We empirically
find that rendering with the straightforwardly optimized UV texture from SDS tends to be noisy
with color distortions. The reason is that the optimized UV texture stands for neural features in
effect, which produce rendered neural images that necessitate a neural interpreter. We incorporate the
idea of deferred neural rendering [31] and synthesize images of different views by forwarding the
rendered neural images to the encoder-decoder of the latent diffusion model. However, the decoder’s
view-by-view synthesis causes jittering effects. To address this issue, a few-view resampling training
strategy is proposed to optimize a global UV texture from sparsely sampled view directions. Finally,
to further enhance the visual quality, we use a super-resolution diffusion model to improve the
resolution, which is directly applied to the UV space.

Our key contributions can be summarized as follows. First, we propose a system pipeline to allow
convenient 3D-consistent decoration of 3D objects captured in the wild; Second, with our structure-
aware 3D texture generation, few-view resampling training, and super-resolution enhancement, we
are able to synthesize high-quality textures aligned well with the geometry; Finally, we demonstrate
the effectiveness of Decorate3D on real-world datasets and have achieved superior performance over
state-of-the-art approaches.

"Fairy house with a garden" 3D consistent image editing3D consistent image editing

NeRF

Figure 1: Given captured images of an object, Decorate3D supports text-driven high-quality texture generation
and user-friendly texture editing. Please zoom in for better visualization.

2 Related Work

Text-to-Image Diffusion Models The past two years have witnessed the success of multiple large
diffusion models [20, 5, 23, 19, 15] that are able to generate impressive images with photo-realistic
details conditioned on an input text prompt. The widely popular stable diffusion [23], was trained
on rich paired text-image data and is conditioned on CLIP’s [17] frozen text encoder. Beyond
text-conditioning, ControlNet [36] extended the stable diffusion by training a parallel hyper-network
that allows controllable generation with additional input modalities such as depth maps or edges.

Text-to-3D Generation Methods The development of 2D image generation also greatly facilitates
the techniques of text-to-3D generation. CLIP-Mesh [7] proposed a text-driven 3D content generation
method using a pre-trained CLIP model. DreamFusion [16] first proposed a score distillation sampling
(SDS) method to achieve text-driven optimization for NeRF, relying on a text-to-image diffusion
model. Magic3D [9] improved DreamFusion’s resolution using a coarse-to-fine optimization strategy.
Latent-Paint [11] proposed to bring the NeRF to the latent space and apply the SDS to optimize a
latent code for 3D scene generation. More recently, Fantasia3d [3] used a hybrid scene representation
of DMTET for SDS optimization, and 3DFuse [27] improved the 3D consistency by incorporating a
coarse 3D prior into fine-tuning the diffusion model. Shape-E [6] trained a conditional 3D diffusion
model using paired 3D and text data. Concurrent works, TEXTure [22] as well as Text2Tex [2],
introduced optimization-free iterative update schemes to paint 3D models from different viewpoints
using depth-to-image diffusion models. Although these optimization-free methods may generate
plausible results for simple geometries, they usually fail on complex surfaces, resulting in artifacts on
the seamed areas. Decorate3D distinguishes itself from previous methods by providing 3D-consistent
and high-quality structure-aware texture generation for diverse objects.
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Figure 2: Overview of Decorate3D : In the decomposition phase, we utilize NeuS [33] to extract a 3D mesh,
and optimize two MLPs (i.e. MLPD and MLPS ) to model view-dependent textures. In the decoration phase,
we initialize the UV neural texture ψ using MLPD , and optimize the neural texture ψ via the depth-guided
diffusion model with the score distillation sampling loss. The neural texture is rendered into sampled views
and forwarded to the Neural Renderer to synthesize color images. Afterward, we optimize a MLP through the
few-view resampling training method to obtain a UV texture ψ̃ in RGB space. Finally, we enhance the visual
quality of ψ̃ with a super-resolution diffusion model.

3 Approach

Decorate3D is a two-phase framework to enable 3D-consistent editing of real-world objects. The
overall framework of Decorate3D is illustrated in Fig. 2. It consists of a decomposition phase and
a decoration phase. Next, we will introduce the decomposition phase in Sec 3.1 followed by the
decoration phase. The decoration phase is divided into three parts, including text-driven UV neural
texture optimization (Sec 3.2), few-view resampling training (Sec 3.3), and super-resolution on UV
texture (Sec 3.4).

3.1 Decomposition Phase

Given the captured multi-view images of an object and their respective camera poses obtained by
COLMAP [26], we can easily train a NeRF model for novel view synthesis. However, NeRF editing
poses challenges due to its tightly coupled representations. To address these challenges and facilitate
convenient 3D editing, as well as seamless integration into downstream applications, we propose
a solution: decomposing the NeRF representations into a 3D mesh and a view-dependent texture.
Specifically, we employ NeuS [33] to reconstruct a triangle mesh M of the object and calculate
the UV atlas associated with the mesh using XAtlas [35]. To represent the real-world texture, we
decompose the texture into a diffuse texture modeled by an MLPD and a view-dependent specular
texture modeled by an MLPS conditioned on a given view direction.

Denoting the differentiable mesh rendering by R, we formulate the view rendering process as follows:

cd, fs = sigmoid(MLPD(v)), (1)
cs = MLPS(fs,d), (2)
c = R(cd + cs,M), (3)
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where v refers to 2D UV coordinates after applying positional encoding, and fs are the intermediate
features to synthesize the specular color. The features fs are forwarded to the view-dependent network
MLPS to generate view-dependent effects, conditioned on the view direction d. The final rendered
image c is obtained by summing up the diffuse color cd and the specular color cs.

To train the texture networks, we first adopt a typical reconstruction loss Lcolor to minimize the
difference between the rendered image ĉ(x) and its corresponding captured ground truth image c(x)
at each pixel x. The loss function is formulated as follows:

Lcolor =
∑
x

∥ĉ(x)− c(x)∥2 (4)

In addition, we apply an L1 regularization to enforce sparsity on the specular color:

Lspecular =
∑
i

|cs(xi)| (5)

The training of MLPD and MLPS can be achieved with a single-stage framework, as illustrated in the
upper part of Fig. 2. More specifically, MLPD and MLPS are jointly optimized, where the gradient
from the specular branch will only be used to update MLPS , and not be propagated to MLPD. The
MLPS is a by-product for decomposing the diffuse and specular textures, not used for the decoration
phase. We follow instant-ngp [14] to accelerate the optimization to achieve convergence within 3
minutes on a single NVIDIA V100 GPU. More details can be found in the supplementary.

3.2 Text-Driven Neural Texture Optimization

The text-driven texture generation is the core element of the decoration phase of Decorate3D .
However, diversified 3D generation is often infeasible due to a lack of enough data pairs of text and
3D models. In this context, we utilize the SDS technique for the optimization of the neural texture.

Preliminary. Let us first introduce the SDS proposed by DreamFusion [16], which achieves text-
to-3D generation based on a pre-trained text-to-image diffusion-based generative model [24]. They
utilize a NeRF representation to model the 3D scene. It is a parametric function x = Γ(ξ), which
can synthesize an image x at the desired camera pose. Here, Γ is a volumetric renderer, and ξ is an
MLP representing a NeRF scene. The diffusion model ϕ contains a denoising function ϵϕ(xt;y, t)
that predicts the sampled noise given the noisy image xt at timestep t, and text embedding y. The
difference between the noisy image and the denoised image provides the gradient to update ξ such
that the density regions with high probability are enforced to match the given text embedding. This
gradient update method is named SDS, which is formulated as follows:

∇ξLsds(ξ) = Et,ϵ
[
w(t)(ϵϕ(xt;y, t)− ϵ)

∂xt
∂ξ

]
, (6)

where the noise ϵ ∼ N (0, I) and w(t) is a weighting function. The neural rendering pipeline Γ(ξ)
and the diffusion model ϕ as modular components of the framework, are amenable to selection. This
offers a practical way for text-to-3D synthesis.

Neural Texture for 3D-Consistent Rendering. As compared with previous works [16, 11, 9]
on optimizing a NeRF model, we directly optimize a neural texture over the UV space. Direct
texture optimization is crucial to enforce 3D consistency and preserve texture details. In detail,
first we exploit the pre-trained latent diffusion model as the optimization guidance, where it has an
encoder Ve, a latent diffusion model’s denoiser ϵϕ, and a decoder Vd. In Decorate3D , the neural
texture ψ ∈ RH×W×3 is set to 3 feature channels to fit the requirement of the diffusion model.
The gradient calculated via SDS is backpropagated through the diffusion model’s encoder to the
UV neural texture at a high resolution of 512 × 512. Albeit yielding high-resolution images, the
optimization computation is reasonable since the optimization exerts an effect on the latent code
zψt = Ve(R(ψ,M,P)) with a resolution of 64× 64, where Ve is the diffusion model’s encoder and
P is the sampled camera pose. All network parameters are fixed, while only the neural texture ψ is
trainable.

Here, we call the optimized texture UV Neural Texture by following the deferred neural rendering
[31]. The optimized texture does not act on RGB space, and they are neural features that need a
Neural Renderer to interpret, which will be introduced shortly.
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Structure-Aware SDS Optimization. Apart from addressing the 3D-consistency issues, we also
want to maintain the coherence between 3D geometry and the generated texture. For example, for a
3D human model, the generated facial texture should be attached to the 3D region corresponding
to the face. This structure-aware requirement is overlooked by the naive SDS optimization leading
to a multi-face Janus problem. To moderate this issue, Decorate3D utilizes structure-aware SDS
optimization by exploiting a depth-guided latent diffusion model [29, 23].

In detail, at each denoising step t, we compute the image latent code zψt produced by the encoder Ve
and the depth latent code zψd

t downsampled from the estimated depth map. They are concatenated
as zt and forwarded to the latent diffusion module (Eq. 8). Then, following the SDS technique, the
gradient of neural texture is computed as follows (Eq. 9):

zt = [zψt , z
ψd
t ], (7)

ϵ̃ϕ(zt;y, t) = ϵϕ(zt; t) + λ[ϵϕ(zt;y, t)− ϵϕ(zt; t)], (8)

∇ψLsds(ϕ, ψ) = Et,ϵ
[
w(t)(ϵ̃ϕ(zt;y, t)− ϵ)

∂zt
∂Ve

∂Ve
∂ψ

]
, (9)

where ϵϕ is the diffusion model’s denoiser, y is the text embedding from the Transformer, and w(t)
is a weighting function. Decorate3D uses the classifier-free guidance scheme [15] as stated in Eq. 8,
and the guidance weight λ for text conditioning is set to 100. To match the depth-guided diffusion
model, depth maps are predicted from the rendered views by using the depth estimator [21] of the
depth-guided diffusion model rather than the depth buffer of the rendering pipeline. The overall SDS
optimization framework is shown at the left bottom of Fig. 2.

In addition to structure-aware SDS optimization, Decorate3D adopts structure-aware initialization.
Thanks to the decomposition phase, Decorate3D has an inherent texture that well matches the
geometry information extracted from the real-world object. Therefore, Decorate3D can initialize the
nerual texture ψ with the output of MLPD. This initialization plays a vital role in the optimization
process, which can accelerate the convergence as well as provide structure-aware information to
help it converge to a structure-aware solution. We verify the effectiveness of the structure-aware
techniques in Sec 4.4.

Decorate3D’s Neural Renderer. As aforementioned, directly optimizing the UV texture with
SDS does not yield a traditional RGB UV texture for the rendering pipeline. Fig. 3 shows an
example of SDS optimization for text-to-image generation. The optimized texture, i.e. neural
texture, requires a neural interpreter to convert it back to RGB space after the SDS optimization.

w/o Interpreter w/ Interpreter

Figure 3: The text prompt is “An apple
tree”. The left shows the image from
the direct SDS optimization on a 2D
image. The right shows the image after
applying interpreter.

Previous work [11] applies a statistical linear transformation
matrix to the optimized UV texture to interpret it in the RGB
UV space. However this transformation matrix is suboptimal,
and the misalignment will result in color shifts and artifacts.

In Decorate3D , we introduce a neural renderer as the neural
interpreter to synthesize photo-realistic images from the opti-
mized neural texture. This rendering process is formulated as
follows:

IP = V (R(ψ,M,P)), (10)

where ψ is the neural texture, V denotes the network of the
neural renderer, and IP is the rendered image given the camera
pose P . Here, Decorate3D ’s neural renderer network V is the encoder-decoder (i.e. VAE) module of
the depth-guided latent diffusion model [23, 29]. The network V and the traditional renderer R have
amalgamated to form the neural renderer.

3.3 Few-View Resampling Training

With the neural texture, Decorate3D can render 3D-consistent high-quality views IP through the
Neural Renderer with Eq. 10 by sampling different camera poses. But there still exists a practical
issue, i.e. jittering artifacts, that arises when rendering across different views. This is caused by the
view-dependent neural renderer V . We empirically find that directly feeding the global UV neural
texture ψ to the diffusion model’s VAE (i.e. R(V (ψ),M,P) by swapping the network and renderer
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in Eq. 10) can produce the RGB UV texture for the traditional rendering pipeline. But this naive
approach usually yields blurry texturing results, as demonstrated in Sec 4.4.

To solve the jittering problem, we devise a few-view resampling (FVR) training method, that transfers
the synthesized view-dependent images into a global UV texture ψ̃. As shown in the right bottom of
Fig. 2, we use a MLPψ̃ to represent the UV texture ψ̃. In the FVR training, we sample N rendered
views using the neural renderer with the neural texture ψ. The sampled N views should overlay
the mesh surface as much as possible. But setting a big N may have negative effects, leading to
over-smoothing textures on the overlapped areas that suffer jittering artifacts. The FVR training loss
is defined as follows:

LFV R(ψ̃) =
1

N

N∑
i

∥∥∥R(MLPψ̃(ṽ),M,Pi)− V (R(ψ,M,Pi))
∥∥∥2, (11)

where ṽ denotes the positional encoding of the 2D UV coordinates of the RGB UV texture ψ̃, and
Pi denotes the i-th sampled camera pose. The pose is sampled in spherical coordinates, with two
elevation angles θcam chosen from {−20◦,+20◦}, four azimuth angles βcam uniformly sampled
between [0◦, 360◦], and an appropriate viewing distance rcam. In our experiments, N is set to 8.

3.4 Super-Resolution on UV Texture

From the SDS approach, we can only synthesize images at a resolution of 512 × 512. To further
improve the spatial resolution of the UV texture ψ̃, Decorate3D applies a super-resolution (SR)
diffusion model with a ×4 scale factor [25, 30] on the UV texture to obtain a 2048×2048 UV texture.
The rationale behind this successful application of UV texture upscaling is that the upsampling
operation has a spatial locality, concentrating on local textures such as edges. For this reason, SR
models are usually trained on cropped image patches [28, 4, 10] instead of the whole image to
increase the training efficiency. This spatial locality of SR allows the SR model trained on natural
images to be directly applied to the UV texture. Directly applying the SR operation to the UV texture
is free from any jittering issues, and 3D consistency is well preserved.

4 Experiments

We compare Decorate3D to the state-of-the-art (SOTA) techniques for text-to-3D texture generation
and evaluate its performance from both qualitative and quantitative perspectives. The 3D assets and
extended videos are presented in the supplementary material.

4.1 Implementation Details

To evaluate our approach, we collect real-world datasets from 14 different objects that vary in
complexity, including boxes, monitors, shoes, statues, dolls, humans, and lighthouses. Ten objects
are captured in the wild using a smartphone, and four objects are selected from some public real-
world datasets [34, 8]. The size of each dataset ranges from 70-300 images, and the images are
downsampled to a resolution width of 640. We use the Adam optimizer to optimize the MLPD,
MLPS and MLPψ̃ with a learning rate of 1× 10−3, and the ψ with a learning rate of 1× 10−2. The
neural texture optimization in the decoration phase takes about 2 hours for 100K iterations, and the
FVR training takes about 5 minutes for 30K iterations, which are measured on 8 NVIDIA V100
GPUs. Please refer to the supplementary material for more details.

4.2 Qualitative Evaluation and Comparison

3D-Consistent Text-Driven Texture Generation. In Fig. 4, we show the textured mesh and its
corresponding real-world image. It can be observed that Decorate3D is able to produce high-quality
textured mesh. As the mesh geometry is fixed, we find only texture-related keywords such as nouns
or adjectives will affect the generated results, highlighted with a purple color in the prompt. For
instance, in the prompt “An astronaut stands up in the milky way”, “astronaut” and “milky way”
dominate the generation, but the verb “stands up” and the quantifier “an” do not affect the results.
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A white horse statue, with red hairsAn astronaut stands up in
the milky way

A lotion case, painted with Starry Night

A man wears a cosplay suit of an
armored medieval Japanese samurai

A detergent case, printed with a
movie poster of Star Wars

A doll model of the movie of
Zootopia, wearing a spiderman suit

stands up in

Figure 4: Text-driven texture generation results of Decorate3D.

Ironman, with hands
clasped behind back,

standing up on the grass

An ancient
Chinese-style house

A man wears a set
of  medieval

knight armor

Woman martin
shoes, with a

wizard style, put
on a treasure box

Original CLIP-Mesh DreamFusion Latent-Paint TEXTure Decorate3D (Ours)

Figure 5: Qualitative comparison with other text-driven texture generation methods, including CLIP-Mesh [7],
Latent-Paint [11] and TEXTure [22]. Results from DreamFusion [16] are also shown here. Please zoom in for
better visualization.
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Fig. 5 shows the qualitative comparison with SOTA text-driven texture generation methods, including
CLIP-Mesh [7], Latent-Paint [11] and TEXTure [22]. They all took the reconstructed 3D mesh as
input, and the geometry was fixed during texture generation. We can observe that the generated
textures from CLIP-Mesh and Latent-Paint lack texture details. The concurrent work TEXTure has
some competitive results compared to Decorate3D , such as the results for shoes, because they use
a depth-guidance strategy similar to ours. But TEXTure produces weird artifacts on the complex
surfaces. For example, in the case of humans, the generated textures from TEXTure have obvious
seams, and textures from different parts seem to be glued together and look messy. The artifacts are
caused by the iterative update strategy across views. By contrast, the results of Decorate3D have
fruitful and clear details. We also present the results from DreamFusion [16]. It tends to produce
blurry results that do not actually match the text prompt.

Adding Decomposed Specular Color 
( )

Textured MeshPropagated to UV TextureSingle-View Editing

A running horse having
green stripes like zebra

Original Text + Single-View Editing Propagated to UV Texture Textured Mesh

Adding Decomposed Specular Color

Figure 6: Two examples of applying Decorate3D for 3D-consistent texture editing. As showcased in the first
example, a scribble of the “NeurIPS 2023” pattern is painted onto a 2D image (aka. a single rendered view),
which is propagated by Decorate3D to the UV texture, updating the 3D-consistent rendered output.

3D-Consistent Texture Editing. Thanks to the decomposed 3D representations, Decorate3D opens
up an easy way to edit textures. Fig. 6 depicts a practical and distinctive use case that can be
accomplished by Decorate3D . We edit one of the rendered images (not the UV texture), and
propagate the editing to the UV texture to synthesize 3D-consistent edited textures from different
views. The decomposed view-dependent specular texture can be added back to the textured model.
Additionally, Decorate3D allows secondary editing of the text-driven texture generation.

4.3 Quantitative Evaluation and Comparison

CLIP R-Precision Metric. Following DreamFusion, we evaluate the CLIP R-Precision [18], an
automated metric for the consistency of rendered multi-view images with respect to the input prompt.
Here, we calculate the average CLIP score from the front-side, left-side, right-side, and back-side
views. We use 70 prompts of 14 objects to generate the test results. For visual quality, we measure
the NIQE [13] on rendered images, which is a no-reference image quality assessment. Tab. 1 reports
the CLIP R-Precision scores of the compared methods.

User Studies. We invite 44 volunteers to evaluate Decorate3D and its competitors using the mean-
opinion-score (MOS) test. For each question, we prepare 5 video results, and the participants are
asked to rate the results on a scale from 1 (worst) to 5 (best) based on the overall visual quality of the
results and the degree to which they match the text prompt. In the end, we receive 1100 responses
from the 44 volunteers. Fig. 7 shows the average MOS scores of the compared methods. As can be
seen, Decorate3D is shown to be more favored by human users.

4.4 Ablation Studies

Initialization of UV Neural Texture. Fig. 8a shows an ablation study on the initialization of the
UV neural texture and Fig. 11 shows more results. As observed, the optimization initialized with
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Table 1: Evaluating the correlation of text-driven gen-
erated results with their text input using different CLIP
models. The CLIP-Mesh’s scores may overfit, as it uses
the same CLIP model for training and eval. The NIQE is
a no-reference image quality evaluation metric.

Method
R-Precision ↑

NIQE ↓CLIP B/32 CLIP B/16 CLIP L/14

CLIP-Mesh [7] 31.95 ±3.01 30.16 ±2.63 23.99 ±3.71 16.28 ±0.94

DreamFusion [16] 29.65 ±4.71 29.63 ±5.11 24.38 ±4.46 16.68 ±3.47

Latent-Paint [11] 25.18 ±4.30 26.19 ±2.81 21.22 ±3.03 17.71 ±1.39

TEXTure [22] 29.68 ±3.56 28.65 ±2.71 23.15 ±3.31 14.83 ±0.78

Decorate3D (Ours) 30.42 ±3.47 30.47 ±3.07 24.89 ±3.41 14.82 ±0.66

Figure 7: User study results gathered from 44 partici-
pants. The results are the average of all responses.

1K iters 5K iters 9K iters 12K iters FinalRandom Initialization 

Initialization with 

"Hello Kitty doll
wears a bandit suit"

(a) An ablation study of neural texture’s initialization.

w/o depth w/ depth Original

(b) w/o depth vs. w/ depth.
"Woman martin shoes,
with a wizard style,

put on a treasure box"

(1) VAE (2) Per-View Generation (3) (4)  + SR

(c) Ablation studies of FVR training and the super-resolution on UV texture.

Figure 8: Ablation studies of Decorate3D . (a) Random initialization vs. initialization with MLPD . (b) Naive
SDS without depth vs. structure-aware SDS guided by depth. As observed, the naive SDS cannot generate
the geometry-matching texture for the man’s hands. (c) We compare the rendered results using (1) UV texture
yielded by the diffusion model’s VAE, (2) Per-view generation, (3) FVR trained MLPψ̃ , and (4) MLPψ̃ +SR.

MLPD converges much faster than the random initialization. Moreover, the MLPD provides a very
strong optimization prior to helping the SDS optimization converge to a better solution that well
matches the mesh geometry. For example, initialization using MLPD can generate the correct facial
texture that fits the geometry, but on the contrary, the random initialization fails.

Effectiveness of Structure-Aware SDS. Fig. 8b presents the difference between the naive SDS
without depth guidance and the structure-aware SDS with depth guidance, and Fig. 11 shows more
results. We can observe that the structure-aware SDS is able to produce geometry-matching textures.
For example, the human’s arms should be clasped behind the back rather than being akimbo.

Is the Few-View Resampling Training Necessary? Fig. 9 compares the per-view gener-
ated results of V (R(ψ,M,P)) with the results rendered using the FVR-trained UV tex-
ture. As observed, results of per-view generation have jittering effects between differ-
ent views (look at the circle pattern), but results with MLPψ̃ have achieved 3D consis-
tency. Fig. 8c (1) presents the results using an alternative solution to eliminate the jitter-
ing, i.e. directly feeding the neural texture into the diffusion model’s VAE by R(V (ψ),M,P).
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Figure 9: Comparison between the per-view generation (w/o FVR) and rendering with MLPψ̃ (w/ FVR). The
difference in pixels between neighboring frames is measured after aligning views to the first reference view.

Figure 10: Results with dif-
ferent N for FVR. A bigger
N leads to blurry textures.

As observed, following this way yields blurry textures. Given an RGB
UV texture ψ̃, Decorate3D can directly apply SR on ψ̃. By comparing
Fig. 8c (3) and Fig. 8c (4) we can observe more clear results after SR.
Fig. 10 shows the effectiveness of FVR training’s hyperparameter N .
Setting a big N for FVR will cause blurry results.

Effectiveness of Neural Renderer. As introduced in Sec .3.2, the op-
timized UV texture by SDS is a neural texture feature. A neural renderer
is required to convert the neural UV texture to the RGB UV. The right
of Fig. 11 shows the ablation study results on the neural renderer. As ob-
served, the synthesized results without a neural renderer are over-saturated
and noisy.

3D Mesh w/o Init & w/o Depth w/ Init & w/o Depth w/o Init & w/ Depth w/ Init & w/ Depth w/ Neural Rendererw/o Neural Renderer

Figure 11: Ablation studies on initialization, depth guidance, and neural renderer.

5 Conclusion

Decorate3D offers a practical way of decorating real-world 3D models with a user-friendly approach
through text-driven texture generation. Our Decorate3D ’s techniques, combining directly optimizing
UV neural texture, structure-aware optimization, FVR training, and SR enhancement on UV texture,
collectively advance the line of 3D texture generation in pursuit of the best possible quality. Extensive
experiments demonstrate the superiority of Decorate3D over SOTA methods.

Limitations First, the style and quality of the generated texture heavily depend on the pre-trained
stable diffusion models. Second, even though Decorate3D adopts structure-aware optimization tech-
niques, the multi-face Janus problem still remains in a flat geometry. For example, Decorate3D cannot
distinguish the front and back sides of a monitor object, as shown in our supplementary material.
Lastly, Decorate3D does not support jointly optimizing both the geometry and texture, which may
result in inconsistency with the mesh geometry. We remain these problems for future study.
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