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Abstract

In-context learning is a surprising and important phenomenon that emerged when
modern language models were scaled to billions of learned parameters. Without
modifying a large language model’s weights, it can be tuned to perform various
downstream natural language tasks simply by including concatenated training ex-
amples of these tasks in its input. Though disruptive for many practical applications
of large language models, this emergent learning paradigm is not well understood
from a theoretical perspective. In this paper, we propose a first-of-its-kind PAC
based framework for in-context learnability, and use it to provide the first finite sam-
ple complexity results for the in-context learning setup. Our framework includes
an initial pretraining phase, which fits a function to the pretraining distribution, and
then a second in-context learning phase, which keeps this function constant and
concatenates training examples of the downstream task in its input. We use our
framework in order to prove that, under mild assumptions, when the pretraining dis-
tribution is a mixture of latent tasks (a model often considered for natural language
pretraining), these tasks can be efficiently learned via in-context learning, even
though the model’s weights are unchanged and the input significantly diverges from
the pretraining distribution. Our theoretical analysis reveals that in this setting,
in-context learning is more about identifying the task than about learning it, a
result which is in line with a series of recent empirical findings. We hope that
the in-context learnability framework presented in this paper will facilitate future
progress towards a deeper understanding of this important new learning paradigm.

1 Introduction

The practice of pretraining language models (LMs) over massive general purpose text corpora has
revolutionized natural language processing in recent years (Radford et al., 2019; Devlin et al., 2019;
Brown et al., 2020). After an LM has been pretrained, the common approach for applying it to a
specific downstream natural language task is to further train it on task-specific data, in a procedure
referred to as fine-tuning (Howard & Ruder, 2018; Radford et al., 2018; Devlin et al., 2019). In
their influential GPT3 paper, Brown et al. (2020) showed that a non-trivial alternative to fine-tuning
emerges when the LM is large enough: an LM can be specialized to a downstream natural language
task by simply receiving in its input a string composed of concatenated training examples of this
task. Importantly, while the LM’s weights are unchanged in this procedure, some form of learning
evidently takes place; the performance on the downstream task was shown to significantly improve
with the number of concatenated training examples, for a disparate variety of natural language tasks.

This phenomenon, referred to as in-context learning, has had a profound practical impact on the
applicability of large LMs: one does not need to have any access to the model weights in order to
specialize the model for a certain task. Instead, a string of training examples provided even via
API access to the model is enough, and often not many examples are required (Brown et al., 2020).
However, despite its growing popularity in a multitude of use-cases (Bommasani et al., 2021), the
reasons for the effectiveness of in-context learning in pretrained LMs are not well understood from
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a theoretical perspective. In particular, this new learning paradigm still lacks a formal definition of
learning.

In this paper, we propose a PAC learning (Valiant, 1984) definition for in-context learning, along
with the first finite sample-complexity learning results for in-context learning. Our results shed light
on the mysterious question of why in-context learning works even though a string of concatenated
input-output pairs does not resemble the natural distribution of pretraining examples. Our framework
is based on an interpretation of pretraining as unsupervised multi-task learning of many natural
language tasks, which dates back to the GPT2 paper (Radford et al., 2019), one of the instigators
of the LM pretraining era. This view, which has since been widely adopted, was supported by
experiments that revealed non-trivial zero-shot capabilities of pretrained LMs on a variety of natural
language tasks. In other words, an LM pretrained only to maximize the likelihood of unlabeled text
from the web, was able to perform reasonably well on a variety of downstream natural language tasks
without learning from any additional training examples post pretraining, implying that many different
natural tasks are directly learned during pretraining.

Following this interpretation, we prove our in-context learning results in a setting in which the
pretraining distribution is a mixture of downstream tasks. Importantly, the pretraining examples are
not explicitly associated with downstream tasks, but rather they are drawn from a mixture of tasks
and the association between examples and tasks is latent. We prove that under mild assumptions,
in-context learning is guaranteed to happen for a model trained by such multi-task pretraining. We
show that the in-context learning mechanism of concatenating input/output pairs of a certain task
allows the pretrained LM to uncover the latent task and improve its performance without modifying
its weights. Our assumptions are quite general, namely that there is a lower bound on the probability
of any mixture component and of any token, and that the downstream tasks are both distinguishable
and have sufficient margin between different labels. See Section 3.1 for a formal definition of our
assumptions.

The interpretation of in-context learning as uncovering tasks that were already learned during
pretraining is also supported by empirical evidence. For example, both Min et al. (2022) and Lyu et al.
(2023) showed that replacing the labels provided in the in-context training examples with random
task labels barely affects the performance of in-context learning, implying that the in-context learning
mechanism is more about identifying the task than about learning it. Similarly, both Webson &
Pavlick (2022) and Lampinen et al. (2022) studied whether LMs truly understand the text of the
in-context examples, and found that irrelevant text that mimic the task can have a similar effect as
learning with true training examples.

Finally, the latent task inference perspective of in-context learning was also examined theoreti-
cally. Xie et al. (2022) study a language-inspired toy distribution for pretraining. Specifically, they
analyze a pretraining distribution consisting of a mixture of Hidden Markov Models (HMMs), where
each HMM factor corresponds to a single task. They showed that in this setting in-context learning
was guaranteed, however, unlike our work, their analysis is confined only to the infinite limit of the
number of in-context examples. We provide polynomial sample complexity guarantees for in-context
learning, which are much more relevant to its efficiency in practice (often referred to as “few-shot").
Furthermore, Xie et al. (2022) limit their analysis only to a certain class of mixture of HMMs as
pretraining distribution, while our results are for any mixture distribution under mild assumptions (see
above). Lastly, their analysis assumes perfect learning of the pretraining distribution while our PAC
approach captures imperfect pretraining. Beyond Xie et al. (2022), several recent papers (Akyürek
et al., 2023; Dai et al., 2022; von Oswald et al., 2022) showed that from an expressivity point of view,
self-attention architectures can implement a gradient descent algorithm with in-context examples.
However, these works do not justify why pretraining on natural data will converge to weights that im-
plement gradient decent, nor do they provide finite sample-complexity results for in-context learning.
Overall, our presented PAC framework for in-context learning (Section 2) allows us to prove the first
finite in-context learning sample-complexity results, in a quite general setting (Section 3). We hope
that this framework will facilitated a further expansions of the understanding of in-context learning
as a new learning paradigm.
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2 A PAC Learnability Framework for In-Context Learning

In this section, we define a Probably Approximately Correct (PAC) learnability framework (Valiant,
1984) for in-context learning. Conceptually, we aim to adjust the PAC learnability framework, in
order to capture the in-context few-shot learning capabilities of large language models (Brown et al.,
2020; Wei et al., 2022a; Sanh et al., 2022; Ouyang et al., 2022).

We begin by describing the in-context learning paradigm. Let fθ be a function fitted to a massive
general purpose pretraining distribution. In order to apply fθ for a specific downstream task, it is
common to further train fθ on pairs of the task’s inputs x1, . . . , xk with their corresponding labels
y1, . . . , yk, in a procedure referred to as fine-tuning. In-context learning is an alternative, simpler
technique, which “teaches” fθ the task at hand by constructing a prompt comprised of concatenated
training examples. Specifically, denote the string concatenation operator by ⊕, and let “\n” be
a special delimiter token. Then, the in-context learning technique is to construct a prompt p by
concatenating pairs of the task’s inputs along with theirs labels:

p := x1 ⊕ y1 ⊕ “\n”⊕ · · · ⊕ xk ⊕ yk ⊕ “\n” (1)

Given this prompt, the prediction is made by choosing the label y that is the most likely continuation
for the prefix p ⊕ x according to the function fθ. In other words, by predicting the label y that
maximizes fθ (p⊕ x⊕ y). Notably, the prefix p ⊕ x does not resemble inputs that fθ has trained
on. Note that we used the newline symbol “\n” for clarity. However, in practice the delimiter token
might depend on implementation and could, for instance, be two successive newlines “\n\n” as
done in the few-shot learning evaluation framework Evaluation Harness (Gao et al., 2021).

We now present our in-context learning learnability definition. Let D be a pretraining distribution over
strings of characters from an alphabet Σ. And let D̃ be a downstream task’s distribution over pairs
of strings x ∈ Σ⋆ and theirs corresponding labels y ∈ Σ⋆. We aim to define distribution-dependent
learnability in the in-context learning setup, for a frozen probabilistic model fθ that originally trained
to maximize the likelihood of the pretraining distribution D. Then, given a prompt p ∼ D̃k which
consist of k pairs of inputs and theirs corresponding labels, each independently sampled from D̃, the
model fθ is tested on the zero-one loss of the in-context predictor:

Lin-context,D̃ := Ex,y∼D̃
[
l0−1

(
argmaxy′fθ (p⊕ x⊕ y′) , y

)]
(2)

Since we are interested in frozen models as opposed to models that are fine-tuned, we will require
that the same fθ model achieves a low Lin-context,D̃ loss for multiple downstream tasks simultaneously.
The following is our PAC learning definition for in-context learning of a model that was pretrained to
maximize the likelihood of the pretraining distribution.

Definition 1. Let H and H̃ be hypothesis classes of pretraining distributions and downstream
distributions respectively. We say that H̃ is in-context learnable after pretraining on a pretraining
distribution D ∈ H, if there exist a pretraining algorithm A and a pair of functions mH,mH̃ :

(0, 1)
2 → N with the following property: For every ϵ, δ > 0 and every D̃ ∈ H̃, if the number

of pretraining examples n is greater than mH (ϵ, δ), and if the number of the downstream tasks’
examples k is greater than mH̃ (ϵ, δ), then with probability of at least 1− δ (over the choice of the
n+ k examples) the following holds:

Lin-context,D̃ − Bayes Error Rate ≤ ϵ (3)

In addition, we will say that a collection of downstream tasks H̃ is efficiently in-context learnable
after pretraining on D, if both mH and mH̃ in the above definition are polynomial in log ϵ−1, log δ−1

and log
∣∣∣H̃∣∣∣.

In order to focus on in-context learning questions that are relevant for the natural language processing
setup, and avoid complications that are not necessary for answering them, we will assume that the
pretraining distribution D belongs to some hypothesis class H that is learnable by some pretraining
algorithm:
Assumption 1. There exists a learning algorithm A, and a sample complexity function mD :

(0, 1)
2 → N, with the following property: for any pretraining distribution D ∈ H and any ϵ, δ > 0,

if the number of pretraining examples n is greater than mD (ϵ, δ), then with probability at least 1− δ
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over the pretraining examples, for any T ≥ 1, the total variation of the conditional distributions of
the T ’th token is at most ϵ:

max
o1...oT∈Σ

|PD (oT |o1 . . . oT−1)− fθ (oT |o1 . . . oT−1)| < ϵ (4)

where fθ denotes the model yielded by the pretraining algorithm A and fθ (oT |o1 . . . oT−1) denotes
for the conditional likelihood fθ(o1...oT−1oT )

fθ(o1...oT−1)
. In addition, mD is polynomial in both ϵ−1 and δ−1.

With the above formal definition of in-context learning, we aim to shed some light on the mysterious
in-context learning abilities of large LMs. Specifically, in the next section, we will shed light on the
following major question: How do frozen pretrained models learn from prompts that do not resemble
their pretraining distribution?

3 Guarantees on In-Context Learning

In this section, we will demonstrate the use of the above learnability framework for in-context learning
and analyze a setting in which pretraining a simple language model provably leads to in-context
learning capabilities. For doing so, we follow previous work and view the language modeling task
as an implicit multi-task setup. Indeed, creating human-like text involves many different skills,
from grammar to world knowledge, so learning a language model inevitably develops a variety of
skills (Gulordava et al., 2018; Zhang & Bowman, 2018; Weber et al., 2021). The implicit unsupervised
multi-task view of language modeling can be traced to the GPT2 paper (Radford et al., 2019), which
revealed that pretrained LMs are capable of a wide variety of natural language tasks without the need
for further training. Since then, this view has been reinforced for example by Hendrycks et al. (2021).
They showed that on a diverse massive set of 57 real world text understanding tasks, the largest
GPT-3 (Brown et al., 2020) language model improves over random chance by almost 13 percents
points on average. Importantly, these results were obtained in a zero-shot learning setting, i.e. in a
setting where the language model had only been pretrained to maximize the likelihood of unlabeled
text. Accordingly, these results suggest that many different natural tasks are directly learned during
pretraining.

We reflect the above implicit multi-task nature of language modeling by assuming that the pretraining
distribution contains a latent variable that represents the task at hand. We show below that for such
pretraining distributions, adding training examples to the in-context learning prompt implicitly reveals
the already learned latent task. In Subsection 3.1, we present a multi-task pretraining hypothesis
class, for which Subsection 3.2 shows that in-context learning reveals what task is currently being
performed.

3.1 The analyzed latent concept hypothesis class

In this subsection, we describe the analyzed multi-task pretraining hypothesis class, as well as the
corresponding downstream task hypothesis class that can be learned in-context after pretraining. To
begin, we define the pretraining distribution as a mixture of multiple downstream tasks. Importantly,
during pretraining the downstream task of each example is unknown, i.e. it is a latent variable, and
thus pretraining is not equivalent to fine-tuning on the task since the model cannot simply ignore
pretraining examples of irrelevant tasks. Specifically, we generate a length-T pretraining example
x1, . . . , xT ∈ Σ from the pretraining distribution D by first sampling a concept ϕ from a family of
concepts Φ according to a prior P (ϕ). We then sample the tokens according to the concept’s specific
distribution Pϕ (x1, . . . , xT ).

Moving to the downstream tasks, we will prove in-context learnability results for tasks where the
underlying inputs distribution is a component ϕ in the pretraining mixture distribution D. Formally,
we generate a length T downstream task example x and the corresponding label y from D̃ by first
sampling T tokens o1, . . . , oT according to the downstream task distribution Pϕ (o1, . . . , oT ). Then
we assemble x using all tokens except the last one, and set the label to be that token i.e. we set that
xt = ot for any t < T and that y = oT . Note that in principle the concatenation of independent
examples in p causes a distribution drift from the pretraining distribution1. In this sense, the analyzed

1Formally, the distribution drift is caused by the fact that the concatenation of the “\n” after y ignores the
marginal probabilities of “\n”.
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model captures the fact that few-shot prompts are unnatural since they are not encountered during
pretraining.

Now we describe assumptions about the pretraining distributions, for which we will prove our
in-context learnability results. Our first assumption requires that given a delimiter token “\n”,
two successive strings s1 and s2 that are concatenated with “\n” are approximately independent
according to Pϕ:
Assumption 2. There exists a constant 0 < c1 ≤ 1 such that for any two strings s1, s2 in Σ⋆ and
any concept ϕ the following holds:

c1 ≤ Pϕ (s1 ⊕ “\n”) · Pϕ (s2)

Pϕ (s1 ⊕ “\n”⊕ s2)
≤ 1

c1
(5)

Note that when the two successive strings s1 and s2 are exactly independent, the probability ratio in
Equation 5 is equal to one, and the constant c1 quantifies the deviation from this situation. While this
assumption might sound restrictive, it is reasonable to assume that two consecutive paragraphs are not
highly dependent according to the distributions in the pretraining mixture. Intuitively, we will use this
assumption in order to apply concentration inequalities to the likelihood of the in-context prompt, and
we will deduce that the role of the in-context prompt is to reweight the prior regarding the different
mixture components. It is important to note that the approximate independence assumption for any
component in the mixture does not imply approximate independence of the mixture distribution itself.
Hence this reweighting is possible, since the assumption does not imply that the in-context prompt is
ignored.

Beyond this approximate independence, we will also require that there exist a lower bound on the
conditional probability of any single token:
Assumption 3. There exist a constant c2 > 0 such that for any string s in Σ⋆, any character σ ∈ Σ,
and any concept ϕ the following holds:

Pϕ (σ | s) > c2 (6)

Basically, we need this assumption in order to avoid the harm of zero likelihood due to the unnatural
concatenation of input and output pairs in the prompt p (where the prompt p is defined in Section 2).
Note that without such an assumption, in-context learning is impossible since the probability of a
prompt p might be zero and hence the prediction of the model in such cases becomes meaningless.
Finally, we assume that the prior distribution is strictly positive. In other words, we will assume that
there is a lower bound higher than zero on the likelihood of any concept appearing in the pretraining
distribution.
Assumption 4. There exist a constant c3 > 0 such that for the prior PD (ϕ) of any concept ϕ, is at
least c3.

Clearly, without such an assumption, the prior of the downstream task can be arbitrarily low, which
means it will be nearly impossible to recognize the task. In the next subsection, we will use the above
assumptions in order to provide in-context learning guarantees via the mechanism of task recognition.

3.2 Guarantees on In-Context Learning via Latent Concept Inference

In this subsection, we analyze the prediction of an in-context learning model in the setting described in
Subsection 3.1. We show that in this setting, there is a polynomial sample complexity that guarantees
in-context learning is Probably Approximately Correct. At a high level, since the pretraining is not
precise and can only approximate the pretraining distribution D up to some error △pretraining > 0
(see Assumption 1), we will split the in-context prediction analysis into two parts. The first part will
involve the simpler case of test examples x and corresponding label candidates y and ỹ for which the
margin between the conditional likelihoods of the labels PD̃ (y |x) and PD̃ (ỹ |x) is large enough. In
this scenario, we show that both the deviation due to imperfect pretraining and due to imperfect task
recognition is negligible. Therefore, we will conclude that such deviations do not have any impact on
the loss of in-context learning. In the second scenario, when the difference between ground-truth
likelihoods is small, the error rate of the Bayes optimal classifier must be high. Accordingly, even
though the in-context predictor might confuse between labels, the loss in any case will be small
because we only compare it to the error rate of the Bayes optimal classifier.
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Starting with the first scenario, where the margin between label candidates is sufficiently large,
we will prove that as more examples are added to the prompt, the in-context predictions converge
to the correct label. As a preliminary step, we prove a lemma regarding the ratio of the prompt
likelihoods Pϕ(p) (where the prompt p is defined in Section 2) according to the ground-truth task
versus the other mixture components. In other words, we ask how likely it is that the prompt of
concatenated examples was sampled according to one of the tasks distributions versus the other tasks
distributions. We will use this lemma in order to estimate the effect of the in-context prompt, on
the prior regarding the different mixture components. Specifically, we denote by △KL the minimum
Kullback–Leibler divergence between the ground-truth component, and the other mixture components.
Then, we prove that the ratio of the prompt probabilities according to the ground-truth components
converge to zero, with rate that is exponential in both the number of in-context examples k, and
in the minimal Kullback–Leibler divergence △KL. Intuitively, the exponential rate with regard to
the number of examples comes naturally from the fact that each example in the prompt is sampled
independently of the others. As a result, their effect is a multiplicative one. Additionally, the
Kullback-Leibler divergence between the ground truth component and the other mixture components
measures log probabilities, while we are interested in the probabilities themselves. Hence the rate is
also exponential in the above Kullback-Leibler divergence. Formally, we have that:

Lemma 1. Let D be a pretraining distribution for which assumptions 2,3 hold, and let ϕ⋆ be
a downstream task mixture component from D such that △KL > 8 log 1

c1·c2 . Then, there exists

mD̃ : (0, 1)
2 → N with the following property: for any ϵ, δ > 0 and any ϕ ̸= ϕ⋆, if the number of

in-context examples k is at least mD̃ (ϵ, δ), then, Pϕ(p)
Pϕ⋆ (p) < ϵ with probability of at least 1−δ (over the

choice of the k in-context examples). Moreover, the above still holds when the labels in p are randomly
flipped, and mD̃ can be chosen such that it will be polynomial in log 1

δ , log
1
ϵ , log

1
c1·c2 ,

1
△KL

and T .

Proof. In essence, we prove this lemma by using the approximate independence assumption in order
to apply concentration inequalities. In addition, we use Assumption 3 for bounding the distribution
drift that is caused by the artificially inserted newline token. In particular, the log of the ratio of
prompt probabilities according to different mixture components is concentrated around its expectation.
Importantly, this expectation is equal to minus one times the Kullback–Leibler divergence between
the components, plus a term that is caused by the mentioned distribution drift. Thus, we conclude
that the ratio of the prompt probabilities according to the ground-truth task distribution and the other
pretraining components converges to zero. Moreover, the rate of that convergence is exponential in
both the number of in-context demonstrations, and the minimal Kullback–Leibler divergence between
different mixture components. See full details in Section A of the appendix.

Now we will use the above Lemma 1 to analyze the in-context predictions, namely the labels ỹ that
maximize the likelihood of the concatenation of the in-context prompt p, with the example x ⊕ ỹ
according to the pretrained model fθ. Essentially, we will aim to understand when these predictions
are identical to the Bayes Optimal Classifier predictions. That it, when these predictions align with
the labels y that maximize the likelihood of the example x⊕ y as determined by downstream task
distribution PD̃. Since we are in the first scenario, where the margin between label candidates is large
enough. We will prove that in this case, for large enough k, the ground truth in-context predictor also
has margin that is at least half of the original margin. Hence, we will conclude that for such k the
ground truth in-context predictor is equal to the Bayes Optimal Classifier. Moreover, we will prove a
lower bound on the margin of the in-context predictions, so the above still holds for any distribution
that approximates the pretraining distribution sufficiently well.

Formally, for a test example input x, we define the margin △ (x, y, ỹ) between two label candidates
y and ỹ as the difference between their conditional likelihoods PD̃ (y |x) and PD̃ (ỹ |x) according
to the downstream ground-truth distribution. Similarly, for a test example input x and in-context
prompt p, we define the margin △ (p, x, y, ỹ) between two label candidates y and ỹ as the difference
between their conditional likelihoods PD (y | p⊕ x) and PD (ỹ | p⊕ x) according to the pretraining
distribution conditioned on the prompt p. Using these definitions, we consider triplets of test example
input x and two labels candidates y, ỹ with margin at least two times the pretraining error △pretraining
as the first scenario. In this case we will prove that for large enough k the ground truth in-context
predictor also has margin of at least the pretraining error △pretraining. This means that deviations
arising from imperfect task recognition will be negligible in this situation. Moreover, the margin will
remain larger than the pretraining error, which means the pretrained model fθ handles this case well.
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Theorem 1. Let D and D̃ be a pair of pretraining distribution and downstream task, for which
Assumption 4 as well as the assumptions in Lemma 1 upholds. Then, there exists mD̃ : (0, 1)

2 → N
with the following property: for every test example x and two label candidates y, ỹ with positive mar-
gin △ (x, y, ỹ) > 0 and δ > 0, if the number of in-context examples k is at least mD̃ (△(x,y,ỹ)/2, δ),
then △ (p, x, y, ỹ) > △(x,y,ỹ)/2 + c21 − 1 with probability of at least 1− δ (over the choice of the k
in-context examples). Moreover, the above still holds when the labels in p are randomly flipped2, and
mD̃ can be chosen such that it will be polynomial in log 1

δ , log
1
ϵ , log

1
c1·c2·c3 ,

1
△KL

and T .

Proof. We begin by writing the difference between the ground-truth label likelihood, and the likeli-
hood of other another label ỹ explicitly. Specifically, by the definition of conditional probabilities we
have that:

PD (y | p⊕ x)− PD (ỹ | p⊕ x) =

∑
ϕ PD (ϕ) [Pϕ (p⊕ x⊕ y)− Pϕ (p⊕ x⊕ ỹ)]∑

ϕ PD (ϕ)Pϕ (p⊕ x)
(7)

Now, denote by ϕ⋆ the mixture component of D̃, then Assumption 2 assures us that for each
component in the mixture, the textual prompt is approximately independent of the test example.
So we can use Lemma 1 and get that in both the numerator and the denominator, the ϕ⋆ term is
the dominant term in the sum. Thus, we will get that the difference of the labels‘ likelihoods is
approximately the fraction of the ϕ⋆ terms, which is equal to the original downstream task margin.
So we will conclude that the margin of the in-context predictor is at least half of the downstream task
original margin. See full details in Section B of the appendix.

We denote by △D̃ the minimal margin of the Bayes Optimal Classifier predictions in downstream task
D̃ i.e. the minimal margin between the Bayes Optimal Classifier prediction and another labels. With
the above definitions and theorem, we can combine the scenario of large margins, which are preserved
by the in-context predictor, with the scenario of small margins, in which the loss is minimally affected
by the wrong prediction, and prove our main in-context learnability results:

Theorem 2. Let H̃ be hypothesis classes of downstream distributions, and denote by D a mixture
distribution on H̃ for which assumptions 1,2,3 and 4 uphold. Further assume that the margin △D̃ of
any downstream task D̃ ∈ H̃ is at least 4 ·

(
1− c21

)
, and the minimal Kullback–Leibler divergence

between different distributions is greater than log 1
c1·c2 . Then H̃ is efficiently in-context learnable

after pretraining on D (see Definition 1).

Proof. Assumption 1 assures us the existence of the pretraining algorithm with a polynomial sample
complexity. So we will prove the theorem with pretraining sample complexity that is derived from
this algorithm, where the accuracy required from pretraining is 2

a·(1−α) times the accuracy required
from in-context learning (see analysis below). In addition, Theorem 1 assures us that for large enough
k the ground truth in-context predictions are equal to the Bayes Optimal Classifier predictions, so we
will prove the theorem with downstream sample complexity that is derived from Theorem 1.

Let ϵ, δ > 0 and denote by fθ the model that was learned during the pretraining process. We will
prove that the contribution of any x to the loss Lin-context,D̃ (see Equation 2) is at most ϵ and hence
complete the proof. Given x, let y be the Bayes Optimal Classifier prediction for that x. Then, we
will split the analysis into two cases.

The first case is of examples x, y such that theirs margin △ (x, y, ỹ) from any alternative label
candidate ỹ is at least 8 · △pretraining. In this case, Theorem 1 assures us that for large enough k the
ground truth in-context predictor also has margin △ (p, x, y, ỹ) that is greater than 1

2 · △ (x, y, ỹ) +

c21−1. Now since △ (x, y, ỹ) ≥ △D̃ > 4·
(
1− c21

)
we have that △ (p, x, y, ỹ) is at least 2·△pretraining.

Thus, we conclude that in this case, the predictions of the ground truth in-context prediction and fθ
are the same. Furthermore both of them are identical to the Bayes Optimal Classifier prediction, and
hence x does not contribute to the loss.

2While theorem 1 provides label-insensitive results, it also predicts sensitivity to the labels in cases where
the labels are the primary causes for the distinction between different tasks, as measured by the Kullback-Leibler
divergence.
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Moving to the second case, and denote by ỹ the in-context prediction of fθ. Then, the arguments
from the previous paragraph assure us that Pϕ⋆ (y |x)− Pϕ⋆ (ỹ |x) < 8 · △pretraining, since otherwise
we will get that fθ (y |x) > fθ (ỹ |x). Finally, we will choose that △pretraining = ϵ

8 , and hence get
that also in the second case, the contribution of x to the loss is less than ϵ.

4 Related Work

Since the Probably Approximately Correct (PAC) learning framework was introduced in Valiant
(1984), a rich line of works has extended the framework to distribution-dependent bounds (Benedek
& Itai, 1991; Vayatis & Azencott, 1999; Sabato et al., 2013) inter alia. These works relax PAC’s
adversarial requirement of generalization for all input distributions, and only consider distributions
that satisfy certain statistical properties. Consequently, these papers provide more realistic sample
complexity bounds. In this paper we present a framework for in-context learning learnability that
uses self-supervised pretraining to assist in solving downstream tasks. In this framework, we follow
the above line of distribution-specific works with the distinct feature of a self-supervised pretraining
phase, and of learning with frozen models through their input context. The advantages of such
pretraining have been studied from a theoretical perspective before. For example, Saunshi et al.
(2021) and Wei et al. (2021) demonstrate that language modeling can benefit downstream tasks either
by prompt tuning or head tuning. However, unlike our work, in their analysis some weights are
learned. In contrast, we focus on frozen models that can learn only from their input context, which
includes the concatenation of few inputs and outputs pairs.

Returning to in-context learning, a recent line of work study learning paradigms that are based on
concatenating several inputs into a single input context. For example, Garg et al. (2022) show that
a Transformer architecture is able to discover in-context learning algorithms for simple function
classes, such as two-layer neural networks, and decision trees. Similarly, Akyürek et al. (2023)
show that a Transformer architecture is able to discover efficient Bayes optimal least square learning
algorithms, and Laskin et al. (2022) show that a Transformer architecture is able to discover efficient
in-context reinforcement learning algorithms. Additionally, Levine et al. (2022) studied the inductive
bias of in-context learning, and proved that Transformer based language models can model much
stronger dependencies between text segments that appeared in the same training example. Finally, Li
et al. (2023) proved a multi-task generalization bound for in-context learning with the Transformer
architecture. However, unlike our work, the pretraining distribution in all of the above works designed
to include input context that includes few-shot demonstrations explicitly. As a consequence, these
methods do not answer the mysterious question of how frozen pretrained models can learn from
in-context prompts that do not resemble their pretraining distribution.

Another recent line of work investigates possible mechanisms that enable in-context learning. For
example, Olsson et al. (2022) provide indirect evidence that induction heads might constitute the
mechanism for in-context learning in large transformer models. In addition, several recent pa-
pers (Akyürek et al., 2023; Dai et al., 2022; von Oswald et al., 2022) showed that from an expressivity
point of view, self-attention architectures can implement a gradient descent algorithm with in-context
examples. Finally, Chan et al. (2022) provided empirical evidence that some data distributional
properties encourage in-context learning even when the frozen models do not see prompts during
pretraining. However, unlike our work, all of the above works does not provide theoretical guarantees
of in-context learnability.

Finally, Xie et al. (2022) are the closest to our work. They studied a language-inspired toy distribution
for pretraining and analyzed a pretraining distribution consisting of a mixture of Hidden Markov
Models (HMMs). Unlike their results, our results are applicable to any mixture distribution that
meets our mild assumption. In addition, unlike our polynomial sample complexity guarantees, their
analysis guarantees in-context learning only for an infinite number of in-context examples. Lastly,
their analysis assumes perfect pretraining distribution learning, but our approach captures imperfect
pretraining.

5 Conclusion

The discovery of in-context learning in large LMs, made by Brown et al. (2020), was surprising to
many in our field. A model that was pretrained to maximize the likelihood of natural text was able

8



to make use of concatenated training examples of downstream natural language tasks—inputs that
do not resemble its pretraining distribution, and moreover these inputs improved the model’s ability
to perform the task. Our theoretical results, based on a common latent multitask framework for the
pretraining phase, shed light on the above surprising mysteries. With our PAC-based framework, we
were able to provide sample complexity guarantees for in-context learning in such pretrained models,
which are not only the first finite sample complexity results for this framework but they also indicate
efficient (polynomial) in-context learning, which reflect the behavior of this setting in practice.

We hope that our framework can be used to deepen the understanding of the in-context learning
phenomenon. In particular, we mark the connection between model size and the in-context learning
efficiency as an interesting open question (Wei et al., 2022b). Additionally, in-context learning has
shown to be capable of learning new tasks not included in the pre-training distribution (Wei et al.,
2023). The extensions of our results to such situations, as well as input-dependent bounds that capture
the sensitivity of few-shot in-context learning to the order of the few-shot examples is an interesting
open questions.

Limitations: While we assume that the pre-training distribution perfectly matches a mixture of
downstream tasks, we acknowledge that the pre-training data in real-world LLMs is often noisy and
imperfect. Our results represent an idealized scenario with perfect pre-training data. Extending our
analysis to account for limitations of real-world pre-training data remains an important direction for
future work.
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A Proof of Lemma 1

We begin by explicitly writing Pϕ (p). Specifically, Assumption 2 assure us that each in-context
example xi ⊕ yi ⊕ ”\n” is approximately independent from the other in-context examples:

ck1 ≤
∏k

i=1 Pϕ (xi ⊕ yi ⊕ ”\n”)
Pϕ (p)

≤ c−k
1 (8)

In addition, Assumption 3 bounds the distribution drift that caused by the artificial new line token:

Pϕ (xi ⊕ yi) ≤ Pϕ (xi ⊕ yi ⊕ ”\n”) ≤ Pϕ (xi ⊕ yi) · c2 (9)

Similarly, we can use Assumption 3 again to bounds also the distribution drift that caused by potential
label flipping:

c2 <
Pϕ (xi ⊕ ỹi)

Pϕ (xi ⊕ yi)
<

1

c2
(10)

where ỹi denote the "corrected" label. So overall, we got that:(
c1c

2
2

)k
<

∏k
i=1 Pϕ (xi ⊕ ỹi)

Pϕ (p)
<

(
c1c

2
2

)−k
(11)

Now, we can write the ratio of the prompt probabilities according to the ground-truth component and
the other mixture components explicitly and get that:

log
Pϕ (p)

Pϕ⋆ (p)
≤

k∑
i=1

log
Pϕ (xi ⊕ ỹi)

Pϕ⋆ (xi ⊕ ỹi)
+ 4k log

1

c1c2
(12)

Intuitively, as each term in the sum is independent of the other, and equals (in expectation) to the
Kullback–Leibler divergence between ϕ⋆ and ϕ:

Ep

[
1

k

k∑
i=1

log
Pϕ (xi ⊕ ỹi)

Pϕ⋆ (xi ⊕ ỹi)

]
= −KL (Pϕ⋆ ,Pϕ) (13)

Equation 12 assure us that as long as the ground truth downstream task component ϕ⋆ distinguish
enough from the rest of the mixture components, Pϕ(p)

Pϕ⋆ (p) converge to zero. Formally, Assumption 3
assure us that ∣∣∣∣log Pϕ (xi ⊕ ỹi)

Pϕ⋆ (xi ⊕ ỹi)

∣∣∣∣ ≤ T log
1

c2
(14)

for any i, p, ϕ, ϕ⋆. Hence, we can use Hoeffding’s inequality (Hoeffding, 1994) to estimate the
deviation of this variable from its expectation (see Equation 13). More specifically, together with
Equation 12 we get that with probability of at least 1− δ over the choice of the k examples in p we
have that:

Pϕ (p)

Pϕ⋆ (p)
< exp

(
−k

2

(
KL (Pϕ⋆ ,Pϕ)− 8 log

1

c1c2

))
(15)

for k >
(log 1

δ )(16T
2)

(
log2 1

c2

)
KL(Pϕ⋆ ,Pϕ)

2 . Finally, Lemma 1 follows by choosing that mD̃ is the maximum

between k >
(log 1

δ )(16T
2)

(
log2 1

c2

)
KL(Pϕ⋆ ,Pϕ)

2 and 2 log 1
ϵ

△KL−8 log 1
c1c2

, since the first term take care of the 1 − δ

probability, and the second term term take care of the ϵ-approximation.

B Proof of Theorem 1

We begin by writing the difference labels likelihood explicitly. Specifically, by the definition of
conditional probabilities we have that:

PD (y | p⊕ x)− PD (ỹ | p⊕ x) =

∑
ϕ PD (ϕ) [Pϕ (p⊕ x⊕ y)− Pϕ (p⊕ x⊕ ỹ)]∑

ϕ PD (ϕ)Pϕ (p⊕ x)
(16)

13



Now, Assumption 2 assure us that for each component ϕ in the mixture the prompt p is approximately
independent from the test example:

c1 · Pϕ (p) · Pϕ (x⊕ y) ≤ Pϕ (p⊕ x⊕ y) ≤ 1

c1
· Pϕ (p) · Pϕ (x⊕ y) (17)

Pϕ (p⊕ x) ≤ 1

c1
· Pϕ (p) · Pϕ (x) (18)

So substituting this inequalities in Equation 16 give us that:

PD (y | p⊕ x)− PD (ỹ | p⊕ x) ≥

∑
ϕ PD (ϕ) · Pϕ (p) ·

[
c21 · Pϕ (x⊕ y)− 1

c21
· P (x⊕ ỹ)

]
∑

ϕ PD (ϕ) · Pϕ (p) · Pϕ (x)
(19)

Now, we will separate the sums in the denominator and the numerator to term that contain the mixture
component ϕ⋆ that corresponds to D̃, and term that contain the other mixture components. So for
clarity we will denote by A,B,C,D the different sums:

A := PD (ϕ⋆) · Pϕ⋆ (p) ·
[
c21 · Pϕ⋆ (x⊕ y)− 1

c21
· Pϕ⋆ (x⊕ ỹ)

]
(20)

B :=
∑
ϕ̸=ϕ⋆

PD (ϕ) · Pϕ (p) ·
[
c21 · Pϕ (x⊕ y)− 1

c21
· Pϕ (x⊕ ỹ)

]
(21)

C := PD (ϕ⋆) · Pϕ⋆ (p) · Pϕ⋆ (x) (22)

D :=
∑
ϕ̸=ϕ⋆

PD (ϕ) · Pϕ (p) · Pϕ (x) (23)

And get that:

PD (y | p⊕ x)− PD (ỹ | p⊕ x) ≥ A

C +D
+

B

C +D
(24)

Now we know that both C and D are non-negative and hence that:∣∣∣∣ A

C +D
− A

C

∣∣∣∣ = ∣∣∣∣ AD

C2 +DC

∣∣∣∣ ≤ ∣∣∣∣AC
∣∣∣∣ · ∣∣∣∣DC

∣∣∣∣ (25)∣∣∣∣ B

C +D
− B

C

∣∣∣∣ = ∣∣∣∣ BD

C2 +DC

∣∣∣∣ ≤ ∣∣∣∣BC
∣∣∣∣ · ∣∣∣∣DC

∣∣∣∣ (26)

And by definition we have that:

A

C
= △ (x, y, ỹ) +

(
c21 − 1

)
Pϕ (y |x) +

(
1

c21
− 1

)
· Pϕ (ỹ |x) > △ (x, y, ỹ)− 1 + c21 (27)

So it is enough to show that
∣∣B
C

∣∣ < 1
5 · △ (x, y, ỹ) and that

∣∣D
C

∣∣ < 1
4 , in order to prove that:

PD (y | p⊕ x)− PD (ỹ | p⊕ x) >
3

4
· A
C

− 5

4
·
∣∣∣∣BC

∣∣∣∣ > 1

2
· △ (x, y, ỹ) + c21 − 1 (28)

Starting with
∣∣B
C

∣∣, by the triangle inequality have that:∣∣∣∣BC
∣∣∣∣ ≤ ∑

ϕ̸=ϕ⋆

PD (ϕ)

PD (ϕ⋆)
· Pϕ (p)

Pϕ⋆ (p)
· 1

c21
· 1

Pϕ⋆ (x)
(29)

In addition, Assumption 3 assure us that Pϕ⋆ (x) > cT2 , hence we conclude that:∣∣∣∣BC
∣∣∣∣ ≤ ∑

ϕ ̸=ϕ⋆

PD (ϕ)

PD (ϕ⋆)
· Pϕ (p)

Pϕ⋆ (p)
· 1

c21c
T
2

(30)

Similarly, we also have that: ∣∣∣∣DC
∣∣∣∣ ≤ ∑

ϕ̸=ϕ⋆

PD (ϕ)

PD (ϕ⋆)
· Pϕ (p)

Pϕ⋆ (p)
· 1

cT2
(31)
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Now, the sum of the concepts’ prior is at most one, and by Assumption 4 we have that PD (ϕ⋆) ≥ c3,
so it is enough to show that Pϕ(p)

Pϕ⋆ (p) < △(x,y,ỹ)

5·c−2
1 ·c−T

2 ·c−1
3

=: ϵ̃ for any concept ϕ ̸= ϕ⋆, in order to
complete the proof. Finally, Lemma 1 assure us that under the conditions of Theorem 1, there exist
m̃D̃ : (0, 1)

2 → N such that if the number of in-context examples k is at least m̃D̃ (ϵ̃, δ), then with
probability of at least 1− δ we get exactly that Pϕ(p)

Pϕ⋆ (p) < ϵ̃. Importantly, m̃D̃ is logarithmic in the

accuracy level ϵ̃ = △(x,y,ỹ)

5·c−2
1 ·c−T

2 ·c−1
3

, and hence polynomial in T .

C Technical lemmas

Lemma 2. Denote by △ (x, y, ỹ) the ground-truth margin between two label candidates y and ỹ.
And also denote by ∆D̃ the minimal margin between the Bayes Optimal Classifier prediction and
another labels, and by △ (p, x, y, ỹ) the ground-truth margin between two label candidates y and ỹ
conditioned on the prompt p. Assuming that ∆D̃ is greater than 1− c21 and given the assumptions of
Theorem 1, the following inequality holds:

∆(p, x, y, ỹ) > ∆(x, y, ỹ) (1− α) · α (32)

where α := 1−
√

1−c21
∆D̃

.

Proof. By Theorem 1 we have that ∆(p, x, y, ỹ) is larger than (1− α) ·∆(x, y, ỹ) + c21 − 1. Now
we can substitute the definition of α and get that

∆(p, x, y, ỹ) > (1− α) ·∆(x, y, ỹ) + c21 − 1 (33)

= (1− α) ·∆(x, y, ỹ)−∆D̃ · (1− α)
2 (34)

Since, ∆(x, y, ỹ) is at least ∆D̃ we get that:

∆(p, x, y, ỹ) > (1− α) ·∆(x, y, ỹ)−∆(x, y, ỹ) · (1− α)
2 (35)

And Equation 32 follow from algebraic manipulations.
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