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A Additional Details for Sections 2 and 3

A.1 Additional Details for Section 2

Details of VP-SDE and VE-SDE. As mentioned in Sect. 2.1, we choose the VE-SDE and the
VP-SDE as the forward SDEs. For VE-SDE, f(y, t) = 0 and g(t) = αt where α is a hyper-parameter.
For VP-SDE, f(y, t) = − 1

2β(t)y and g(t) =
√

β(t) where β(t) = βmin + (βmax − βmin)t, and
βmin and βmax are hyper-parameters. Then, the conditional distribution, a.k.a., permutation kernel,
pt|0(yt|y0) of yt given y0 is

pt|0(yt|y0) =

N
(
yt|y0,

1
2 logα (α

2t − 1)I)
)
, for VE-SDE,

N
(
yt|y0e

1
2h(t), (1− eh(t))I

)
, for VP-SDE,

(A-1)

where h(t) = − 1
2 t

2(βmax − βmin)− tβmin, and I is the identity matrix. Following [1], we set T to
1, and pprior = N (0, I) for VP-SDE and pprior = N (0, 1

2 logα (α
2t − 1)I) for VE-SDE.

Pseudo-codes of algorithm for training uω, vω. The pseudo-codes of the algorithm to learn the
dual variables uω, vω , a.k.a., potentials, are given in Algorithm 1.

Algorithm 1: Algorithm for estimating potentials uω̂, vω̂
Input: Distribution p of conditions, target data distribution q, paired data (if available)
Output: Learned potentials uω̂, vω̂
for iter = 1, · · · , N ′

iter do
Sampling mini-batch data X = {xb}B

′

b=1 from p, Y = {yb}B
′

b=1 from q;
if paired data are available then

Computing the loss of semi-supervised OT in Eq. (6) on X and Y ;
else

Computing the loss of unsupervised OT in Eq. (6) on X and Y ;
end
Backward propagation to compute the gradient and update ω using Adam algorithm;

end
ω̂ = ω.
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A.2 Additional Details for Section 3

Rationality of the resampling-by-compatibility. We next explain the rationality of the resampling-
by-compatibility presented in Sect. 3.3. For the convenience of description, for any x,y, we denote

Jx,y = EtwtEyt∼pt|0(yt|y)∥sθ(yt;x, t)−∇yt
log pt|0(yt|y)∥22. (A-2)

The training loss JCDSM(θ) in Eq. (9) can be written as

JCDSM(θ) = Ex∼pEy∼qH(x,y)Jx,y. (A-3)

By the resampling-by-compatibility, q is approximated based on samples Yx by q(y) ≈
1
L

∑L
l=1 δ(y − yl). We then have

JCDSM(θ) ≈ Ex∼p
1

L

L∑
l=1

H(x,yl)Jx,yl

∝ Ex∼p
1

H0

L∑
l=1

H(x,yl)Jx,yl

= Ex∼pEy∼h̃x
Jx,y,

(A-4)

where H0 =
∑L

l=1 H(x,yl) and h̃x is the distribution defined on Yx as h̃x(y) =
1
H0

∑L
l=1 H(x,yl)δ(y − yl). Equation (A-4) indicates that JCDSM(θ) can be approximately imple-

mented based on samples using our resampling-by-compatibility strategy. More concretely, the last
line in Eq. (A-4) can be implemented by sequentially dropping x from p, generating samples Yx to
construct h̃x, sampling y from h̃x, and computing Jx,y on (x,y). Note that dropping sample y from
h̃x means to choose a y from Yx with the probability proportional to H(x,yl).

Training by fitting noise. Based on Eq. (A-1), pt|0(yt|y) is a Gaussian distribution. We denote the
σtI as the standard variation of pt|0(yt|y), i.e., σ2

t = 1
2 logα (α

2t−1) for VE-SDE, and σ2
t = 1−eh(t)

for VP-SDE. Using the reparameterization trick [2], given x,y sampled using our resampling-by-
compatibility, we have yt = y + σtϵ for VE-SDE, and yt = e

1
2h(t)y + σtϵ for VP-SDE, where

ϵ ∼ N (0, I). Further, ∇yt log pt|0(yt|y) = − 1
σt
ϵ. Therefore, the loss Jx,y in Eq. (A-2) can be

written as

Jx,y = Et,ϵ∼N (0,I)

[
wt

σ2
t

∥sθ(ut(y) + σtϵ;x, t)σt + ϵ∥22

]
. (A-5)

where ut(y) = y for VE-SDE, and ut(y) = e
1
2h(t)y for VP-SDE. Equation (A-5) implies that

sθ(yt;x, t) is trained to fit the scaled noise − 1
σt
ϵ.

Pseudo-codes of algorithm training sθ. The pseudo-codes of the algorithm to train sθ for the case
where training data consist of condition dataset Dx and target dataset Dy are given in Algorithm 2.
The pseudo-codes of the algorithm to train sθ for the case with continuous distributions p, q are given
in Algorithm 3.

B Proofs

B.1 Proof of Proposition 1

Proposition 1. Let C(x,y) = 1
p(x)δ(x−xcond(y)) where δ is the Dirac delta function, then JDSM(θ)

in Eq. (1) can be reformulated as

JDSM(θ) = EtwtEx∼pEy∼qC(x,y)Eyt∼pt|0(yt|y)
∥∥sθ(yt;x, t)−∇yt log pt|0(yt|y)

∥∥2
2
. (A-6)

Furthermore, γ(x,y) = C(x,y)p(x)q(y) is a joint distribution for marginal distributions p and q.
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Algorithm 2: Training algorithm for discrete datasets
Input: Condition dataset Dx, target dataset Dy, paired data (if available)
Output: Trained conditional score-based model sθ̂
Learning potentials uω̂, vω̂ using Algorithm 1;
// Computing and storing H for target samples with non-zero H
Dict = {};
for x in Dx do

Yx = {y : H(x,y) > 0,y ∈ Dy};
Hx = {H(x,y)

H0
: y ∈ Yx}, where H0 =

∑
y∈Yx

H(x,y);
Dict = Dict ∪ {(Yx,Hx)};

end
// Traning sθ on mini-batch data
for iter = 1, · · · , Niter do

Sampling mini-batch data {xb}Bb=1 from Dx;
for b = 1, 2, · · · , B do

// Resampling-by-compatibility
Finding (Yxb

,Hxb
) in Dict ;

Choosing yb from Yxb
with probability Hxb

;
Sampling tb from U([0, T ]), and ϵb from N (0, I);

end
Computing loss 1

B

∑B
b=1

wtb

σ2
tb

∥sθ (utb(yb) + σtbϵb;xb, tb)σtb + ϵb∥22 ; // Eq. (A-5)

Backward propagation to compute the gradient w.r.t. θ and update θ using Adam algorithm;
end
θ̂ = θ.

Algorithm 3: Training algorithm for continuous distributions
Input: Condition distribution p, data distribution q, paired data (if available)
Output: Trained conditional score-based model sθ̂
Learning potentials uω̂, vω̂ using Algorithm 1;
// Traning sθ on mini-batch data
for iter = 1, · · · , Niter do

Sampling mini-batch data {xb}Bb=1 from p;
for b = 1, 2, · · · , B do

// Resampling-by-compatibility
Sampling Yx = {yl}Ll=1 from q;
Computing hl = H(x,yl) for all l as in Eq. (7);
Choosing yb from Yx with probability 1∑L

l=1 hl (h
1, h2, · · · , hL);

Sampling tb from U([0, T ]), and ϵb from N (0, I);
end
Computing loss 1

B

∑B
b=1

wtb

σ2
tb

∥sθ (utb(yb) + σtbϵb;xb, tb)σtb + ϵb∥22 ; // Eq. (A-5)

Backward propagation to compute the gradient w.r.t. θ and update θ using Adam algorithm;
end
θ̂ = θ.

Proof. We first i) prove Eq. (A-6), and then ii) show that γ(x,y) is a joint distribution for marginal
distributions p and q.

i) The right side of Eq. (A-6) is

EtwtEx∼pEy∼qC(x,y)Eyt∼pt|0(yt|y)
∥∥sθ(yt;x, t)−∇yt log pt|0(yt|y)

∥∥2
2

=EtwtEy∼q

∫
p(x)C(x,y)Eyt∼pt|0(yt|y)

∥∥sθ(yt;x, t)−∇yt
log pt|0(yt|y)

∥∥2
2
dx
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=EtwtEy∼q

∫
δ(x− xcond(y))Eyt∼pt|0(yt|y)

∥∥sθ(yt;x, t)−∇yt log pt|0(yt|y)
∥∥2
2
dx

=EtwtEy∼qEyt∼pt|0(yt|y)
∥∥sθ(yt;xcond(y), t)−∇yt

log pt|0(yt|y)
∥∥2
2
,

which is the definition of JDSM(θ) in Eq. (1).

ii) We show that the marginal distributions of γ(x,y) are respectively p and q as follows. Firstly,∫
γ(x,y) dx =

∫
δ(x− xcond(y))q(y) dx = q(y)

∫
δ(x− xcond(y)) dx = q(y). (A-7)

Secondly, from the definition of δ(·), we have δ(x − xcond(y)) =
∑

{y′:xcond(y′)=x} δ(y − y′).
Then, we have ∫

γ(x,y) dy =

∫
δ(x− xcond(y))q(y) dy

=

∫ ∑
{y′:xcond(y′)=x}

δ(y′ − y)q(y) dy

=
∑

{y′:xcond(y′)=x}

∫
δ(y′ − y)q(y) dy

=
∑

{y′:xcond(y′)=x}

q(y′)

=p(x).

(A-8)

B.2 Proof of Theorem 1

Theorem 1. For x ∼ p, we define the forward SDE dyt = f(yt, t) dt + g(t) dw with y0 ∼
π̂(·|x) and t ∈ [0, T ], where f, g, T are given in Appendix A.1. Let pt(yt|x) be the corresponding
distribution of yt and JCSM(θ) = EtwtEx∼pEyt∼pt(yt|x) ∥sθ(yt;x, t)−∇yt log pt(yt|x)∥22, then
we have ∇θJCDSM(θ) = ∇θJCSM(θ).

Proof. Given x and t, pt(yt|x) is the distribution of yt produced by the forward SDE dyt =
f(yt, t) dt + g(t) dw with initial state y0 ∼ π̂(y0|x). This implies that x → y0 → yt is a
Markov Chain. So the distribution pt|0(yt|y0,x) of yt given y0 and x depends on y0 but x,
i.e., pt|0(yt|y0,x) = pt|0(yt|y0), where pt|0(yt|y0) is the distribution of yt by the forward SDE
dyt = f(yt, t) dt+ g(t) dw with initial state y0. According to [3], given any x and t, we have

Ey0∼π̂(y0|x)Eyt∼pt|0(yt|y0,x)∥sθ(yt;x, t)−∇yt
log pt|0(yt|y0,x)∥22

=Eyt∼pt(yt|x) ∥sθ(yt;x, t)−∇yt log pt(yt|x)∥22 + Cx,t,
(A-9)

where Cx,t is a constant to θ depending on x and t. Then, we have

wt

(
Eyt∼pt(yt|x) ∥sθ(yt;x, t)−∇yt log pt(yt|x)∥22 + Cx,t

)
=wtEy0∼π̂(y0|x)Eyt∼pt|0(yt|y0)∥sθ(yt;x, t)−∇yt

log pt|0(yt|y0)∥22.
(A-10)

Taken expectation over x and t in the above equation, we have

JCSM(θ) + Ex∼pEtwtCx,t

=EtwtEx∼pEy0∼π̂(y0|x)Eyt∼pt|0(yt|y0)∥sθ(yt;x, t)−∇yt
log pt|0(yt|y0)∥22

=EtwtEx∼pEy0∼qH(x,y0)Eyt∼pt|0(yt|y0)∥sθ(yt;x, t)−∇yt
log pt|0(yt|y0)∥22

=JCDSM(θ).

(A-11)

Since Ex∼pEtwtCx,t is a constant to θ, we have

∇θJCDSM(θ) = ∇θJCSM(θ). (A-12)
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B.3 Assumptions and Proof of Theorem 2

Theorem 2. Suppose the assumptions in Appendix B.3.1 hold, and wt = g(t)2, then we have

Ex∼pW2

(
psde(·|x), π(·|x)

)
≤C1

∥∥∇π̂L(π̂, uω̂, vω̂)
∥∥
1
+

√
C2JCSM(θ̂)

+C3Ex∼pW2 (pT (·|x), pprior) ,
(A-13)

where C1, C2, and C3 are constants to ω̂ and θ̂.

B.3.1 Assumptions

(1) f(y, t) is Lipschitz continuous in the space variable y: there exists a positive constant Lf (t) ∈
(0,∞) depending on t ∈ [0, T ] such that for all y1,y2,

∥f(y1, t)− f(y2, t)∥2 ≤ Lf (t)∥y1 − y2∥2. (A-14)

(2) sθ(y;x, t) satisfies the one-sided Lipschitz condition: there exists a constant Ls(t) depending on
t, such that for all y1,y2,

(sθ(y1;x, t)− sθ(y2;x, t))(y1 − y2) ≤ Ls(t)∥y1 − y2∥2, (A-15)

for any x.

(3) For any x, Eπ̂(·|x)[| log π̂(·|x)|],Eπ̂(·|x)[log |Λ(y)|],Epprior
[| log pprior|], and Epprior

[log |Λ(y)|]
are finite, where Λ(y) = logmax(∥y∥2, 1).

(4) There exists positive constants A1 and A2 such that

f(y, t)y ≤ A1∥y∥2 +A2,∀y,∀t ∈ [0, T ]. (A-16)

(5) There exists a positive constant A3 such that

1

A3
< g(t) < A3,∀t ∈ [0, T ]. (A-17)

(6)
∫ T

0
Ept(·|x)[f

2] dt,
∫ T

0
Eqt(·|x)[(f − g2sθ)] dt are finite for any x, where qt(yt|x) is the distribu-

tion produced by the reverse SDE in Eq. (10) at time t.

(7) π̂(·|x), pprior are in C2 w.r.t. y for any x. f, g, sθ are in C2 w.r.t. y and t for any x.

(8) There exists k > 0 such that pt(y|x) = O(exp(−∥y∥k2)) and qt(y|x) = O(exp(−∥y∥k2)) for
any t ∈ [0, T ] and any x.

(9) L(π, u, v) is κ-strongly convex in L1-norm w.r.t. π.

Assumptions (1)-(8) are based on the assumptions in [4] that investigates the bound for unconditional
SBDMs. For Assumption (9), L(π, u, v) is strongly convex as proved in [5].

B.3.2 Proof

Since W2(·, ·) is a proper metric, using the triangle inequality, we have

Ex∼pW2

(
psde(·|x), π(·|x)

)
≤ Ex∼pW2

(
psde(·|x), π̂(·|x)

)
+ Ex∼pW2 (π̂(·|x), π(·|x)) . (A-18)

We next respectively bound the right-side terms.

Bounding Ex∼pW2

(
psde(·|x), π̂(·|x)

)
. Let I(t) = exp

(∫ t

0
Lf (r) + Ls(r)g(r)

2 dr
)

. Accord-
ing to Corollary 1 in [4], for any x, we have

W2

(
psde(·|x), π̂(·|x)

)
≤

√√√√T

(∫ T

0

g(t)2I(t)2 dt

)
J x
SM(θ̂) + I(T )W2 (pT (·|x), pprior) , (A-19)
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where J x
SM(θ̂) = EtwtEyt∼pt(y|x)∥sθ̂(yt;x, t)−∇yt log pt(yt|x)∥22. Taking expectation over x in

Eq. (A-19), we have

Ex∼pW2

(
psde(·|x), π̂(·|x)

)
≤ Ex∼p


√√√√T

(∫ T

0

g(t)2I(t)2 dt

)
J x
SM(θ̂)


+ I(T )Ex∼pW2 (pT (·|x), pprior) .

(A-20)

Since
√
x is concave in [0,∞), using the Jesen-Inequality, we have E[

√
x] ≤

√
E[x]. Therefore,

Ex∼pW2

(
psde(·|x), π̂(·|x)

)
≤

√√√√T

(∫ T

0

g(t)2I(t)2 dt

)
Ex∼p[J x

SM(θ̂)] + I(T )Ex∼pW2 (pT (·|x), pprior)

=

√√√√T

(∫ T

0

g(t)2I(t)2 dt

)
JCSM(θ̂) + I(T )Ex∼pW2 (pT (·|x), pprior) .

(A-21)

Let C2 = T
(∫ T

0
g(t)2I(t)2 dt

)
and C3 = I(T ). Then, we have

Ex∼pW2

(
psde(·|x), π̂(·|x)

)
≤
√

C2JCSM(θ̂) + C3Ex∼pW2 (pT (·|x), pprior) . (A-22)

Bounding Ex∼pW2 (π̂(·|x), π(·|x)). According to Remark 2.26 in [6] (the relation between the
Wasserstein distance and L1-distance), we have

W2(µ, ν) ≤ max
x,y∈X

{∥x− y∥2}∥µ− ν∥1, (A-23)

for any µ, ν supported on X . We then have

W2 (π̂(·|x), π(·|x)) ≤ max
y,y′∈Y

{∥y − y′∥2}∥π̂(·|x)− π(·|x)∥1 = η∥π̂(·|x)− π(·|x)∥1 (A-24)

for any x, where we denote η = maxy,y′∈Y{∥y − y′∥2}. Therefore,

Ex∼pW2 (π̂(·|x), π(·|x)) ≤ ηEx∼p∥π̂(·|x)− π(·|x)∥1

= η

∫
p(x)

∫ ∣∣π̂(y|x)− π(y|x)
∣∣dy dx

= η

∫ ∣∣p(x)π̂(y|x)− p(x)π(y|x)
∣∣ dy dx

= η

∫ ∣∣π̂(x,y)− π(x,y)
∣∣dx dy

= η
∥∥π̂ − π

∥∥
1
.

(A-25)

By virtue to Theorem 4.3 in [5], we have

∥π̂ − π∥1 ≤ 1

κ

∥∥∇π̂L(π̂, uω̂, vω̂)
∥∥
1
. (A-26)

We therefore have
Ex∼pW2(π̂(·|x), π(·|x)) ≤

η

κ

∥∥∇π̂L(π̂, uω̂, vω̂)
∥∥
1
. (A-27)

Let C1 = η
κ , we have

Ex∼pW2(π̂(·|x), π(·|x)) ≤ C1

∥∥∇π̂L(π̂, uω̂, vω̂)
∥∥
1
. (A-28)

Combining Eqs. (A-18), (A-22), and (A-28), we have

Ex∼pW2

(
psde(·|x), π(·|x)

)
≤C1

∥∥∇π̂L(π̂, uω̂, vω̂)
∥∥
1
+

√
C2JCSM(θ̂)

+C3Ex∼pW2 (pT (·|x), pprior) .
(A-29)

The proof is completed.
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C Experimental Details

We provide the details for learning the potentials uω(x), vω(y), training the conditional score-based
model sθ(y;x, t), generating data in inference, and computing the metric Acc. All the experiments
are conducted using 2 NVIDIA Tesla V100 32GB GPUs. The codes are in pytorch [7].

C.1 Details for Toy Data Experiment in Figure 2

Architectures of uω, vω. The architectures of both of uω and vω are FC(1,1024) → Tanh →
FC(1024,1), where FC(a, b) is the fully-connected layer with input/output dimension of a/b and Tanh
is the activation function.

Details for learning uω, vω. We use the L2-regularized unsupervised OT where c is taken as the
squared L2-distance. The learning rate is 1e-5. The batch size B′ is set to 256. The Adam algorithm
is employed to update the parameters.

Architecture of sθ. The backbone of sθ is FC(1,512) → SiLU → FC(512,512) → SiLU → FC(512,1),
where SiLU is the activation function. We add the embedding of time t and condition x to the
activation of SiLU. The embedding block for t is GaussianFourierProjection(256) → FC(256,512) →
SiLU → FC(512,512). The embedding block for x is FC(1,512) → SiLU → FC(512,512) → SiLU
→ FC(512,512). The GaussianFourierProjection has been adopted in [1].

Details for training sθ and inference. We take the VE-SDE with α = 25, and T = 1. We set
wt = σ2

t , the batch size B = 32, L = 10B in Algorithm 3. The learning rate is 1e-4. The Adam
algorithm and the exponential moving average for model parameters with decay=0.999 are applied.
We take the Euler-Maruyama method to perform the reverse SDE for generating data in inference.
The initial state yT is sampled from the pprior = N (0, σ2

T I).

C.2 Details for Unpaired Super-Resolution

Architectures of uω, vω . The architectures of uω and vω are FC(12288,512) → SiLU → FC(512,512)
→ SiLU → FC(512,512) → SiLU → FC(512,512) → SiLU → FC(512,512) → SiLU → FC(512,512)
→ SiLU → FC(512,1). We reshape the input images from size (64,64,3) to size 12288. The design
of the architectures is inspired by [5].

Details for learning uω, vω. We use the L2-regularized unsupervised OT where c is taken as the
mean squared L2-distance (following [5]), and ϵ is set to 1e-7. The learning rate is 1e-6. The batch
size B′ is set to 64. The Adam algorithm is employed to update the parameters.

Architecture of sθ. The backbone of sθ is based on the architecture of DDIM [8] on CelebA dataset
for unconditional image generation. We apply the condition to the backbone by concatenating
the degenerated image x with the noisy image yt as input, inspired by [9] that tackles the paired
super-resolution.

Details for training sθ and inference. We take the VP-SDE with βmin = 0.1, βmax = 20, and
T = 1. We set wt = σ2

t , the batch size B = 64 in Algorithm 2. The learning rate is 2e − 4. The
Adam algorithm and the exponential moving average for model parameters with decay=0.999 are
applied. To facilitate the training, we take the trained model in [8] on CelebA images as initialization.
In inference, we take the sampling method in DDIM to perform the reverse SDE to generate data.
Following [10, 11], we add noise to the low-resolution images by sampling yM from pM |0(yM |x)
as the initial state. M is set to 0.2.

C.3 Details for Semi-paired Image-to-Image Translation on Animal Images

In experiments, we randomly choose 1000/150 images for each species for training/testing.

Architectures of uω, vω . The architectures of uω and vω consist of a feature extractor and a head. We
take the image encoder “ViT-B/32” of CLIP [12] as the feature extractor. The feature extractor is fixed
in training. The architecture of the head is the same as that of uω, vω for unpaired super-resolution
except that the input dimension is 512.

Details for learning uω, vω. We use the L2-regularized semi-supervised OT where c is taken as
the cosine distance of extracted features by the above feature extractor, and ϵ is set to 1e-5. The
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learning rate is 1e-6. The batch size B′ is set to 64. The Adam algorithm is employed to update the
parameters.

Architecture of sθ. The architecture of sθ is based on the architecture of model of ILVR [13] on
dog images for unconditional image generation. We add the embedding of condition x to the output
of each residual block. The embedding block for condition x comprises the feature extractor as
mentioned above followed by an embedding module. The architecture of the embedding module is
FC(512,512) → SiLU → FC(512,512).

Details for training sθ, inference, and computing the Acc. We take the VP-SDE with βmin =
0.1, βmax = 20, and T = 1. We set wt = σ2

t , the batch size B = 16 in Algorithm 2. The learning
rate is 2e− 5. The Adam algorithm and the exponential moving average for model parameters with
decay=0.999 are applied. To facilitate the training, we take the trained model in [13] on dog images
as initialization. In inference, we take the sampling method in DDIM to perform the reverse SDE to
generate data. The initial state yT is sampled from the pprior = N (0, I). To compute the metric Acc,
we classify the translated images using CLIP (“ViT-B/32”) into the candidate classes of lion, tiger,
and wolf. We then compute the precision against the ground-truth translated classes.

C.4 Details for Semi-paired Image-to-Image Translation on Digits

Architectures of uω, vω . The architectures of uω and vω are the same as the architectures of uω, vω
for unpaired super-resolution except that the input dimension is 784. We reshape the input images
from size (28,28) to size 784.

Details for learning uω, vω. We use the L2-regularized semi-supervised OT where c is taken as
the cosine distance of extracted features by a pre-trained feature extractor, and ϵ is set to 1e-5. The
learning rate is 1e-6. The batch size B′ is set to 64. The Adam algorithm is employed to update
the parameters. We train auto-encoders (consisting of an encoder and a decoder) for MNIST and
Chinese-MNIST respectively, and the encoder is taken as the feature extractor. The architecture of
the encoder is Conv(1,64,4,2,0) → BN → SiLU → Conv(64,128,4,2,0) → BN → SiLU → Conv(128,
128,3,1,0) → BN → SiLU, where “BN” is the Batch Normalization layer. The architecture of
the encoder is Conv(128,128,3,1,0) → BN → SiLU → Tconv(128,64,4,2,0) → BN → SiLU →
Tconv(64,1,4,2,0) → Sigmoid, where Tconv is the transposed convolutional layer, and Sigmoid is the
activation function. We use Adam algorithm to train the auto-encoder with learning rate 1e-4.

Architecture of sθ. The backbone of sθ is the architecture of model [1] on MNIST for unconditional
image generation. We add the embedding of condition x to the output of each residual block. The
embedding block for condition x is FC(784,512) → SiLU → FC(512,512) → SiLU → FC(512,256).

Details for training sθ, inference, and computing the Acc. We take the VE-SDE with α = 25,
and T = 1. We set wt = σ2

t , the batch size B = 32 in Algorithm 2. The learning rate is 1e-4. The
Adam algorithm and the exponential moving average for model parameters with decay=0.999 are
applied. In inference, we take the Predictor-Corrector algorithm in [1] to perform the reverse SDE to
generate data, where the predictor is taken as the Euler-Maruyama method. The initial state yT is
sampled from the pprior = N (0, σ2

T I). To compute the metric Acc, we classify the translated images
using a classifier (LeNet) trained on Chinese-MNIST. We then compute the precision against the
ground-truth translated classes.

D Additional Experimental Analysis and Results

D.1 Additional Experimental Analysis

Guided images sampled based on OT. We show the examples of guided high-resolution images
sampled based on OT in Fig. A-1. We can observe that the guided high-resolution images share
similar structures to the given degenerated image.
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Figure A-1: Examples of guided high-resolution images (i.e., H(x,y) > 0) chosen from B1 based
on OT for the given degenerated low-resolution image x from A0 in training. Note that considering
the numerical issue, we choose the guided high-resolution images y such that H(x,y) > 0.01.

What happens to the compatibility on the source data with no good target to be paired? To
figure out what happens to the compatibility function H when there is no good target data, we conduct
the following experiments. Firstly, we count the number of source samples satisfying that there is
no target sample such that H > 0.001, in CelebA dataset. We find that 25.9% of source samples
meets such condition. Note that the other source samples are often with H larger than 1000 on some
target samples (since the ϵ is 1e-7 in Eq. (7)). Secondly, we add noisy images to the source dataset to
train the potentials uω and vω , and count the ratio of noisy images satisfying H < 0.001 on all target
samples. The results are reported in Table A-1. The noisy images are generated from the standard
normal distribution and with the same shape as the source images.

Table A-1: Ratio of noisy images with H < 0.001 when adding varying numbers of noisy images to
the source dataset.

Number of noisy images : Number of clean images 0.1 : 1 0.2 : 1 0.3 : 1 0.4 : 1 0.5 : 1

Ratio of noisy images assigned with H < 0.001 89.3% 85.6% 83.9% 81.6% 80.2%

It can be seen that more than 80% of noisy images that are with no good target data are assigned
with near-to-zero H (H < 0.001), when the ratio of numbers of noisy images to clean images is in
[0.1,0.5].

Empirical comparison of the “soft” and “hard” coupling relationship. To study how sparse H
is, for each target image y, we denote the number of source image x with "non-zero H" as ny (i.e.,
ny = |{x : H(x,y) > 0.001}|, considering numerical issues) in CelebA dataset. The histogram of
ny is shown in the Table A-2.

Table A-2: Histogram of number ny of source images with "non-zero H" for target image y, where
the total numbers of both source images and target images are 80k.

Bins for ny [0,10) [10,20) [20,50) [50,100) [100,600) [600,80k]

Frequency 59600 8064 8468 3537 1716 0

We can see from Table A-2 that all the target images are with ny ≤ 600, and more than 70% of target
images are with ny ≤ 10. This implies that for each y in more than 70% target images, there are
no more than 10 among 80K source images x satisfying H(x,y) > 0.001. So H is sparse to some
extent. We also count the number of target images with ny = 1 (ny = 1 means that each target image
is paired with one source image), which is 8579 (around 10%). These empirical results indicate that
H may provide a ”soft" coupling relationship, since there may exist multiple source images with
"non-zero H" for most target images.

Stability and convergence of training process for learning uω and vω. We show the objective
function (Eq. (6)) in training in Figs. A-2(a-b). We can see that the objective function first increases
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and then converges, under learning rates 1e-5 and 1e-6. We notice that different uω and vω may yield
the same H , (e.g., uω(x) + c and vω(y)− c yield the same H(x,y) as uω(x) and vω(y), as in Eq.
(7)). We then show the relative change of H in training in Fig. 2(c). We can see that the relative
difference of H first decreases and fluctuates near to zero, which may be because the optimization is
based on approximated gradients over mini-batch. The 1

ϵ (ϵ = 1e-5 or 1e-7 in experiments) in Eq. (6)
may yield large gradients. We then choose a small learning rate to stabilize the training.
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Figure A-2: (a-b) Curves of objective function in Eq. (6) under learning rates lr = 1e − 5 and
lr = 1e − 6 with ϵ = 1e − 5. (c) Relative difference of H in training. The relative difference of
H is defined as ∥Hi−Hi+∆∥p,q

∥Hi∥p,q
, where the norm ∥H∥p,q =

[
EpEqH(x,y)2

]1/2
(i.e., the L2-norm

of functions on the sample space associated to measure p⊗ q). Hi is the function at training step i.
To reduce the computational cost, we set ∆ = 10000. p and q are distributions of source and target
training data.

On the choice of ϵ. To better approach the original OT in Eqs. (2-3) by the L2-regularized OT in
Eq. (5) so that the OT guidance could be better achieved, the ϵ should be small. However, due to the
term 1

ϵ in the objective function in Eq. (6), smaller ϵ may suffer from numerical issues in training. As
a balance, we empirically choose a ϵ from candidate values 1e-5, 1e-6, 1e-7 such that the training
is more stable. We show the objective function curves under varying ϵ in Fig. A-3. The training
curves seem to be stable in general. We have also reported the results with varying ϵ in Table A-3.
From Table A-3, we can see that FID ranges in [13.68, 14.56] (which seems to be stable) for ϵ in
[1e-7,1e-3]. We can also see that Acc is similar for ϵ in 1e-7, 1e-6,1e-5, and decreases as ϵ increases
from 1e-5 to 1e-3.
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Figure A-3: The curves of objective function in training under varying ϵ with learning rate lr = 1e−6.

Table A-3: Results of OTCS using varying ϵ.

ϵ 1e-7 1e-6 1e-5 1e-4 1e-3

FID ↓ 14.56 14.12 13.68 13.52 13.91
Acc ↑ 95.11 96.00 96.44 90.22 77.78

Computational cost. We report the computational time cost of our training process in this paragraph.
As illustrated in Algorithm 2 in the Appendix A, our method consists of three processes in training:
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(1) learning the potentials uω & vω, (2) computing H & storing the target sample indexes with
non-zero H(H > 0.001) for each source sample, and (3) training the score-based model sθ. We
report the computational time cost of these three processes in the following Table A-4.

Table A-4: Computational time cost of training processes.

Dataset Learning uω & vω (30w steps) Computing & storing H Training sθ (60w steps)

CelebA 3.5 hours 0.5 hours 5 days
Animal 2.0 hours 0.05 hours 5 days

From Table A-4, we can see that (1) learning uω & vω and (2) computing & storing H takes no more
than 4 hours. Similarly to the other diffusion approaches, (3) training our score-based model sθ takes
a few days.
Computational time of each operation in a single step of training sθ. In each step of training
the score-based model sθ, we sequentially (1) sampling the index of target sample with probability
proportional to H for a randomly selected source sample index (sampling index), then (2) load
corresponding images (loading image), and (3) finally feed data to network and update model
parameters (updating network). Compared with the training of score-based model for paired setting,
our training additionally contains the operation of sampling index. From Table A-5, we can see that
sampling index takes much less time than updating network.

Table A-5: Computational time of operations in a single step of training sθ on Animal dataset.

Sampling index Loading image Updating network

0.0005 seconds 0.01 seconds 0.7 seconds

D.2 Additional Results on Toy Data Experiments

Results of OTCS under varying ϵ. We show the results of OTCS under varying ϵ in Fig. A-4. We
can see that the histogram of generated samples by OTCS fits the estimated conditional transport plan
when ϵ is 0.01, 0.001, and 0.0001.
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Figure A-4: The histogram (“hist”) of generated samples by our proposed OTCS and the estimated
conditional transport plan π̂(y| − 4) under varying ϵ.

Results of OTCS under varying conditions. We show the results of OTCS for varying condition
x in Fig. A-5. We can see that the histogram of generated samples by OTCS fits the estimated
conditional transport plan for x = −5,−4,−3.

11



0 1 2 3 4 5 6 7 8
y

0

2

4

6

8

10

De
ns

ity

(y| 5)
hist

(a) x = −5

0 1 2 3 4 5 6 7 8
y

0

2

4

6

8

10

De
ns

ity

(y| 4)
hist

(b) x = −4

0 1 2 3 4 5 6 7 8
y

0

2

4

6

8

10

De
ns

ity

(y| 3)
hist

(c) x = −3

Figure A-5: The histogram (“hist”) of generated samples by our proposed OTCS and the estimated
conditional transport plan π̂(y|x) under varying condition x. ϵ = 0.0001 in this experiment.

D.3 Additional Results in Unpaired Super-Resolution

Results of different methods in unpaired super-resolution. In Figs. A-6 and A-7, we visualize
the translated images by our proposed OTCS, adversarial training-based OT methods of NOT and
KNOT, and diffusion-based methods of SCONES, EGSDE, and DDIB. We can see that OTCS, NOT,
and KNOT better preserve the identity/structure than SCONES, EGSDE, and DDIB. OTCS produces
clearer translated images than NOT. The translated images by KNOT have artifacts (please zoom in
on the figure to see the artifacts).
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KNOT

SCONES
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Figure A-6: Translated images by our proposed OTCS, adversarial training-based OT methods of
NOT and KNOT, and diffusion-based methods of SCONES, EGSDE, and DDIB.
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Figure A-7: Translated images by our proposed OTCS, adversarial training-based OT methods of
NOT and KNOT, and diffusion-based methods of SCONES, EGSDE, and DDIB.

Translated images by SCONES and OTCS with different initial strategies in reverse SDE in
inference. We show the translated images of SCONES and our proposed OTCS in Fig. A-8 with
different initialization strategies in inference. We can observe that for the smaller initial noise scales
(0.2 and 0.4), the translated images by SCONES are not realistic. For larger initial noise scales
(0.8 and 1.0), the structures of translated images by SCONES are apparently different from those
of degenerated images. The translated images by OTCS seem to be more realistic and share better
structure similarity to degenerated images than SCONES, under different initial noise scales.
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Figure A-8: Translated images by SCONES and OTCS with different initialization in inference. We
consider the following initialization strategies: 1) We sample a noisy data yM from pM |0(yM |x) as
initial state, and the reverse SDE starts at time M . x is the degenerated image and M is set to 0.2,
0.4, 0.8, and 1.0; 2) We directly generate a random noise yT from N (0, I) as initial state (denoted as
“Rand”).
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D.4 Additional Results in Semi-paired I2I

Translated animal images by different methods. We provide translated animal images by different
methods in Figs. A-9, A-10, and A-11. We can see that OTCS better translates the source images to
high-quality target images of desired species than the other methods.
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Figure A-9: Translated images of cat by different methods. With the guidance of paired images, we
expect the images of cat to be translated into images of lion.
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Figure A-10: Translated images of fox by different methods. With the guidance of paired images, we
expect the images of fox to be translated into images of tiger.
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Figure A-11: Translated images of leopard by different methods. With the guidance of paired images,
we expect the images of leopard to be translated into images of wolf.
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Figure A-12: Translated images by OTCS using models at varying training steps, in which we
consider different initial time in reverse SDE for generating samples.

D.5 Results for Trained Models at Different Training Steps

In Figs. A-12, A-13, and A-14, we show the translated images by OTCS in unpaired super-resolution
using trained models at varying training steps, in which we consider different initial time M in reverse
SDE for generating samples.
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Figure A-13: Translated images by OTCS using trained models at varying training steps, in which we
consider different initial time in reverse SDE for generating samples.
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Figure A-14: Translated images by OTCS using models at varying training steps, in which we
consider different initial time in reverse SDE for generating samples.
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