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Abstract

Conditional score-based diffusion model (SBDM) is for conditional generation
of target data with paired data as condition, and has achieved great success in
image translation. However, it requires the paired data as condition, and there
would be insufficient paired data provided in real-world applications. To tackle
the applications with partially paired or even unpaired dataset, we propose a novel
Optimal Transport-guided Conditional Score-based diffusion model (OTCS) in
this paper. We build the coupling relationship for the unpaired or partially paired
dataset based on L2-regularized unsupervised or semi-supervised optimal transport,
respectively. Based on the coupling relationship, we develop the objective for
training the conditional score-based model for unpaired or partially paired settings,
which is based on a reformulation and generalization of the conditional SBDM
for paired setting. With the estimated coupling relationship, we effectively train
the conditional score-based model by designing a “resampling-by-compatibility”
strategy to choose the sampled data with high compatibility as guidance. Exten-
sive experiments on unpaired super-resolution and semi-paired image-to-image
translation demonstrated the effectiveness of the proposed OTCS model. From the
viewpoint of optimal transport, OTCS provides an approach to transport data across
distributions, which is a challenge for OT on large-scale datasets. We theoretically
prove that OTCS realizes the data transport in OT with a theoretical bound. Code
is available at https://github.com/XJTU-XGU/OTCS.

1 Introduction

Score-based diffusion models (SBDMs) [1–8] have gained much attention in data generation. SBDMs
perturb target data to a Gaussian noise by a diffusion process and learn the reverse process to transform
the noise back to the target data. The conditional SBDMs [2, 9–13] that are conditioned on class
labels, text, low-resolution images, etc., have shown great success in image generation and translation.
The condition data and target data in the conditional SBDMs [2, 9–13] are often paired. That is, we
are given a condition for each target sample in training, e.g., in the super-resolution [10, 14, 15], each
high-resolution image (target data) in training is paired with its corresponding low-resolution image
(condition). However, in real-world applications, there could not be sufficient paired training data, due
to the labeling burden. Therefore, it is important and valuable to develop SBDMs for applications with
only unpaired or partially paired training data, e.g., unpaired [16] or semi-paired [17] image-to-image
translation (I2I). Though there are several SBDM-based approaches [18–22] for unpaired I2I, the
score-based models in these approaches are often unconditioned, and the conditions are imposed in
inference by cycle consistency [21], designing the initial states [19, 22], or adding a guidance term to
the output of the unconditional score-based model [18, 20]. It is unclear how to train the conditional
score-based model with unpaired training dataset. For the task with a few paired and a large number
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of unpaired data, i.e., partially paired dataset, there are few SBDMs for tackling this task, to the best
of our knowledge.

This paper works on how to train the conditional score-based model with unpaired or partially paired
training dataset. We consider the I2I applications in this paper where the condition data and target data
are images respectively from different domains. The main challenges for this task are: 1) the lack of
the coupling relationship between condition data and target data hinders the training of the conditional
score-based model, and 2) it is unclear how to train the conditional score-based model even with an
estimated coupling relationship, because it may not explicitly provide condition-target data pairs as in
the setting with paired data. We propose a novel Optimal Transport-guided Conditional Score-based
diffusion model (OTCS) to address these challenges. Note that different from the existing OT-related
SBDMs that aim to understand [23] or promote [24, 25] the unconditional score-based models, our
approach aims to develop the conditional score-based model for unpaired or partially paired data
settings guided by OT.

We tackle the first challenge based on optimal transport (OT). Specifically, for applications with
unpaired setting, e.g., unpaired super-resolution, practitioners often attempt to translate the condition
data (e.g., low-resolution images) to target domain (e.g., consisting of high-resolution images) while
preserving image structures [26], etc. We handle this task using unsupervised OT [27] that transports
data points across distributions with the minimum transport cost. The coupling relationship of
condition data and target data is modeled in the transport plan of unsupervised OT. For applications
with partially paired setting, it is reasonable to utilize the paired data to guide building the coupling
relationship of unpaired data, because the paired data annotated by humans should have a reliable
coupling relationship. The semi-supervised OT [28] is dedicated to leveraging the annotated keypoint
pairs to guide the matching of the other data points. So we build the coupling relationship for partially
paired dataset using semi-supervised OT by taking the paired data as keypoints.

To tackle the second challenge, we first provide a reformulation of the conditional SBDM for paired
setting, in which the coupling relationship of paired data is explicitly considered. Meanwhile, the
coupling relationship in this reformulation is closely related to the formulation of the coupling from
L2-regularized OT. This enables us to generalize the objective of the conditional SBDM for paired
setting to unpaired and partially paired settings based on OT. To train the conditional score-based
model using mini-batch data, directly applying the standard training algorithms to our approach
can lead to sub-optimal performance of the trained conditional score-based model. To handle this
challenge, we propose a new “resampling-by-compatibility” strategy to choose sampled data with
high compatibility as guidance in training, which shows effectiveness in experiments.

We conduct extensive experiments on unpaired super-resolution and semi-paired I2I tasks, showing
the effectiveness of the proposed OTCS for both applications with unpaired and partially paired
settings. From the viewpoint of OT, the proposed OTCS offers an approach to transport the data points
across distributions, which is known as a challenging problem in OT on large-scale datasets. The
data transport in our approach is realized by generating target samples from the optimal conditional
transport plan given a source sample, leveraging the capability of SBDMs for data generation.
Theoretically and empirically, we show that OTCS can generate samples from the optimal conditional
transport plan of the L2-regularized unsupervised or semi-supervised OTs.

2 Background

Our method is closely related to OT and conditional SBDMs, which will be introduced below.

2.1 Conditional SBDMs with Paired Data

The conditional SBDMs [2, 6, 9–13] aim to generate a target sample y from the distribution q of
target training data given a condition data x. For the paired setting, each target training sample
y is paired with a condition data xcond(y). The conditional SBDMs with paired dataset can be
roughly categorized into two types, respectively under the classifier guidance [6] and classifier-free
guidance [2, 9–13]. Our approach is mainly related to the second type of methods. These methods
use a forward stochastic differential equation (SDE) to add Gaussian noises to the target training
data for training the conditional score-based model. The forward SDE is dyt = f(yt, t) dt +
g(t) dw with y0 ∼ q, and t ∈ [0, T ], where w ∈ RD is a standard Wiener process, f(·, t) : RD →
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RD is the drift coefficient, and g(t) ∈ R is the diffusion coefficient. Let pt|0 be the conditional
distribution of yt given the initial state y0, and pt be the marginal distribution of yt. We can
choose the f(y, t), g(t), and T such that yt approaches some analytically tractable prior distribution
pprior(yT ) at time t = T , i.e., pT (yT ) ≈ pprior(yT ). We take f, g, T , and pprior from two popular
SDEs, i.e., VE-SDE and VP-SDE [3] (please refer to Appendix A for model details). The conditional
score-based model is trained by denoising score-matching loss:

JDSM(θ) = EtwtEy0∼qEyt∼pt|0(yt|y0)

∥∥sθ(yt;xcond(y0), t)−∇yt
log pt|0(yt|y0)

∥∥2
2
, (1)

where wt is the weight for time t. In this paper, t is uniformly sampled from [0, T ], i.e., t ∼ U([0, T ]).
With the trained sθ̂(y;x, t), given a condition data x, the target sample y0 is generated by the reverse
SDE as dyt =

[
f(yt, t)− g(t)2sθ̂(yt;x, t)

]
dt+ g(t) dw̄, where w̄ is a standard Wiener process in

the reverse-time direction. This process starts from a noise sample yT and ends at t = 0.

2.2 Optimal Transport

Unsupervised OT. We consider a source distribution p and a target distribution q. The unsupervised
OT [29] aims to find the optimal coupling/transport plan π, i.e., a joint distribution of p and q, such
that the transport cost is minimized, formulated as the following optimization problem:

min
π∈Γ

E(x,y)∼πc(x,y), s.t. Γ = {π : Tx
#π = p, Ty

#π = q}, (2)

where c is the cost function. Tx
#π is the marginal distribution of π w.r.t. random variable x. Tx

#π = p

means
∫
π(x,y) dy = p(x),∀x ∈ X . Similarly, Ty

#π = q indicates
∫
π(x,y) dx = q(y),∀y ∈ Y .

Semi-supervised OT. The semi-supervised OT is pioneered by [28, 30]. In semi-supervised OT,
a few matched pairs of source and target data points (called “keypoints”) K = {(xk,yk)}Kk=1 are
given, where K is the number of keypoint pairs. The semi-supervised OT aims to leverage the given
matched keypoints to guide the correct transport in OT by preserving the relation of each data point
to the keypoints. Mathematically, we have

min
π̃∈Γ̃

E(x,y)∼m⊗π̃g(x,y), s.t. Γ̃ = {π̃ : Tx
#(m⊗ π̃) = p, Ty

#(m⊗ π̃) = q}, (3)

where the transport plan m⊗ π̃ is (m⊗ π̃)(x,y) = m(x,y)π̃(x,y), and m is a binary mask function.
Given a pair of keypoints (xk0

,yk0
) ∈ K, then m(xk0

,yk0
) = 1, m(xk0

,y) = 0 for y ̸= yk0
, and

m(x,yk0
) = 0 for x ̸= xk0

. m(x,y) = 1 if x,y do not coincide with any keypoint. The mask-based
modeling of the transport plan ensures that the keypoint pairs are always matched in the derived
transport plan. g in Eq. (3) is defined as g(x,y) = d(Rs

x, R
t
y), where Rs

x, R
s
y ∈ (0, 1)K model the

vector of relation of x, y to each of the paired keypoints in source and target domain respectively, and
d is the Jensen–Shannon divergence. The k-th elements of Rs

x and Rs
x are respectively defined by

Rs
x,k =

exp(−c(x,xk)/τ)∑K
l=1 exp(−c(x,xl)/τ)

, Rt
y,k =

exp(−c(y,yk)/τ)∑K
l=1 exp(−c(y,yl)/τ)

, (4)

where τ is set to 0.1. Note that, to ensure feasible solutions, the mass of paired keypoints should be
equal, i.e., p(xk) = q(yk),∀(xk,yk) ∈ K. Please refer to [28] for more details.

L2-regularized unsupervised and semi-supervised OTs. As in Eqs. (2) and (3), both the unsuper-
vised and semi-supervised OTs are linear programs that are computationally expensive to solve for
larger sizes of training datasets. Researchers then present the L2-regularized versions of unsupervised
and semi-supervised OTs that can be solved by training networks [31, 32]. The L2-regularized
unsupervised and semi-supervised OTs are respectively given by

min
π∈Γ

E(x,y)∼πc(x,y) + ϵχ2(π∥p× q) and min
π̃∈Γ̃

E(x,y)∼m⊗π̃g(x,y) + ϵχ2(m⊗ π̃∥p× q), (5)

where χ2(π∥p× q) =
∫ π(x,y)2

p(x)q(y) dx dy, ϵ is regularization factor. The duality of the L2-regularized
unsupervised and semi-supervised OTs can be unified in the following formulation [31, 32]:

max
u,v

FOT(u, v) = Ex∼pu(x) + Ey∼qv(y)−
1

4ϵ
Ex∼p,y∼qI(x,y)

[
(u(x) + v(y)− ξ(x,y))+

]2
,

(6)
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Figure 1: Illustation of optimal transport-guided conditional score-based diffusion model. We build
the coupling π̂(x,y) of condition data (e.g., source images in I2I) x and target data y guided by
OT. Based on the coupling, we train the conditional score-based model sθ(y;x, t) by OT-guided
conditional denoising score-matching that uses the forward SDE to diffuse target data to noise. With
sθ(y;x, t), we generate data given the condition x using the reverse SDE in inference.

where a+ = max(a, 0). For unsupervised OT, I(x,y) = 1 and ξ(x,y) = c(x,y). For semi-
supervised OT, I(x,y) = m(x,y) and ξ(x,y) = g(x,y). In [31, 32], u, v are represented by neural
networks uω, vω with parameters ω that are trained by mini-batch-based stochastic optimization
algorithms using the loss function in Eq. (6). The pseudo-code for training uω, vω is given in
Appendix A. Using the parameters ω̂ after training, the estimate of optimal transport plan is

π̂(x,y) = H(x,y)p(x)q(y), where H(x,y) =
1

2ϵ
I(x,y) (uω̂(x) + vω̂(y)− ξ(x,y))+ . (7)

H is called compatibility function. Note that π̂ and H depend on c and ϵ, which will be specified in
experimental details in Appendix C.

3 OT-Guided Conditional SBDM

We aim to develop conditional SBDM for applications with unpaired or partially paired setting. The
unpaired setting means that there is no paired condition data and target data in training. For example,
in unpaired image-to-image translation (I2I), the source and target data in the training set are all
unpaired. For the partially paired setting, along with the unpaired set of condition data (e.g., source
data in I2I) and target data, we are also given a few paired condition data and target data.

We propose an Optimal Transport-guided Conditional SBDM, dubbed OTCS, for conditional diffusion
in both unpaired and partially paired settings. The basic idea is illustrated in Fig. 1. Since the
condition data and target data are not required to be paired in the training dataset, we build the
coupling relationship of condition and target data using OT [27, 28]. Based on the estimated coupling,
we propose the OT-guided conditional denoising score matching to train the conditional score-based
model in the unpaired or partially paired setting. With the trained conditional score-based model,
we generate a sample by the reverse SDE given the condition. We next elaborate on the motivations,
OT-guided conditional denoising score matching, training, and inference of our approach.

3.1 Motivations for OT-Guided Conditional SBDM

We provide a reformulation for the conditional score-based model with paired training dataset
discussed in Sect. 2.1, and this formulation motivates us to extend the conditional SBDM to unpaired
and partially paired settings in Sect. 3.2. Let q and p respectively denote the distributions of target
data and condition data. In the paired setting, we denote the condition data as xcond(y) for a target
data y, and p is the measure by push-forwarding q using xcond , i.e., p(x) =

∑
{y:xcond(y)=x} q(y)

over the paired training dataset.
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Proposition 1. Let C(x,y) = 1
p(x)δ(x−xcond(y)) where δ is the Dirac delta function, then JDSM(θ)

in Eq. (1) can be reformulated as

JDSM(θ) = EtwtEx∼pEy∼qC(x,y)Eyt∼pt|0(yt|y)
∥∥sθ(yt;x, t)−∇yt

log pt|0(yt|y)
∥∥2
2
. (8)

Furthermore, γ(x,y) = C(x,y)p(x)q(y) is a joint distribution for marginal distributions p and q.

The proof is given in Appendix B. From Proposition 1, we have the following observations. First, the
coupling relationship of condition data and target data is explicitly modeled in C(x,y). Second, the
joint distribution γ exhibits a similar formulation to the transport plan π̂ in Eq. (7). The definition
of C(x,y) in Proposition 1 is for paired x,y. While for the unpaired or partially paired setting, the
definition of C(x,y) is not obvious due to the lack of paired relationship between x,y. We therefore
consider modeling the joint distribution of condition data (x) and target data (y) by L2-regularized
OT (see Sect. 2.2) for the unpaired and partially paired settings, in which the coupling relationship of
condition data and target data is built in the compatibility function H(x,y).

3.2 OT-Guided Conditional Denoising Score Matching

With the motivations discussed in Sects. 1 and 3.1, we model the coupling relationship between
condition data and target data for unpaired and partially paired settings using L2-regularized un-
supervised and semi-supervised OTs, respectively. Specifically, the L2-regularized unsupervised
and semi-supervised OTs are applied to the distributions p, q, and the coupling relationship of the
condition data x and target data y is built by the compatibility function H(x,y). We then extend the
formulation for paired setting in Eq. (8) by replacing C with H to develop the training objective for
unpaired and partially paired settings, which is given by

JCDSM(θ) = EtwtEx∼pEy∼qH(x,y)Eyt∼pt|0(yt|y)
∥∥sθ(yt;x, t)−∇yt

log pt|0(yt|y)
∥∥2
2
. (9)

Equation (9) is dubbed “OT-guided conditional denoising score matching”. In Eq. (9), H is a “soft”
coupling relationship of condition data and target data, because there may exist multiple x satisfying
H(x,y) > 0 for each y. While Eq. (8) assumes “hard” coupling relationship, i.e., there is only one
condition data x for each y satisfying C(x,y) > 0. We minimize JCDSM(θ) to train the conditional
score-based model sθ(yt;x, t). We will theoretically analyze that our formulation in Eq. (9) is still a
diffusion model in Sect. 3.5, and empirically compare the “soft” and “hard” coupling relationship in
Appendix D.

3.3 Training the Conditional Score-based Model

To implement JCDSM(θ) in Eq. (9) using training samples to optimize θ, we can sample mini-batch
data X and Y from p and q respectively, and then compute H(x,y) and Jx,y = EtwtEyt∼pt|0(yt|y)
∥sθ(yt;x, t)−∇yt

log pt|0(yt|y)∥22 over the pairs of (x,y) in X and Y . However, such a strategy
is sub-optimal. This is because given a mini-batch of samples X and Y , for each source sample x,
there may not exist target sample y in the mini-batch with a higher value of H(x,y) that matches
condition data x. Therefore, few or even no samples in a mini-batch contribute to the loss function
in Eq. (9), leading to a large bias of the computed loss and instability of the training. To tackle this
challenge, we propose a “resampling-by-compatibility” strategy to compute the loss in Eq. (9).

Resampling-by-compatibility. To implement the loss in Eq. (9), we perform the following steps:

• Sample x from p and sample Yx = {yl}Ll=1 from q;

• Resample a y from Yx with the probability proportional to H(x,yl);
• Compute the training loss Jx,y in the above paragraph on the sampled pair (x,y).

In implementation, uω and vω (introduced above Eq. (7) in Sect. 2.2) are often lightweight neural
networks, so H(x,yl) can be computed fast as in Eq. (7). In the applications where we are given
training datasets of samples, for each x in the set of condition data, we choose all the samples y in
the set of target data satisfying H(x,y) > 0 to construct Yx, and meanwhile store the corresponding
values of H(x,y). This is done before training sθ. During training, we directly choose y from Yx

based on the stored values of H , which speeds up the training process. Please refer to Appendix A
for the rationality of the resampling-by-compatibility.
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Algorithm. Before training sθ, we train uω, vω using the duality of L2-regularized unsupervised and
semi-supervised OTs in Eq. (6) for unpaired and partially paired settings, respectively. During training
sθ, in each iteration, we sample a mini-batch of condition data X = {xb}Bb=1 from p with batch
size B. For xb, we sequentially obtain a sample y using our resampling-by-compatibility strategy,
uniformly sample a t in [0, T ], and generate a noisy data yt from pt|0(yt|y). We then compute the
value of Jxb,y (defined in the first paragraph of this section) on t and yt, which is averaged over
all b as the final training loss. The parameters θ of sθ are then updated by stochastic optimization
algorithms, e.g., Adam. The pseudo-code of the training algorithm is given in Appendix A.

3.4 Sample Generation

We denote the trained conditional score-based model as sθ̂(y;x, t) where θ̂ is the value of θ after
training. Given the condition data x, we generate target samples by the following SDE:

dyt =
[
f(yt, t)− g(t)2sθ̂(yt;x, t)

]
dt+ g(t) dw̄, (10)

with the initial state yT ∼ pprior. The numerical SDE solvers, e.g., Euler-Maruyama method [33],
DDIM [34], and DPM-Solver [35], are then applied to solve the above reverse SDE.

3.5 Analysis

In this section, we analyze that by Eq. (10), our approach approximately generates samples from the
conditional transport plan π̂(y|x), where π̂(y|x) = H(x,y)q(y) is based on π̂(x,y) in Eq. (7).

Theorem 1. For x ∼ p, we define the forward SDE dyt = f(yt, t) dt+ g(t) dw with y0 ∼ π̂(·|x)
and t ∈ [0, T ], where f, g, T are given in Sect. 2.1. Let pt(yt|x) be the corresponding distribution
of yt and JCSM(θ) = EtwtEx∼pEyt∼pt(yt|x) ∥sθ(yt;x, t)−∇yt

log pt(yt|x)∥22, then we have
∇θJCDSM(θ) = ∇θJCSM(θ).

We give the proof in Appendix B. Theorem 1 indicates that the trained sθ(yt;x, t) using Eq. (9)
approximates ∇yt

log pt(yt|x). Based on Theorem 1, we can interpret our approach as follows.
Given a condition data x, we sample target data y0 from the conditional transport plan π̂(y0|x),
produce yt by the forward SDE, and train sθ(yt;x, t) to approximate ∇yt log pt(yt|x), as il-
lustrated in Fig. 1. This implies that Eq. (10) approximates the reverse SDE dyt = [f(yt, t)
−g(t)2∇yt log pt(yt|x)] dt + g(t) dw̄, by which the generated samples at time t = 0 are from
p0(y|x) = π̂(y|x) given the initial state yT ∼ pT (yT |x).

4 OTCS Realizes Data Transport for Optimal Transport

As discussed in Sect. 3, OTCS is proposed to learn the conditional SBDM guided by OT. In this
section, we will show that, from the viewpoint of OT, OTCS offers a diffusion-based approach to
transport data for OT. Given a source distribution p(x) and a target distribution q(y), the derived
coupling π(x,y) models the joint probability density function rather than the transported sample of
x. How to transport the source data points to the target domain is known to be a challenging problem
for large-scale OT [31, 36]. Based on π, Seguy et al. [31] transport x to the barycenter of π(·|x)
which is a blurred sample. Daniels et al. [26] transport x to a target sample generated from π(·|x). In
line with [26], we next theoretically show that our proposed OTCS can generate samples from π(·|x).
The comparison of OTCS with [26] will be given in the last paragraph of this section.

We next study the upper bound of the distance between the distribution (denoted as psde(y|x)) of
generated samples by OTCS and the optimal conditional transport plan π(y|x). For convenience, we
investigate the upper bound of the expected Wasserstein distance Ex∼pW2

(
psde(·|x), π(·|x)

)
. We

denote the Lagrange function for the L2-regularized unsupervised or semi-supervised OTs in Eq. (6)
as L(π, u, v) with dual variables u, v as follows:

L(π, u, v) =
∫ (

ξ(x,y)π(x,y) + ϵ
π(x,y)2

p(x)q(y)

)
dx dy

+

∫
u(x)

(∫
π(x,y) dy − p(x)

)
dx+

∫
v(y)

(∫
π(x,y) dx− q(y)

)
dy.

(11)
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Figure 2: 1-D example of L2-regularized unsupervised OT between p(x) = N (x| − 4, 1) and
q(y) = N (y|4, 1). (a) The gradient ∇y logH(−4,y). (b-c) The conditional transport plan π̂(y|−4)
and the histograms of generated samples by (b) SCONES and (c) OTCS with ϵ = 0.0001. (d) The
distance Dis = Ex∼pW2

(
psde(·|x), π(·|x)

)
for different ϵ computed using samples in which we

approximate psde(·|x) and π(·|x) by Gaussian distributions with corresponding mean and variance.

For semi-supervised OT, π is further constrained by π = m ⊗ π̃. We follow [26] to assume that
L(π, u, v) is κ-strongly convex in L1-norm w.r.t. π, and take the assumptions (see Appendix B)
in [37] that investigates the bound for unconditional SBDMs.

Theorem 2. Suppose the above assumption and the assumptions in Appendix B hold, and wt = g(t)2,
then we have

Ex∼pW2

(
psde(·|x), π(·|x)

)
≤C1

∥∥∇π̂L(π̂, uω̂, vω̂)
∥∥
1
+

√
C2JCSM(θ̂)

+C3Ex∼pW2 (pT (·|x), pprior) ,
(12)

where C1, C2, and C3 are constants to ω̂ and θ̂ given in Appendix B.

The proof is provided in Appendix B. In OTCS, we use uω and vω to respectively parameterize
u and v as discussed in Sect. 2.2. The trained uω̂ and vω̂ are the minimizer of the dual problem
in Eq. (6) that are near to the saddle point of L(π, u, v). This implies that the gradient norm
∥∇π̂L(π̂, uω̂, vω̂)∥1 of the Lagrange function w.r.t. the corresponding primal variable π̂ is minimized
in our approach. The conditional score-based model sθ is trained to minimize JCSM(θ) according to
Theorem 1. So the loss JCSM(θ̂) of trained sθ̂ is minimized. We choose the forward SDE such that
pT (·|x) is close to pprior, which minimizes Ex∼pW2 (pT (·|x), pprior). Therefore, OTCS minimizes
Ex∼pW2

(
psde(·|x), π(·|x)

)
, indicating that OTCS can approximately generate samples from π(·|x).

Comparison with related large-scale OT methods. Recent unsupervised OT methods [26, 38–40]
often parameterize the transport map by a neural network learned by adversarial training based on
the dual formulation [38–40], or generate samples from the conditional transport plan [26]. Our
method is mostly related to SCONES [26] that leverages the unconditional SBDM for generating
samples from the estimated conditional transport plan π̂(y|x). Motivated by the expression of
π̂(y|x) in Sect. 3.5, given source sample x, SCONES generates target sample y by the reverse
SDE dyt = [f(yt, t) − g(t)2 (∇yt

logH(x,yt) + sθ(yt; t))] dt + g(t) dw̄, where sθ(yt; t) is the
unconditional score-based model. The compatibility function H is trained on clean data. While in
SCONES, ∇yt logH(x,yt) is computed on noisy data yt for t > 0. OTCS computes H on clean data
as in Eq. (9). We provide a 1-D example in Fig. 2 to evaluate SCONES and OTCS. From Figs. 2(b-c),
we can see that the sample histogram, generated by OTCS given “-4” as condition, better fits π̂(·|−4).
In Fig. 2(d), OTCS achieves a lower expected Wasserstein distance Ex∼pW2

(
psde(·|x), π̂(·|x)

)
. In

SCONES, the gradient of H on noisy data could be inaccurate or zero (as shown in Fig. 2(a)), which
may fail to guide the noisy data yt to move towards the desired locations as t → 0. Our OTCS
utilizes H to guide the training of the conditional score-based model, without requiring the gradient
of H in inference. This may account for the better performance of OTCS.

5 Experiments

We evaluate OTCS on unpaired super-resolution and semi-paired I2I. Due to space limits, additional
experimental details and results are given in Appendix C and D, respectively.

7



Table 1: Quantitative results for unpaired super-resolution on Celeba and semi-paired I2I on Animal
images and Digits. The best and second best are respectively bolded and underlined.

Method Method Type Celeba Animal images Digits
FID ↓ SSIM ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑

W2GAN [42] OT 48.83 0.7169 118.45 33.56 97.06 29.13
OT-ICNN [38] OT 33.26 0.8904 148.29 38.44 50.33 10.84
OTM [39] OT 22.93 0.8302 69.27 33.11 18.67 9.48
NOT [43] OT 13.65 0.9157 156.07 28.44 23.90 15.72
KNOT [40] OT 5.95 0.8887 118.26 27.33 3.18 9.25
ReFlow [45] Flow 70.69 0.4544 56.04 29.33 138.59 11.57
EGSDE [20] Diffusion 11.49 0.3835 52.11 29.33 34.72 11.78
DDIB [44] Diffusion 11.35 0.1275 28.45 32.44 9.47 9.15
TCR [17] – – – 34.61 40.44 6.90 36.21
SCONES [26] OT, Diffusion 15.46 0.1042 25.24 35.33 6.68 10.37
OTCS (ours) OT, Diffusion 1.77 0.9313 13.68 96.44 5.12 67.42

Degenerated
images

Translated 
images

!
": $ !, " > 0

Figure 3: Left: The guided high-resolution images (i.e., y : H(x,y) > 0) sampled based on OT for
low-resolution image x in training. Right: results of OTCS on CelebA (64×64) in unpaired setting.

5.1 Unpaired Super-Resolution on CelebA Faces

We consider the unpaired super-resolution for 64×64 aligned faces on CelebA dataset [41]. Follow-
ing [26], we split the dataset into 3 disjointed subsets: A1 (90K), B1 (90K), and C1 (30K). For images
in each subset, we do 2× bilinear downsampling to obtain the low-resolution images, followed
by 2× bilinear upsampling to generate datasets of A0, B0, and C0 correspondingly. We train the
model on A0 and B1 respectively as the source and target datasets, and test on C0 for generating
high-resolution images. To apply OTCS to this task, we take B1 as target data and A0 as unpaired
source data. We use the L2-regularized unsupervised OT to estimate the coupling, where c is set
to the mean squared L2-distance. In testing, given a degenerated image x in C0 as condition, we
follow [19, 20] to sample noisy image yM from pM |0(y|x) as initial state and perform the reverse
SDE to generate the high-resolution image. M = 0.2 in experiments. Our approach is compared with
recent adversarial-training-based unsupervised OT methods [38–40, 42, 43], diffusion-based unpaired
I2I methods [20, 44], flow-based I2I method [45], and SCONES [26] (discussed in Sect. 4). We use
the FID score [46] to measure the quality of translated images, and the SSIM metric to measure the
structural similarity of each translated image to its ground-truth high-resolution image in C1.

In Tab. 1, OTCS achieves the lowest FID and the highest SSIM on CelebA dataset among the
compared methods. We can observe that in general, the adversarial-training-based OT methods [38–
40, 42, 43] achieve better SSIM than the diffusion-based methods [20, 26, 44, 45]. This could be
because the OT guidance is imposed in training by these OT methods. By contrast, the diffusion-based
methods [20, 26, 44, 45] generally achieve better FID than OT methods [38–40, 42, 43], which may
be attributed to the capability of diffusion models for generating high-quality images. Our OTCS
imposes the OT guidance in the training of diffusion models, integrating both advantages of OT and
diffusion models. In Fig. 3, we show the guided high-resolution images sampled based on OT (left)
and translated images by OTCS (right). We also report the FID (0.78) and SSIM (0.9635) of the
Oracle that uses true high-resolution images in A1 as paired data for training. We can see that OTCS
approaches the Oracle.

5.2 Semi-paired Image-to-Image Translation

We consider the semi-paired I2I task that a large number of unpaired along with a few paired images
across source and target domains are given for training. The goal of semi-paired I2I is to leverage the
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(a) Animal images (256×256) (b) Digits (28×28)

Figure 4: Results of OTCS for semi-paired I2I on (a) Animal images and (b) Digits. The bottom of
Fig. 4(b) plots source (odd columns) and corresponding translated (even columns) images.
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Figure 5: (a) Results of OTCS w/ and w/o RSC. (b-c) Results of OTCS with varying (b) numbers and
(c) samplings of paired data on Animal images. (d) Results of OTCS for different M on CelebA.

paired cross-domain images to guide the desired translation of source images to the target domain. To
apply our approach to the semi-paired I2I, we take the source images as condition data. We use the
L2-regularized semi-supervised OT to estimate the coupling. The cost c and c′ in Eq. (4) are taken as
the cosine dissimilarity of features using the image encoder of CLIP [47]. Apart from the compared
unpaired I2I approaches in Sect. 5.1, we additionally compare our approach with the semi-paired
I2I approach TCR [17]. For the OT-based approaches [38–40, 42, 43], we additionally impose the
matching of the paired images using a reconstruction loss in them for semi-paired I2I. It is non-trivial
to impose the matching of the paired images in the diffusion/flow-based approaches [20, 44, 45]. We
adopt two metrics of FID and Accuracy (Acc). The FID measures the quality of generated samples.
The higher Acc implies that the guidance of the paired images is better realized for desired translation.
The experiments are conducted on digits and natural animal images.

For Animal images, we take images of cat, fox, and leopard from AFHQ [48] dataset as source, and
images of lion, tiger, and wolf as target. Three cross-domain image pairs are given, as shown in
Fig. 4(a). By the guidance of the paired images, we expect that the cat, fox, and leopard images
are respectively translated to the images of lion, tiger, and wolf. The Acc is the ratio of source
images translated to ground-truth translated classes (GTTCs), where the GTTCs of source images
of cat/fox/leopard are lion/tiger/wolf. For Digits, we consider the translation from MNIST [49] to
Chinese-MNIST [50]. The MNIST and Chinese-MNIST contain the digits (from 0 to 9) in different
modalities. We annotate 10 cross-domain image pairs, each corresponding to a digit, as in Fig. 4(b).
With the guidance of the paired images, we expect that the source images are translated to the target
ones representing the same digits. The GTTCs for the source images are their corresponding digits.

We can observe in Tab. 1 that OTCS achieves the highest Acc on both Animal images and Digits,
outperforming the second-best method TCR [17] by more than 50% and 30% on the two datasets,
respectively. Our approach explicitly models the guidance of the paired images to the unpaired ones
using the semi-supervised OT in training, and better translates the source images to target ones of
the desired classes. In terms of the FID, OTCS achieves competitive (on Digits) or even superior
(on Animal images) results over the other approaches, indicating that OTCS can generate images of
comparable quality. The translated images in Figs. 4 also show the effectiveness of OTCS.

9



5.3 Analysis

Effectiveness of resampling-by-compatibility (RSC). Figure 5(a) shows that OTCS achieves better
results (left top points are better) than OTCS (w/o RSC) in semi-paired I2I on Animal images and
unpaired super-resolution on CelebA, demonstrating the effectiveness of resampling-by-compatibility.

Results on semi-paired I2I with varying numbers and samplings of paired images. We study the
effect of the number and choice of paired images in semi-paired I2I. Figure 5(b) shows that as the
number of paired data increases, the Acc increases, and the FID marginally decreases. This implies
that our approach can impose the guidance of different amounts of paired data to translate source
images to desired classes. From Fig. 5(c), OTCS achieves similar FID and Acc for three different
samplings of the same number, i.e., 3, of paired images (denoted as “S1”, “S2”, and “S3” in Fig. 5(c)).

Results on unpaired super-resolution with varying initial time. We show the results of OTCS
under different initial time M in the reverse SDE. Figure 5(d) indicates that with a smaller M , our
OTCS achieves better SSIM. This makes sense because adding smaller-scale noise in inference could
better preserve the structure of source data in SBDMs, as in [19, 20]. However, smaller M may lead
to a larger distribution gap/FID between generated and target data for SBDMs with unconditional
score-based model [19, 20]. We observe that OTCS achieves the FID below 1.85 for M in [0.2, 0.5].

6 Conclusion

This paper proposes a novel Optimal Transport-guided Conditional Score-based diffusion model
(OTCS) for image translation with unpaired or partially paired training dataset. We build the coupling
of the condition data and target data using L2-regularized unsupervised and semi-supervised OTs,
and present the OT-guided conditional denoising score-matching and resampling-by-compatibility
to train the conditional score-based model. Extensive experiments in unpaired super-resolution and
semi-paired I2I tasks demonstrated the effectiveness of OTCS for achieving desired translation of
source images. We theoretically analyze that OTCS realizes data transport for OT. In the future, we
are interested in more applications of OTCS, such as medical image translation/synthesis.

Limitations

The cost function should be determined first when using our method. In experiments, we simply
choose the squared L2-distance in image space for unpaired super-resolution and cosine distance in
feature space for semi-paired I2I, achieving satisfactory performance. However, the performance
may be improved if more domain knowledge is employed to define the cost function. Meanwhile, if
the number of target data is small, the generation ability of our trained model may be limited.

Acknowledgement

This work was supported by National Key R&D Program 2021YFA1003002 and NSFC (12125104,
U20B2075, 61721002).

References
[1] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data

distribution. In NeurIPS, 2019.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
NeurIPS, 2020.

[3] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021.

[4] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In ICML, 2021.

10



[5] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models. In ICLR, 2022.

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
NeurIPS, 2021.

[7] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In NeurIPS, 2022.

[8] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai
Zhang, Deyu Meng, Radu Timofte, and Luc Van Gool. Ddfm: Denoising diffusion model for
multi-modality image fusion. In ICCV, 2023.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
NeurIPS, 2021.

[10] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Trans. PAMI, In press, 2022.

[11] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G Dimakis, and
Peyman Milanfar. Deblurring via stochastic refinement. In CVPR, 2022.

[12] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. In NeurIPS,
2022.

[13] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

[14] Zixiang Zhao, Jiangshe Zhang, Shuang Xu, Zudi Lin, and Hanspeter Pfister. Discrete cosine
transform network for guided depth map super-resolution. In CVPR, 2022.

[15] Zixiang Zhao, Jiangshe Zhang, Xiang Gu, Chengli Tan, Shuang Xu, Yulun Zhang, Radu
Timofte, and Luc Van Gool. Spherical space feature decomposition for guided depth map
super-resolution. In ICCV, 2023.

[16] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In ICCV, 2017.

[17] Aamir Mustafa and Rafał K Mantiuk. Transformation consistency regularization–a semi-
supervised paradigm for image-to-image translation. In ECCV, 2020.

[18] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr:
Conditioning method for denoising diffusion probabilistic models. In ICCV, 2021.

[19] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. Sdedit: Guided image synthesis and editing with stochastic differential equations. In
ICLR, 2022.

[20] Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation
via energy-guided stochastic differential equations. In NurIPS, 2022.

[21] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. In ICLR, 2023.

[22] Xi Yu, Xiang Gu, Haozhi Liu, and Jian Sun. Constructing non-isotropic gaussian diffusion
model using isotropic gaussian diffusion model. In NeurIPS, 2023.

[23] Valentin Khrulkov, Gleb Ryzhakov, Andrei Chertkov, and Ivan Oseledets. Understanding
DDPM latent codes through optimal transport. In ICLR, 2023.

[24] Zezeng Li, ShengHao Li, Zhanpeng Wang, Na Lei, Zhongxuan Luo, and Xianfeng Gu. Dpm-ot:
A new diffusion probabilistic model based on optimal transport. In ICCV, 2023.

11



[25] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. In NeurIPS, 2021.

[26] Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for
large-scale optimal transport. In NeurIPS, 2021.

[27] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[28] Xiang Gu, Yucheng Yang, Wei Zeng, Jian Sun, and Zongben Xu. Keypoint-guided optimal
transport with applications in heterogeneous domain adaptation. In NeurIPS, 2022.

[29] Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS), 1942.

[30] Xiang Gu, Liwei Yang, Jian Sun, and Zongben Xu. Optimal transport-guided conditional
score-based diffusion model. In NeurIPS, 2023.

[31] Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and
Mathieu Blondel. Large-scale optimal transport and mapping estimation. In ICLR, 2018.

[32] Xiang Gu, Yucheng Yang, Wei Zeng, Jian Sun, and Zongben Xu. Keypoint-guided optimal
transport. arXiv preprint arXiv:2303.13102, 2023.

[33] Eckhard Platen. An introduction to numerical methods for stochastic differential equations.
Acta Numer., 8:197–246, 1999.

[34] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
ICLR, 2021.

[35] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In NeurIPS,
2022.

[36] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for
large-scale optimal transport. In NeurIPS, 2016.

[37] Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly
minimizes the wasserstein distance. In NeurIPS, 2022.

[38] Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport
mapping via input convex neural networks. In ICML, 2020.

[39] Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport
maps. In ICLR, 2022.

[40] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Kernel neural optimal transport.
In ICLR, 2023.

[41] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In ICCV, 2015.

[42] Leygonie Jacob, Jennifer She, Amjad Almahairi, Sai Rajeswar, and Aaron Courville. W2gan:
Recovering an optimal transport map with a gan. In ICLR, 2019.

[43] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. In
ICLR, 2023.

[44] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. In ICLR, 2023.

[45] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In ICLR, 2023.

[46] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
2017.

12



[47] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[48] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image
synthesis for multiple domains. In CVPR, 2020.

[49] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[50] https://www.kaggle.com/datasets/gpreda/chinese-mnist.

13


	Introduction
	Background
	Conditional SBDMs with Paired Data
	Optimal Transport

	OT-Guided Conditional SBDM
	Motivations for OT-Guided Conditional SBDM
	OT-Guided Conditional Denoising Score Matching
	Training the Conditional Score-based Model
	Sample Generation
	Analysis

	OTCS Realizes Data Transport for Optimal Transport
	Experiments
	Unpaired Super-Resolution on CelebA Faces
	Semi-paired Image-to-Image Translation
	Analysis

	Conclusion

