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Abstract

We investigate safe multi-agent reinforcement learning, where agents seek to col-
lectively maximize an aggregate sum of local objectives while satisfying their own
safety constraints. The objective and constraints are described by general utilities,
i.e., nonlinear functions of the long-term state-action occupancy measure, which
encompass broader decision-making goals such as risk, exploration, or imitations.
The exponential growth of the state-action space size with the number of agents
presents challenges for global observability, further exacerbated by the global
coupling arising from agents’ safety constraints. To tackle this issue, we propose a
primal-dual method utilizing shadow reward and κ-hop neighbor truncation under
a form of correlation decay property, where κ is the communication radius. In the
exact setting, our algorithm converges to a first-order stationary point (FOSP) at
the rate of O (T −2/3). In the sample-based setting, we demonstrate that, with high
probability, our algorithm requires Õ (ϵ−3.5) samples to achieve an ϵ-FOSP with
an approximation error of O(ϕ2κ0 ), where ϕ0 ∈ (0,1). Finally, we demonstrate the
effectiveness of our model through extensive numerical experiments.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) involves agents operating within a shared
environment, where each agent’s decisions influence not only their objectives, but also those of
others and the state trajectories [1]. In seeking to bring conceptually sound MARL techniques
out of simulation [2, 3] and into real-world environments [4, 5], some key issues emerge: safety
and communications overhead implied by a training mechanism. Although experimentally, the
centralized training decentralized execution (CTDE) framework has gained traction recently [6, 7],
its requirement for centralized data collection can pose issues for large-scale [8] or privacy-sensitive
applications [9]. Therefore, we prioritize decentralized training, where to date most MARL techniques
impose global state observability for performance certification [1]. In this work, we extend recent
efforts to alleviate this bottleneck [10] especially in the case of safety critical settings, in a flexible
manner that allows agents to incorporate risk, exploration, or prior information.

More specifically, we hypothesize that the multi-agent system consists of a network of agents that
interact with each other locally according to an underlying dependence graph [10]. Second, to model
safety constraints in reinforcement learning (RL), we adopt a standard approach based on constrained
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Markov Decision Processes (CMDPs) [11], where one maximizes the expected total reward subject to
a safety-related constraint on the expected total utility. Third, since many decision-making problems
take a form beyond the classic cumulative reward, such as apprenticeship learning [12], diverse
skill discovery [13], pure exploration [14], and state marginal matching [15], we focus on utility
functions defined as nonlinear functions of the induced state-action occupancy measure, which can
be abstracted as RL with general utilities [16, 17].

Towards formalizing the approach, we consider an MARL model consisting of n agents, each with
its own local state si and action ai, where the multi-agent system is associated with an underlying
dependence graph G. Each agent is privately associated with two local general utilities fi(⋅) and
gi(⋅), where fi(⋅) and gi(⋅) are functions of the local occupancy measure. The objective is to find
a safe policy for each agent that maximizes the average of the local objective utilities, namely,
1/n ⋅∑

n
i=1 fi(⋅), and satisfies each agent’s individual safety constraint described by its local utility

gi(⋅). This setting captures a wide range of safety-critical applications, for example, resource
allocation for the control of networked epidemic models [18], influence maximization in social
networks [19], portfolio optimization in interbank network structures [20], intersection management
for connected vehicles [21], and energy constraints of wireless communication networks [22].

Despite the significance of safe MARL with general utilities, prior works have either ignored the
necessity of safety [23] or the computational bottleneck associated with global information exchange
regarding the state and action per step [24]. In fact, the interaction of these two aspects requires
addressing the fact that each agent’s own safety constraint requires information from all others.
In particular, the existing works in safe MARL allow full access to the global state or unlimited
communications among all agents for policy implementation, value estimation, and constraint
satisfaction [25, 26, 27]. However, this assumption is impractical due to the “curse of dimensionality”
[28], as well as the limited information exchanges and communications among agents [29].

Therefore, to our knowledge, there is no methodology to both guarantee safety and incur manageable
communications overhead for each agent. Compounding these issues is the fact that standard RL
training schemes based on the policy gradient theorem [30] are not applicable in the context of
general utilities. This deviation from the cumulative rewards adds to the difficulty of estimating the
gradient, since there does not exist a policy-independent reward function. We refer the reader to
Appendix A for an extended discussion of related works.

To address these challenges, we focus on the setting of distributed training without global observ-
ability and aim to develop a scalable algorithm with theoretical guarantees. Our main contributions
are summarized below:

• Compared with existing theoretical works on safe MARL [25, 26, 31], we present the first safe
MARL formulation that extends beyond cumulative forms in both the objective and constraints.
We develop a truncated policy gradient estimator utilizing shadow reward and κ-hop policies
under a form of correlation decay property, where κ represents the communication radius. The
approximation errors arising from both policy implementation and value estimation are quantified.

• Despite of the global coupling of agents’ local utility functions, we propose a scalable Primal-Dual
Actor-Critic method, which allows each agent to update its policy based only on the states and
actions of its close neighbors and under limited communications. The effectiveness of the proposed
algorithm is verified through numerical experiments.

• From the perspective of optimization, we devise new tools to analyze the convergence of the
algorithm. In the exact setting, we establish an O (T −2/3) convergence rate for finding an FOSP,
matching the standard convergence rate for solving nonconcave-convex saddle point problems. In
the sample-based setting, we prove that, with high probability, the algorithm requires Õ (ϵ−3.5)
samples to obtain an ϵ-FOSP with an approximation error of O(ϕ2κ0 ), where ϕ0 ∈ (0,1).

2 Problem formulation

Consider a Constrained Markov Decision Process (CMDP) over a finite state space S and a finite
action space A with a discount factor γ ∈ [0,1). A policy π is a function that specifies the decision
rule of the agent, i.e., the agent takes action a ∈ A with probability π(a∣s) in state s ∈ S. When
action a is taken, the transition to the next state s′ from state s follows the probability distribution
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s′ ∼ P(⋅∣s, a). Let ρ be the initial distribution. For each policy π and state-action pair (s, a) ∈ S ×A,
the discounted state-action occupancy measure is defined as

λπ(s, a) =
∞
∑
k=0

γkP (sk = s, ak = a∣π, s0 ∼ ρ) . (1)

The goal of the agent is to find a policy π that maximizes a general objective described by a (possibly)
nonlinear function f(⋅) of λπ, known as the general utility, subject to a constraint in the form of
another general utility g(⋅), namely

max
π

f(λπ) s.t. g(λπ) ≥ 0. (2)

When f(⋅) = ⟨r, ⋅⟩ and g(⋅) = ⟨u, ⋅⟩ are linear functions, (2) recovers the standard CMDP problem:

max
π

V π(r)=E [
∞
∑
k=0

γkr (sk, ak) ∣π, s0 ∼ ρ] , s.t. V π(u)=E [
∞
∑
k=0

γku (sk, ak) ∣π, s0 ∼ ρ] ≥ 0, (3)

where V π(⋅) is usually referred to as the value function. In contrast, it has been shown that for some
MDPs, there is no standard value function that can be equivalent to the general utility [16, Lemma 1].
In Appendix C, we provide more examples of formulation (2) beyond standard value functions.

In this work, we study the decentralized version of problem (2). Consider the system is composed
of a network of agents associated with a graph G = (N ,EG) (not densely connected in general),
where the vertex set N = {1,2, . . . , n} denotes the set of n agents and the edge set EG prescribes
the communication links among the agents. Let d(i, j) be the length of the shortest path between
agents i and j on G. For κ ≥ 0, let N κ

i = {j ∈ N ∣d(i, j) ≤ κ} denote the set of agents in the κ-hop
neighborhood of agent i, with the shorthand notation N κ

−i ∶= N /N
κ
i and −i ∶= N /{i}. The details of

the decentralized nature of the system are summarized below:

Space decomposition The global state and action spaces are the product of local spaces, i.e.,
S = S1 ×S2 ×⋯×Sn, A = A1 ×A2 ×⋯×An, meaning that for every s ∈ S and a ∈ A, we can write
s = (s1, s2, . . . , sn) and a = (a1, a2, . . . , an). For each subset N ′ ⊂ N , we use (sN ′ , aN ′) to denote
the state-action pair for the agents in N ′.

Observation and communication Each agent i only has direct access to its own state si and
action ai, while being allowed to communicate with its κ-hop neighborhood N κ

i for information
exchanges. The communication radius κ is a given but tunable parameter.

Transition decomposition Given the current global state s and action a, the local states in the next
period are independently generated, i.e., P(s′∣s, a) =∏i∈N Pi(s′i∣s, a), ∀s′ ∈ S, where we use Pi to
denote the local transition probability for agent i.

Policy factorization The global policy can be expressed as the product of local policies, such
that π(a∣s) =∏i∈N π

i (ai∣s) ,∀(s, a), i.e., given the global state s, each agent i acts independently
based on its local policy πi. We assume that each local policy πi is parameterized by a parameter
θi within a convex set Θi. Thus, we can write π(a∣s) = πθ(a∣s) = ∏i∈N π

i
θi
(ai∣s), where θ ∈ Θ =

Θ1 ×Θ2 ×⋯ ×Θn is the concatenation of local parameters.

Localized objective and constraint For each agent i and its local state-action pair (si, ai), the
local state-action occupancy measure under policy π is defined as

λπi (si, ai) =
∞
∑
k=0

γkP (ski = si, a
k
i = ai∣π, s

0
∼ ρ) , (4)

which can be viewed as the marginalization of the global occupancy measure, i.e., λπi (si, ai) =
∑s−i,a−i λ

π(s, a). Each agent i is privately associated with two local (general) utilities fi(⋅) and
gi(⋅), which are functions of the local occupancy measure λπi . Agents cooperate with each other
aiming at maximizing the global objective f(⋅), defined as the average of local utilities {fi(⋅)}i∈N ,
while each agent i needs to satisfy its own safety constraint described by the local utility gi(⋅). Then,
under the parameterization πθ, (2) can be rewritten as

max
θ∈Θ

F (θ) ∶=
1

n
∑
i∈N

fi(λ
πθ

i ), s.t. Gi(θ) ∶= gi(λπθ

i ) ≥ 0, ∀i ∈ N . (5)

Note that problem (5) is not separable among agents due to the coupling of occupancy measures.
Compared to the formulation where the constraint is modeled as the average of local constraints, e.g.,
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[27], (5) is stricter and more interpretable. We emphasize that the method proposed in this paper does
not require the relaxation of local constraints in (5) to a joint constraint and it directly generalizes to
the case of multiple constraints per agent.

Consider the Lagrangian function associated with (5):

L(θ, µ) ∶= F (θ) +
1

n
∑
i∈N

µiGi(θ) =
1

n
∑
i∈N
[fi(λ

πθ

i ) + µigi(λ
πθ

i )] , (6)

where µ ∈ Rn+ is the Lagrangian multiplier. The Lagrangian formulation [32] of (5) can be written as
max
θ∈Θ

min
µ≥0
L(θ, µ). (7)

Since the general utilities fi(λπθ

i ) and gi(λπθ

i ) may not be non-concave w.r.t. θ even in the form of
cumulative rewards, finding the global optimum to (5) is NP-hard in general [33]. Our goal in this
work is to develop a scalable and provably efficient gradient-based primal-dual algorithm that can
find the first-order stationary points of (5).

3 Scalable primal-dual actor-critic method

For a standard value function with the reward r ∈ R∣S∣×∣A∣, denoted as V πθ(r) = ⟨r, λπθ ⟩, the policy
gradient theorem (see Lemma D.1) yields that

∇θV
πθ(r) = r⊺ ⋅ ∇θλ

πθ =
1

1 − γ
Es∼dπθ ,a∼πθ(⋅∣s)[∇θ logπθ(a∣s) ⋅Q

πθ(r; s, a)],

where dπθ(s) ∶= (1 − γ)∑a∈A λ
πθ(s, a) is the discounted state occupancy measure, ∇θ logπθ(⋅∣⋅) is

the score function, and Qπθ(r; ⋅, ⋅) is the Q-function with the reward r, defined as

Qπθ(r; s, a) = E [
∞
∑
k=0

γkr (sk, ak) ∣πθ, s
0
= s, a0 = a] . (8)

Although this elegant result no longer holds for general utilities, we can apply the chain rule:

∇θf(λ
πθ) = [∇λf(λ

πθ)]
⊺
⋅ ∇θλ

πθ = ∇θV
πθ(∇λf(λ

πθ)), (9)

i.e., the gradient∇θf(λπθ) is equal to the policy gradient of a standard value function with the reward
∇λf(λ

πθ). We introduce the following definitions [23] for the distributed problem (5).
Definition 3.1 (Shadow reward and shadow Q-function). For each agent i, define rπθ

fi
∶= ∇λifi(λ

πθ

i ) ∈

R∣Si∣×∣Ai∣ as the (local) shadow reward for the utility fi(⋅) under policy πθ. Define Qπθ

fi
(s, a) ∶=

Qπθ(rπθ

fi
; s, a) as the associated (local) shadow Q-function for fi(⋅). Similarly, let rπθ

gi andQπθ
gi (s, a)

be the shadow reward and the Q function for gi(⋅).

Combining Definition 3.1 with (9), we can write the local gradient for agent i, i.e., ∇θiL(θ, µ), as

∇θiL(θ, µ) =
1

1 − γ
Es∼dπθ ,a∼πθ(⋅∣s)[∇θi logπ

i
θi(ai∣s) ⋅

1

n
∑
j∈N
(Qπθ

fj
(s, a) + µjQ

πθ
gj (s, a)) ], (10)

where we apply the policy factorization to arrive at∇θi logπθ(a∣s) = ∇θi logπ
i
θi
(ai∣s). By (10), each

agent needs to know the shadow Q functions of all agents, as well as the global state, to evaluate its
own gradient. However, especially in large networks, this is both inefficient, due to the communication
cost, and impractical because of the limited communication radius. In the remainder of this section,
we aim to design a scalable estimator for ∇θiL(θ, µ) that requires only local communications.

3.1 Spatial correlation decay and κ-hop policies

Inspired by [34], we assume that the transition probability satisfies a form of the spatial correlation
decay property [35, 36].
Assumption 3.2. For a matrix M ∈ Rn×n whose (i, j)-th entry is defined as

Mij = sup
sj ,aj ,s′j ,a

′
j ,s−j ,a−j

∥Pi (⋅∣sj , s−j , aj , a−j) − Pi (⋅∣s′j , s−j , a
′
j , a−j)∥1 , (11)

assume that there exists ω > 0 such that maxi∈N ∑j∈N e
ωd(i,j)Mij ≤ χ with χ < 2/γ, where γ is the

discount factor.
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The value of Mij reflects the extent to which agent j’s state and action influence the local transition
probability of agent i. Thus, Assumption 3.2 amounts to requiring this influence to decrease exponen-
tially with the distance between any two agents. Such a decay is often observed in many large-scale
real-world systems, e.g., the strength of signals decreases exponentially with distance [37].

Furthermore, as mentioned earlier, the implementation of the local policy πiθi(⋅∣s) is still impractical,
since it requires access to the global state s, while the allowable communication radius is limited to κ.
To alleviate this issue, we focus on a specific class of policies in which the local policy of agent i
only depends on the states of these agents in its κ-hop neighborhood N κ

i . This class of policies is
also referred to as κ-hop policies in the concurrent work [38].

Assumption 3.3 (κ-hop policies). For each agent i ∈ N and θ ∈ Θ, the local policy πiθi(⋅∣s) depends
only on the neighbor states sNκ

i
, i.e.,

πiθi(⋅∣sNκ
i
, sNκ

−i
) = πiθi(⋅∣sNκ

i
, s′Nκ

−i
), ∀s ∈ S and ∀s′Nκ

−i
∈ SNκ

−i
. (12)

For simplicity, we use the notation πiθi(⋅∣s) = π
i
θi
(⋅∣sNκ

i
) for κ-hop policies when it is clear from

context. We note that, for any original policy function πθ(⋅∣s), an induced κ-hop policy π̂θ(⋅∣sNκ
i
)

can be defined by fixing the states sNκ
−i

to some arbitrary values and focusing only on the states
of agents in N κ

i . When considering only κ-hop policies, it is essential to understand how much
information is lost compared to the case where agents have access to the global states. The following
proposition quantifies the maximum information loss in terms of the occupancy measure under the
assumption that the original policy function also satisfies a spatial correlation decay property.

Proposition 3.4. Suppose that there exist c ≥ 0 and ϕ ∈ [0,1) such that for every θ ∈ Θ, agent
i ∈ N , and states s, s′ ∈ S such that sNκ

i
= s′Nκ

i
, we have ∥πiθi(⋅∣s) − π

i
θi
(⋅∣s′)∥

1
≤ cϕκ. Let π̂θ be an

induced κ-hop policy of πθ. Then, it holds that

∥λπ̂θ

i − λ
πθ

i ∥1
≤

ncϕk

(1 − γ)2
,∀i ∈ N . (13)

The condition on the local policy in Proposition 3.4 encodes that every πiθi is exponentially less
sensitive to the states of agents outside N κ

i , which is a common assumption in MARL to alleviate
computationally burdensome and practically intractable communication requirements imposed by the
global observability [34, 39, 38]. By Proposition 3.4, the difference in occupancy measures under πθ
and π̂θ is controlled by ∥πiθi − π̂

i
θi
∥1. Therefore, if fi(λπ) and gi(λπ) are Lipschitz continuous w.r.t.

λπ, Proposition 3.4 implies an O(ϕκ) approximation of the Lagrangian function (6) using κ-hop
policies. The faster the spatial decay of policy is, the more accurate the approximation of the κ-hop
policy is. This justifies our focus on learning a κ-hop policy.

3.2 Truncated policy gradient estimator

In the absence of global observability, it is critical to find a scalable estimator for the local gradient
∇θiL(θ, µ) in (10), so that each agent can update its local policy with limited communications.

By leveraging the similar idea in the definition of κ-hop policies, we define the κ-hop truncated
(shadow) Q-function, denoted as Q̂πθ

♢i ∶ SNκ
i
×ANκ

i
→ R, to be

Q̂πθ
♢i (sNκ

i
, aNκ

i
) ∶= Qπθ

♢i (sNκ
i
, s̄Nκ

−i
, aNκ

i
, āNκ

−i
), ∀(sNκ

i
, aNκ

i
) ∈ SNκ

i
×ANκ

i
,♢ ∈ {f, g}, (14)

where (s̄Nκ
−i
, āNκ

−i
) is any fixed state-action pair for the agents in N κ

−i. Now, we introduce the
following truncated policy gradient estimator for agent i:

∇̂θiL(θ, µ)=
1

1 − γ
Es∼dπθ ,

a∼πθ(⋅∣s)
[∇θi logπ

i
θi(ai∣sNκ

i
)⋅
1

n
∑
j∈Nκ

i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
)+µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))]. (15)

In comparison to the true policy gradient (10), ∇̂θiL(θ, µ) replaces the shadow Q-functions with
their truncated versions and only considers the agents in the κ-hop neighborhood N κ

i . Surprisingly,
the following lemma shows that the approximation error of ∇̂θiL(θ, µ) decreases exponentially with
κ when the shadow rewards and the score functions are bounded.
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Lemma 3.5. Suppose that Assumptions 3.2 and 3.3 hold and there exist Mr,Mπ > 0 such that
∥rπθ
♢i ∥∞ ≤ Mr and ∥∇θi logπ

i
θi
∥
2
≤ Mπ, for every ♢ ∈ {f, g}, θ ∈ Θ, i ∈ N . Then, for all θ ∈ Θ,

i ∈ N , we have that

∥∇̂θiL(θ, µ) −∇θiL(θ, µ)∥2 ≤
(1 + ∥µ∥∞)Mπc0ϕ

κ
0

1 − γ
= O(ϕκ0), (16)

where c0 = 2γχMr/(2 − γχ) and ϕ0 = e−ω .

Recall that the shadow reward is defined as the gradient of fi(⋅) or gi(⋅) w.r.t. the local occupancy
measure. Since the set of all possible occupancy measures is compact (see (43)), the existence
of Mr > 0 in Lemma 3.5 is satisfied if fi(⋅) and gi(⋅) are continuously differentiable. The main
advantage of using the estimator ∇̂θiL(θ, µ) lies in that every agent i only needs to know the truncated
Q-functions of agents in its neighborhood N κ

i , which can significantly reduce the communication
burden and the storage requirement when graph G is not densely connected. The proof of Lemma 3.5
can be found in Appendix E.2.

3.3 Algorithm design

Using the results of the preceding section, we put together all the pieces and propose the Primal-Dual
Actor-Critic Method with Shadow Reward and κ-hop Policy, as outlined in Algorithm 1. It includes
three stages: policy evaluation by the critic, Lagrangian multiplier update, and policy update by the
actor. Below, we provide an overview of Algorithm 1, while referring the reader to Appendix D for a
flow diagram (Figure 2) of the algorithm, as well as a more detailed discussion.

Stage 1 (policy evaluation by the critic, lines 3-6) In each iteration t, the current policy πθt is
simulated to generate a batch of trajectories, while each agent i collects its neighborhood trajectories,
i.e., the state-action pairs of the agents in N κ

i , as batch Bti . Then, the batch is used to estimate
the local occupancy measures λπθt

i through (17), which are subsequently applied to compute the
empirical values for the constraint function gi(λ

πθt

i ) and shadow rewards rπθt

fi
and rπθt

gi , denoted as
g̃ti , r̃

t
fi

, and r̃tgi , respectively. It is worth mentioning that, when all utility functions reduce to the form
of cumulative rewards, the above operation is unnecessary, since all agents have policy-independent
local reward functions.

Next, the agents jointly conduct a distributed evaluation subroutine to estimate their truncated shadow
Q-functions {Q̂πθt

♢i }i∈N using empirical shadow rewards {r̃t♢i}i∈N , where ♢ ∈ {f, g}. During the
subroutine, each agent i communicates with its neighbor in N κ

i to exchange state-action information,
but only needs to access its own empirical shadow reward r̃t♢i . In principle, any existing approach that
satisfies the observation and communication requirements can be used for the truncated Q-function
estimation, such as [40, 41, 42]. As an example subroutine, we introduce the Temporal Difference
(TD) learning method [43], which is outlined as Algorithm 2 in Appendix D.

Stage 2 (Lagrangian multiplier update, line 7) Instead of employing the projected gradient
descent, we propose to update the dual variables by the following formula:

µt+1 = argmin
µ∈U

L(θt, µ) +
1

2ηµ
∥µ∥22 = PU (−ηµ∇µL(θ

t, µt)) , (22)

where weight ηµ can be viewed as the dual “step-size”. In practice, we replace the true dual gradient
∇µi
L(θt, µt) = gi(λ

πθt

i )/n with its empirical estimator ∇̃µi
L(θt, µt). The feasible region for the

dual variable is denoted by U ⊆ Rn+ and will be specified later.

Stage 3 (policy update by the actor, lines 8-9) To perform the policy update, each agent i first
shares its updated dual variable µt+1i and the values of its estimated truncated Q-functions along the
trajectories in batch Bti with the agents in its κ-hop neighborhood N κ

i . Then, the agent estimates its
truncated policy gradient ∇̂θiL(θ

t, µt+1) through a REINFORCE-based mechanism [44] as described
in (20). Finally, each agent i updates its local policy parameter by a projected gradient ascent.

We emphasize that Algorithm 1 is based on the distributed training regime and does not require full
observability of global states and actions.
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Algorithm 1 Primal-Dual Actor-Critic Method with Shadow Reward and κ-hop Policy

1: Input: Initial policy θ0 and dual variable µ0; initial distribution ρ; communication radius κ;
step-sizes ηθ and ηµ; batch size B; episode length H .

2: for iteration t = 0,1,2, . . . do
3: Sample B trajectories with length H under the κ-hop policy πθt and initial distribution ρ.

Each agent i collects its neighborhood trajectories τ = {(s0Nκ
i
, a0Nκ

i
),⋯, (sH−1Nκ

i
, aH−1Nκ

i
)} as

batch Bti .
4: Each agent i estimates its local occupancy measure λπθt

i under πθt :

λ̃ti =
1

B
∑
τ∈Bt

i

H−1
∑
k=0

γk ⋅ 1i (s
k
i , a

k
i ) ∈ R

∣Si∣×∣Ai∣. (17)

5: Each agent i computes the empirical constraint function value g̃ti = gi(λ̃
t
i) and empirical

shadow rewards r̃tfi = ∇λifi(λ̃
t
i) and r̃tgi = ∇λigi(λ̃

t
i).

6: Each agent i communicates with its neighborhood N κ
i and jointly executes an evaluation

subroutine to estimate the truncated shadow Q-functions with the empirical shadow rewards
r̃t♢i for ♢ ∈ {f, g}:

(Q̃t♢1 , . . . , Q̃
t
♢n)← Eval (πθt , (r̃

t
♢1 , . . . , r̃

t
♢n)). (18)

7: Each agent i updates the dual variable with the empirical gradient ∇̃µiL(θ
t, µt) = g̃ti/n:

µt+1i = PU (−ηµ∇̃µiL(θ
t, µt)) . (19)

8: Each agent i shares µt+1i and values of Q̃tfi , Q̃
t
gi along the trajectories in Bti with agents inN κ

i

and estimates the truncated policy gradient at (θt, µt+1):

∇̃θiL(θ
t, µt+1) =

1

B
∑
τ∈Bt

i

[
H−1
∑
k=0

γk∇θi logπ
i
θi(a

k
i ∣s

k
Nκ

i
)⋅

1

n
∑
j∈Nκ

i

[Q̃tfj(s
k
Nκ

j
, akNκ

j
) + µt+1j Q̃tgj(s

k
Nκ

j
, akNκ

j
)] ].

(20)

9: Each agent i updates the local policy parameter:

θt+1i = PΘi
(θti + ηθ ⋅ ∇̃θiL(θ

t, µt+1)) . (21)

10: end for

4 Convergence analysis

In this section, we analyze the convergence behavior and the sample complexity of Algorithm 1. We
begin by summarizing the technical assumptions, including some mentioned previously in the paper.
We direct the reader to Appendices F and G where we provide discussions for each assumption and
present proofs for the results in this section.

Assumption 4.1. There exists Lλ > 0 such that ∇λifi(⋅) and ∇λigi(⋅) are Lλ-Lipschitz continuous
w.r.t. λi, i.e., ∥∇λifi(λi)−∇λifi(λ

′
i)∥∞ ≤ Lλ∥λi −λ

′
i∥2 and ∥∇λigi(λi)−∇λigi(λ

′
i)∥∞ ≤ Lλ∥λi −

λ′i∥2, ∀i ∈ N .

Assumption 4.2. The parameterized policy πθ is such that (I) the score function is bounded, i.e.,
∃Mπ > 0 s.t. ∥∇θi logπ

i
θi
(ai∣sNκ

i
)∥2 ≤ Mπ, ∀(s, a) ∈ S ×A, θ ∈ Θ, i ∈ N . (II) ∃Lθ > 0 s.t. the

utility functions F (θ) = f(λπθ) and Gi(θ) = gi(λ
πθ

i ) are Lθ-smooth w.r.t. θ, ∀i ∈ N .

Assumption 4.3. There exist an FOSP (θ⋆, µ⋆) of (5) and a constant µ > 0 s.t. µ⋆i < µ, ∀i ∈ N . Let
U = Un = [0, µ]n.

In Lemma F.5, we summarize a few properties that are the direct consequence consequence of
Assumptions 4.1-4.3. Due to the non-concavity of problem (5), our focus is to find an approximate
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first-order stationary point (FOSP). A point (θ, µ) ∈ Θ × U is said to be an ϵ-FOSP if

E(θ, µ) ∶= [X (θ, µ)]
2
+ [Y(θ, µ)]

2
≤ ϵ, (23)

where the metrics X (⋅, ⋅) and Y(⋅, ⋅) are defined as

X (θ, µ) ∶= max
θ′∈Θ,∥θ′−θ∥2≤1

⟨∇θL(θ, µ), θ
′
− θ⟩ , Y(θ, µ) ∶= − min

µ′∈U,∥µ′−µ∥2≤1
⟨∇µL(θ, µ), µ

′
− µ⟩ . (24)

The definitions of X (⋅, ⋅) and Y(⋅, ⋅) are based on the first-order optimality condition [45, 46]. Given
θ⋆ ∈ Θ and µ⋆ ∈ U , it can be shown that E(θ⋆, µ⋆) = 0 implies that (θ⋆, µ⋆) is an FOSP of (5) (see
Lemma F.6). In the following, we first consider the exact setting where the agents can obtain the
true values of their local occupancy measures, shadow Q-functions, and truncated policy gradients.
Therefore, the only source of approximation error is the truncation of the policy gradient.
Theorem 4.4 (Exact setting). Let Assumptions 3.2, 3.3, 4.1-4.3 hold and suppose that the agents
can accurately estimate their local occupancy measures, shadow Q-functions, and truncated policy
gradients. For every T > 0, let {(µt, θt)}

T

t=0 be the sequence generated by Algorithm 1 with
ηµ = O (T

1/3) and ηθ = 1/(Lθθ + 4L
2
θµηµ), where Lθθ, Lθµ are Lipschitz constants defined in

Lemma F.5. Then, there exists t⋆ ∈ {0,1, . . . , T − 1} such that

E (θt
⋆
, µt

⋆+1
) = O (T −2/3) +O (ϕ2κ0 ) . (25)

Next, we delve into the sample complexity of Algorithm 1. For theoretical analysis, we assume that
the estimation process for the truncated Q-function offers an approximation to the true function, with
the error being associated with the magnitude of the reward function. Let Q̂πθ

i (ri; ⋅, ⋅) ∈ R
∣SNκ

i
∣×∣ANκ

i
∣

be the truncated Q-function with the reward function ri(⋅, ⋅) ∈ R∣Si∣×∣Ai∣ for agent i ∈ N .
Assumption 4.5. For every reward function ri(⋅, ⋅) and ϵ0 > 0, the subroutine computes an approxi-
mation Q̃πθ

i (ri; ⋅, ⋅) to the truncated Q-function Q̂πθ

i (ri; ⋅, ⋅) such that

∥Q̃πθ

i (ri; ⋅, ⋅) − Q̂
πθ

i (ri; ⋅, ⋅)∥∞ ≤ ∥ri∥∞ϵ0 (26)

with O(1/(ϵ0)2) samples, for every i ∈ N , θ ∈ Θ.

We comment that the sample complexity of the truncated Q-function evaluation described in Assump-
tion 4.5 is not restrictive. It can be achieved with high probability by the TD-learning procedure
outlined in Algorithm 2 when the agents have enough exploration [10, 43]. For brevity, we assume
that (26) holds almost surely. The only difference in the probabilistic version would be the presence of
an additional term for the failure probability, which does not affect the order of the sample complexity.
Theorem 4.6 (Sample-based setting). Suppose that Assumptions 3.2, 3.3, 4.1-4.3, and 4.5 hold.
For every ϵ > 0 and δ ∈ (0,1), let {(µt, θt)}

T

t=0 be the sequence generated by Algorithm 1 with
T = O (ϵ−1.5), ηµ = O (ϵ−0.5), ηθ = 1/(Lθθ + 4L2

θµηµ), ϵ0 = O (
√
ϵ), δ0 = δ/(2n(T + 1)), batch

size B = O (log(1/δ0)ϵ−2), episode length H = log(1/ϵ), where Lθθ, Lθµ are Lipschitz constants
defined in Lemma F.5. Then, with probability 1 − δ, there exists t⋆ ∈ {0,1, . . . , T − 1} such that

E (θt
⋆
, µt

⋆+1
) = O (ϵ) +O(ϕ2κ0 ). (27)

The required number of samples is Õ (ϵ−3.5).

4.1 Technical discussions

Theorem 4.4 implies an O (T −2/3) iteration complexity of Algorithm 1, matching the fastest conver-
gence rate for solving nonconcave-convex maximin problems in the literature [47]. The approximation
errorO (ϕ2κ0 ) decays at a linear rate w.r.t. the radius of communications. Thus, as long as the underly-
ing network is not densely connected, such as those in wireless communication [37] and autonomous
driving [48], an approximate FOSP to (5) can be efficiently computed, while each agent i only needs
to communicate with a small number of agents in its neighborhood. .

In Theorem 4.4, we have chosen large step-sizes for the dual variable update to achieve the best
convergence rate. This aggressive update ensures that the dual metric Y(θt, µt+1) always remains
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within a small range and also provides a satisfactory ascent direction for the policy update. Then, the
average primal metric 1/T ⋅∑T−1t=0 [X (θ

t, µt+1)]
2

is upper-bounded by exploiting a recursive relation

between any two consecutive dual updates. Hence, the existence of a point (θt
⋆
, µt

⋆+1) that satisfies
(25) is guaranteed. It is worth noting that the proof of Theorem 4.4 can be easily generalized to the
scenario where T is unspecified, and the same convergence rate can still be achieved with adaptive
step-sizes ηtµ = O (t

1/3) and ηtθ = 1/(Lθθ + 4L
2
θµη

t
µ).

Theorem 4.6 states that, with high probability, Algorithm 1 has an Õ (ϵ−3.5) sample complexity for
finding an ϵ-FOSP of (5) with an approximation error O(ϕ2κ0 ). Note that we absorb the logarithmic
terms in the notation Õ(⋅). The proof of Theorem 4.6 can be broken down into two parts. Firstly, we
evaluate the approximation errors of the estimators used in Algorithm 1 in relation to the model pa-
rameters, as outlined in Proposition G.1. Then, we integrate these errors into the iteration complexity
result established in Theorem 4.4 and optimize the selection of parameters.

5 Numerical experiment

In this section, we validate Algorithm 1 via numerical experiments, focusing on three key questions1:

• How does Algorithm 1 perform with multiple agents, and does the policy gradient truncation
effectively alleviate computational load?

• While Algorithm 1 is the first approach that provably solves the safe MARL problem with general
utilities, how does it compare with existing methods for standard Safe MARL?

• What benefits does the use of general utilities offer over standard cumulative rewards?

To answer these questions, we performed multiple experiments in three environments2. The objective
functions are based on cumulative rewards, while constraint functions leverage general utilities to
incentivize or dissuade agents from exploring the environments.

Synthetic environment Analogous to [24, Section 5.1], where agents are linearly arranged as
1−2−⋅ ⋅ ⋅−n. Each agent i has binary local state and action spaces, i.e., Si = Ai = {0,1}, and the local
transition matrix Pi depends solely on its action ai and the state of agent i + 1. The reward functions
are constructed such that the optimal unconstrained policy compels all agents to continuously choose
action 1, irrespective of their states.

Pistonball A physics-based game that emphasizes cooperations and high-dimensional states as
illustrated in Figure 1a. Each piston represents an agent, where its local neighborhood includes
adjacent pistons, and the goal is to collectively move the ball from right to left. The agent can move
up, down, or remain still. We modify the original game[49] so that the agent can only observe the
ball when it enters the local neighborhood, as well as the height of neighboring pistons.

Wireless communication An access control problem following a similar setup as in [24, 50].
As illustrated in Figure 1b, the agents try to transmit packets to common access points, and the
transmission fails if the access point receives more than one packet simultaneously. As there are more
agents than access points, some agents need to learn to forego their benefits for the collective good.

In addition to the objective, we incorporate two types of safety constraints characterized by general
utilities that cannot be easily encapsulated by standard value functions based on cumulative rewards.

• Entropy constraints that stimulates exploration, formalized as Entropy(λπθ

i ) ≥ c, ∀i ∈ N . The
function Entropy(λπθ

i ) represents the local entropy, defined as −∑s∈S d
π
i (s) ⋅ log (d

π
i (s)), where

dπθ

i (si) = (1 − γ)∑ai∈Ai
λπθ

i (si, ai) is the local state occupancy measure.
• ℓ2-constrains that deter agents from learning overly randomized policies, formulated as
∥∑si∈Si

λπθ

i ∥
2

2
≥ c, ∀i ∈ N . This constraint is beneficial in applications like autonomous driving

and human-AI collaboration, where an agent’s policy needs to be predictable for other agents.

1Code is available here: https://github.com/zhykoties/Decentralized-Safe-MARL-with-General-Utilities.
2See Appendix H for detailed descriptions and complete experimental results.
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(a) Pistonball (b) Wireless comm. (c) Episodic return (d) Constraint violation

Figure 1: (a,b) Environment illustration. (c,d) Performance of Algorithm 1 in Pistonball with 20
agents under entropy constraints.

Table 1: Comparison between Scalable Primal-Dual Actor-Critic method in our work with MAPPO-L
by [31] in Pistonball and wireless communication.

Pistonball Wireless Communication
Algorithm Episodic return Const. vio. Episodic return Const. vio.

Ours 51.788 ± 1.346 0.04919 3.373 ± 0.112 0.1926
MAPPO-L 50.612 ± 2.118 0.06884 3.347 ± 0.131 0.4000

Decen. Agg. MAPPO-L 48.197 ± 6.188 0.2179 3.106 ± 0.673 1.1890
Decen. MAPPO-L 41.102 ± 18.769 0.09303 3.148 ± 0.614 1.5760

In Figure 1, we demonstrate the performance of Algorithm 1 in the 20-agent Pistonball environment
under entropy constraints. We observe that, while the truncation with κ = 3 converges in fewer itera-
tions, truncation with κ = 1 also yields comparable performance. This underscores the efficiency of
Algorithm 1 as employing a smaller communication radius can significantly reduce the computation.

Finally, we compare Algorithm 1 with three baselines based on the MAPPO-Lagrangian method [31].

• MAPPO-L: the original algorithm introduced in [31]. Note that each agent has access to global
information.

• Decentralized MAPPO-L: decentralized version of MAPPO-L, where each agent only has access
to information in the local neighborhood. However, since each agent is trained to greedily maximize
its individual reward, its behaviors might sacrifice the performance of other agents.

• Decentralized Aggregate MAPPO-L: decentralized version of MAPPO-L, where we address the
aforementioned issue by redefining each agent’s reward to be the sum of rewards of all agents in its
local neighborhood.

For a fair comparison, we consider two standard safe MARL problems, where both objectives and
constraints are shaped by cumulative rewards (see Appendix H.4). The results in Table 1 demonstrate
that our method consistently outperforms both the centralized and decentralized variants of MAPPO-
Lagrangian. We refer the readers to Appendix H for the comprehensive experimental results that fully
answer the three questions raised at the beginning of this section.

6 Conclusion

In this work, we study the safe MARL with general utilities, with a focus on the setting of distributed
training without global observability. To address the challenge of scalability and incorporating general
utilities, we propose a primal-dual actor-critic method with shadow reward and κ-hop policy. Taking
advantage of the spatial correlation decay property of the transition dynamics, we show that the
proposed method achieves an O (T −2/3) convergence rate to the FOSP of the problem in the exact
setting and achieves an Õ (ϵ−3.5) sample complexity, with high probability, in the sample-based
setting. Finally, the effectiveness of our model and approach is verified by numerical studies. For
future research, it would be interesting to develop scalable safe MARL algorithms with adaptive
communication of agents’ information [51] and intelligent sampling of agents’ trajectories.
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