
A Properties of the Transfer operator

A.1 Relaxation of T⌦ spectrum

In this section, we outline the ‘relaxation’ or ‘decay’ of the spectral components of T⌦ as a function
of time-step, ⌧ . We use that h�i| iiµ =

R
�i(x) i(x) dµ(x) = 1 if i = j and 0 if i 6= j, e.g.

the eigenfunctions are orthonormal under the µ-weighed inner-product. Since T⌦(⌧) is Markov,
composing T⌦(⌧) with itself N times we get,

[T⌦(⌧)]
N = T⌦(⌧) � · · · � T⌦(⌧) (12)

=
1X

i=0

�i(⌧)| iih�i|�i(⌧)| iih�i| . . .�i(⌧)| iih�i| (13)

=
1X

i=0

�i(⌧)
N
| iih�i| iiµh�i| . . . | iih�i| (14)

=
1X

i=0

�i(⌧)
N
| iih�i| (15)

We assume the dynamics governed by T⌦ are

1. reversible �i 2 R

2. measure-preserving 0 |�i| 1

3. ergodic, �0 = 1 and |�i>0| < 1

where we have sorted the eigenvalues eigenfunction pairs in descending order. Consequently, for
N ! 1 we have T⌦(N⌧) ! |1ihµ|, where 1 is the constant function.

A.2 Decomposition of transition density

In this section, we detail the decomposition of the transition density, p(xN⌧ | x0).

Let ⇢ specify an initial condition, an absolutely convergent probability density function on ⌦. We can
define a Transfer operator T⌦ using a transition probability density [6]:

[T⌦ � ⇢] (xN⌧) ,
1

µ(xN⌧)

Z

x0

µ(x0)⇢(x0)p(xN⌧ | x0) dx0, T⌦ : L1(⌦) ! L
1(⌦) (16)

which then describes the µ-weighed evolution of densities on ⌦ according to MD discretized in time
by a step-size of ⌧ . µ is a normalized Gibbs measure, or the Boltzmann distribution.

Since we only consider MD with time-invariant drift, only the eigenvalues �i(⌧) of T⌦(⌧) depend on
⌧ . We can express arbitrary transition probabilities through a bilinear form

p(xN⌧ | x0) = h�xN⌧ |T
N
⌦ (⌧)|�x0i =

1X

i=1

�
N
i (⌧)h�xN⌧ |�iih i|�x0i =

1X

i=1

�
N
i (⌧)↵i(xN⌧)�i(x0)

(17)
where ↵i and �i are time-invariant projections coefficients of the state variables on-to the eigenfunc-
tions �i and i, and �x is the Dirac delta centered at x. TN

⌦ (⌧) means T⌦(⌧) acting N times (See
A.1).

B Datasets

Throughout we train on all available data, as it is often sparse and difficult to split in an appropriate
manner due to rare events e.g. folding and unfolding.

15

Table 3: Details about the Alanine dipeptide data (taken verbatim from mdshare)

Property Value
Code ACEMD
Forcefield AMBER ff-99SB-ILDN
Integrator Langevin
Integrator time step 2 fs
Simulation time 250 ns
Frame spacing 1 ps
Temperature 300 K
Volume (2.3222nm)3 periodic box
Solvation 651 TIP3P waters
Electrostatics PME
PME real-space cutoff 0.9 nm
PME grid spacing 0.1 nm
PME updates every two time steps
Constraints all bonds between hydrogens and heavy atoms

B.1 Müller Brown

We generate the Müller Brown data set used for training by integrating the 2D potential energy model:

U(x, y) =
4X

i=1

Ai exp
⇥
ai(x� x̄i)

2 + bi(x� x̄i)(y � ȳi) + ci(y � ȳi)
2
⇤

(18)

using simulating overdamped Langevin or Brownian dynamics SDE, through a Euler-Mayurama
time-discretization, and where

A = (�200,�100,�170, 15)

a = (�1,�1,�6.5, 0.7)

b = (0, 0, 11, 0.6)

c = (�10,�10,�6.5, 0.7)

x̄ = (1, 0,�0.5,�1)

ȳ = (0, 0.5, 1.5, 1).

(19)

We we generate 32 trajectories with random initial conditions in the ranges

x = [�1.5, 1.2]

y = [�0.2, 2.0],
(20)

and save every 10th step after a burn-in of 1000 steps. Each trajectory is simulated for 100000 steps.

A separate testing set was generated in an identical manner but with a different random seed. The
values in Table. 1 are computed compared to this test set.

B.2 Alanine dipeptide

We use the data from MDShare (Table 3) which consists of three independent trajectories of 250 ns
each.

Pre-processing The atomic coordinates are standardized before model training, each atom has a
unique nominal embedding as atom type.

B.3 Fast folding proteins

The original data was obtained upon request from DE Shaw Research, and details about the simula-
tions are available in the original publication [19]. All configurations were preprocessed by centering
them at the origin. Furthermore, all configurations were scaled to ensure a standard deviation of one
across the dataset.

16

https://markovmodel.github.io/mdshare/ALA2/#alanine-dipeptide

Table 4: MSM hyperparameters. All models used 100 cluster centers, and clustered in the 5 first
TICs.

TICA lag MSM lag ITO �t

Chignolin 1ns 100ns 200ns
Trp-Cage 1ns 100ns 200ns
BBA 1ns 800ns 200ns
Villin 1ns 200ns 200ns

Figure 5: Müller-Brown potential. Conditional Probability Densities starting in x0 indicated by
cross, in ITO models trained with fixed or stochastic lag. Comparison of histograms of direct and
ancestral sampling to direct simulation (Langevin). Nsamples=250k

B.4 Müller-Brown

B.5 Alanine di-peptide

Figure 6: VAMP-2 gap for Alanine di-peptide The plots show exponential moving averages (EMA)
VAMP-2 gaps for stochastic lag (Stochastic) and fixed lag models (Fixed) as a function of training
epoch, for lags (N) 1, 10, 100, and 1000. Shaded areas correspond to the exponential moving standard
deviation.

17

B.6 Fast folding proteins

Figures 8, 9 and 10, show conditional distributions generated by CG-SE3-ITO models and compar-
isons of MD with ITO simulations on the fast folders Trp-Cage, BBA, and Villin, respectively.

Reference value and observables We compute observables using Markov state models. First, we
estimate a reference model for each system (see hyper-parameters in Table 4). Briefly, non-redundant
and non-trivial pair-wise C↵ distances were used as input for TICA dimension reduction, the reduced
space was clustered using k-means. MSMs were sampled from a Bayesian posterior as previously
described [77], using cluster assignments as state assignments. We identified folded and unfolded
states using PCCA (Perron Cluster-Cluster analysis) [78], which in turn enabled the calculation of
mean first passage times (MFPT) of folding h⌧f i and unfolding h⌧ui and the free energy of folding
�Gfold.

Observables computed from ITO simulations were computed by processing the simulation data by
projecting them onto the TICA space and the cluster centers determined on the MD data. MSMs
were sampled as for MD data and observables were computed in the same way.

The reported uncertainties are standard deviations from Bayesian posterior sampling.

Figure 7: Robustness, convergence, and consistency of observables in Chignolin Average and
standard deviation of observables as a function of epoch following stabilization of training loss. The
averages and standard deviations are computed using samples from five independently trained models
(crosses). Reference values computed from MD data are shown with dashed lines.

C Additional results

C.1 Sample timings

Running on a single device of a NVIDIA TITAN V node, using all memory, we can concurrently
generate

• 253 simulation-steps/s for Chignolin

• 61 simulation-steps/s for Trp-Cage

• 35 simulation-steps/s for BBA

• 21 simulation-steps/s for Villin

• 48 simulation-steps/s for Alanine-Dipeptide

Note that all samples presented in this paper have been calculated equivalently using 50 ODE-steps.
Depending on simulated lag, arbitrarily long trajectories can be sampled efficiently. Our models were
trained on lags of up to 200 ns, but our findings suggest no constraints on extending the framework to
much longer time scale.

18

Figure 8: Reversible protein folding-unfolding of Trp-Cage with CG-SE3-ITO Conditional
probability densities (orange contours) starting from folded (upper panels) and unfolded (lower
panels) protein states, at increasing time-lag (left to right), shown on top of data distribution. Below:
time-traces of 208 microsecond MD simulations and ITO simulations on tICs 1 and 2. Contour lines
are based on 10’000 trajectories, generated with ancestral sampling with the length, �t and time-step
200 ps. For �t = 200 ns this corresponds to 1000 ancestral samples.

Fr
om

 F
ol

de
d

Fr
om

 U
nf

ol
de

d

Figure 9: Reversible protein folding-unfolding of BBA with CG-SE3-ITO Conditional probability
densities (orange contours) starting from unfolded (upper panels) and folded (lower panels) protein
states, at increasing time-lag (left to right), shown on top of data distribution. Below: time-traces
of 250 microsecond MD simulations and ITO simulations on tICs 1 and 2. Contour lines are
based on 10’000 trajectories, generated with ancestral sampling with the length, �t and time-step
200 ps. For �t = 200 ns this corresponds to 1000 ancestral samples. Contour lines are based on
10’000 trajectories, generated with ancestral sampling with the length, �t and time-step 200 ps. For
�t = 200 ns this corresponds to 1000 ancestral samples.

19

Figure 10: Reversible protein folding-unfolding of Villin with CG-SE3-ITO Conditional probabil-
ity densities (orange contours) starting from folded (upper panels) and unfolded (lower panels) protein
states, at increasing time-lag (left to right), shown on top of data distribution. Below: time-traces of
125 microsecond MD simulations and ITO simulations on tICs 1 and 2.

v̄j sj

�
���

∑
j

MLP

Encode dist

Split

Repeatn

+

MLP

Split �

+

�

∑
j

v̄i si

U V
��� Concat

MLP� � , � �

+
��

�

�

r̄ij

�v̄m
i �sm

i

Message

Update
++

++
Message

Update
++

++

Update
++

Split

�

MLP

�

…

zi r̄ij

�v̄u
i �su

i

W • + b

SiLU

SiLUW • + b

SiLU

W • + b

sout

M
LP

Update

M
essage

v̄out sout

A B C D
(1,3)

(n,3)

(n)

(n,3)

(n,3)

(4n) (4n)

(n)

(n)(n)(n)

(n)

(n,3)

(n,3)

(n,3)

(n,3)

(n,3)
(n)

(n) (n)

(n)

(4n)

(n)
(n,3)

(2n)

(3n)

(n)

(n)

(1,3)

(n,3)

Embed

sin

CPaiNN

(nin)

(nout)

(nout)

(nout)

(m,n,3)
(m,n,3)

(m,n,3)
(m,n,3)

(m,3)
(m,n)

(m,n)
(m,n)

(m, n)(m, n,3)

(m,n)

(m, n)

(m)

Figure 11: ChiroPaiNN architecture utilized in SE3-ITO and CG-SE3-ITO models (Fig. 2) for the
embedding of conditional configuration and score prediction. Arrows are annotated with input and
output shapes. ⇥ indicates cross product operations between all vectors along the first dimension,
and � indicates element-wise multiplication along the first dimension.

D Architectural details

Positional embedding, ⇤pos , maps diffusion time tdi↵ , physical time �t, and interatomic distances
rij to n-dimensional features-vectors with the n’th dimension defined as:

⇤n
pos(x) =

8
<

:
cos

⇣�
1 + n

2

�
x

⇡
l0

⌘
for even n

sin
⇣�

1 + n�1
2

�
x

⇡
l0

⌘
for odd n,

(21)

where l0 is a hyperparameter.

20

Nominal embedding ⇤nom , maps atomic elements or residue types to continuous n-dimensional
feature vectors, f : C ! R

n, where C is the set of all categorical values and n is the dimension of
the embedded vector.

E Training details

E.1 Sampling of configurations

The last Nmax frames were truncated from each trajectory such that xt could be sampled uniformly
while keeping xt+Nmax in bounds. N is sampled discretely from DisExp(Nmax) following;

Algorithm 3 Sampling from DisExp
Nlog ⇠ Uniform(0, log(Nmax))
Return: floor(exp(Nlog))

Algorithm 4 Sampling from p̂✓(x0, N)

Input: initial condition x0, lag; N , diffusion steps; Tdi↵ , ITO score-model; ✏̂✓
xTdiff
N ⇠ N (0,1)

for tdi↵ = Tdi↵ . . . 1 do
✏ ⇠ N (0,1)

xtdiff�1
N = 1p

↵tdiff

✓
xtdiff
N �

1�↵tdiff
p

1�↵̄tdiff
✏̂✓(x

tdiff
N ,x0, N, tdi↵)

◆
+ �t✏

end for
return x0

N

E.2 Data splits

All available data was used for training with no test/validation set. Reference MFPT values are
already coarse estimates and cannot be accurately calculated from a subset of the data due to slow
time scales compared to the length of available trajectories.

E.3 Hyper Parameters

Müller-Brown For the Müller-Brown results we trained with the MLP in MB-ITO architecture
with 32 dimensional positional embeddings for tphys and N and the MLP had 32 hidden nodes and
5 layers. We used a cosine learning rate scheduler and a sigmoidal �-scheduler with parameters
as listed for alanine dipeptide and the fast folders. The model with stochastic lag was trained with
Nmax = 1000 and for fixed lag models N was fixed during data generation and the positional
embeddings of N were removed from the model.

Alanine dipeptide and Fast folders Hyperparameters employed for experiments on the fast folding
proteins and Alanine Dipeptide are outlined below:

n_features: 64

n_message_passing_blocks_cpainn_embed: 2

n_message_passing_blocks_cpainn_score: 5

N_max: 1000

length_scale: 3.

beta_scheduler: sigmoidal(-8,-4)

diffusion_steps: 1000

batch_size: 128

learning_rate: 1e-3

optimizer: Adam

21

Figure 12: Bond lengths of samples Alanine Dipeptide

n_message_passing_blocks_cpainn_{embed/score} refers to the number of message passing
and update blocks in the CPaiNN networks shown in Figure 2. A message passing block refers to
a message block followed by an update block as shown in Figure 11. Where sigmoidal(t_0,T)
= 1

1+e�x |x2(t0,T). n_features and batch_size corresponds to n and m in Figure 11.
length_scale correspond to the value of l0 in (Eq. 21) and defines the radial resolution of
the embedding. n_features was chosen such that equivalent models could fit in memory of
available hardware while maintaining a consistent batch_size across all systems. The remaining
hyperparameters were fixed and were not systematically optimized.

E.4 Bond lengths Alanine Dipeptide

We evaluate how well the fast vibrational degrees of freedom are captured by the SE3-ITO model
on Alanine dipeptide by inspecting the bondlength distributions of model samples (Fig. 12). The
variances are generally over estimated slightly, but it does not appear to significantly our ability to
predict slow dynamics. However, it would impact importance sampling as many configurations would
have unfavorable physical energies. We leave it for future work to improve.

F Compute resources

F.1 Training

All reported experiments have been conducted on NVIDIA TITAN V, NVIDIA TITAN X (Pascal),
and NVIDIA GeForce GTX TITAN X’s. All GPUs have ⇠ 12GB memory and range from 3000-5000
CUDA cores. Given the hyperparameters specified above, the SE3-ITO models converge within 2-4
days of training depending on system size.

Throughout the project, ⇠ 250 models were trained for an average duration of ⇠ 12 hours pr model
on single GPU devices, resulting in a total of ⇠ 3000 GPU hours spent on training.

F.2 Sampling

In total 589 GPU hours have been spent on sampling throughout the entire project.

G Variational Approach to Markov Processes (VAMP)

The Variational Approach to Markov Processes (VAMP) is a recent result in non-linear dynamics
theory, its key contribution is a family of VAMP-scores [21]. The VAMP-scores are devised based
upon the insight that the best (smallest prediction error) linear model can be expressed in terms of the
top singular components of the Koopman operator, K [79]. The scores measure sum of the singular
values of K multiplied by overlap coefficients between a set of (ortho-normalized) feature-maps f
and g and the singular components of K. We can optimize VAMP-scores to learn optimal feature
mappings and Markovian models of the dynamics from time-series data [65] or for model comparison
[21]. We here use the VAMP-score for the latter and assume f = g.

VAMP-r score is computed via the singular values of the Koopman matrix K estimated from data
using the feature maps f and g [80],

VAMP�r =
kX

i=0

�
r
i (22)

22

where r 2 N+.

G.1 VAMP gap

Informally, the VAMP-r scores quantify the meta-stability of a Koopman matrix. We define the
VAMP-gap �V between two Koopman matrices, K and K0, as the difference between their VAMP-2
scores:

�V = VAMP�2(K)�VAMP�2(K0), (23)
where K0 is a reference and K is a query matrix, respectively. In this context, �V = 0 means
meta-stability in K and K0 is indistinguishable, �V < 0 means K underestimates meta-stability,
and vice versa for �V > 0.

23

