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Abstract

We revisit the problem of learning in two-player zero-sum Markov games, focusing
on developing an algorithm that is uncoupled, convergent, and rational, with non-
asymptotic convergence rates to Nash equilibrium. We start from the case of
stateless matrix game with bandit feedback as a warm-up, showing an O(t− 1

8 )
last-iterate convergence rate. To the best of our knowledge, this is the first result
that obtains finite last-iterate convergence rate given access to only bandit feedback.
We extend our result to the case of irreducible Markov games, providing a last-
iterate convergence rate of O(t−

1
9+ε ) for any ε > 0. Finally, we study Markov

games without any assumptions on the dynamics, and show a path convergence
rate, a new notion of convergence we define, of O(t− 1

10 ). Our algorithm removes
the coordination and prior knowledge requirement of [WLZL21a], which pursued
the same goals as us for irreducible Markov games. Our algorithm is related
to [CMZ21, CWC21] and also builds on the entropy regularization technique.
However, we remove their requirement of communications on the entropy values,
making our algorithm entirely uncoupled.

1 Introduction

In multi-agent learning, a central question is how to design algorithms so that agents can independently
learn (i.e., with little coordination overhead) how to interact with each other. Additionally, it is
desirable to maximally reuse existing single-agent learning algorithms, so that the multi-agent system
can be built in a modular way. Motivated by this question, decentralized multi-agent learning emerges
with the goal to design decentralized systems, in which no central controller governs the policies of
the agents, and each agent learns based on only their local information – just like in a single-agent
algorithm. In recent years, we have witnessed significant success of this new decentralized learning
paradigm. For example, self-play, where each agent independently deploys the same single-agent
algorithm to play against each other without further direct supervision, plays a crucial role in the
training of AlphaGo [SSS+17] and AI for Stratego [PDVH+22].

Despite the recent success, many important questions remain open in decentralized multi-agent
learning. Indeed, unless the decentralized algorithm is carefully designed, self-play often falls short
of attaining certain sought-after global characteristics, such as convergence to the global optimum or
stability as seen in, for example, [MPP18, BP18].

In this work, we revisit the problem of learning in two-player zero-sum Markov games, which has
received extensive attention recently. Our goal is to design a decentralized algorithm that resembles
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standard single-agent reinforcement learning (RL) algorithms, but with an additional crucial assurance,
that is, guaranteed convergence when both players deploy the algorithm. The simultaneous pursuit
of independence and convergence has been advocated widely [BV01, AY16, WLZL21a, SZL+21],
while the results are still not entirely satisfactory. In particular, all of these results rely on assumptions
on the dynamics of the Markov game. Our paper takes the first step to remove such assumptions.

More specifically, our goal is to design algorithms that simultaneously satisfy the following three
properties (the definitions are adapted from [BV01, DDK11]):

• Uncoupled: Each player i’s action is generated by a standalone procedure Pi which, in every
round, only receives the current state and player i’s own reward as feedback (in particular, it has
no knowledge about the actions or policies used by the opponent). There is no communication or
shared randomness between the players.

• Convergent: The policy pair of the two players converges to a Nash equilibrium.
• Rational: If Pi competes with an opponent who uses a policy sequence that converges to a

stationary one, then Pi converges to the best response of this stationary policy.

The uncoupledness and rationality property capture the independence of the algorithm, while the
convergence property provides a desirable global guarantee. Interestingly, as argued in [WLZL21a],
if an algorithm is uncoupled and convergent, then it is also rational, so we only need to ensure
that the algorithm is uncoupled and convergent. Regarding the notion of convergence, the standard
definition above only allows last-iterate convergence. Considering the difficulty of achieving such
convergence, in the related work review (Section 2) and in the design of our algorithm for general
Markov games (Section 6), we also consider weaker notions of convergence, including the best-iterate
convergence, which only requires that the Cesaro mean of the duality gap is convergent, and the path
convergence, which only requires the convergence of the Cesaro mean of the duality gap assuming
minimax/maximin policies are followed in future steps. The precise definitions of these convergence
notions are given at the end of Section 3.

1.1 Our Contributions

The main results in this work are as follows (see also Table 1 for comparisons with prior works):

• As a warm-up, for the special case of matrix games with bandit feedback, we develop an uncoupled
algorithm with a last-iterate convergence rate of O(t− 1

8 ) under self-play (Section 4). To the best of
our knowledge, this is the first algorithm with provable last-iterate convergence rate in the setting.

• Generalizing the ideas from matrix games, we further develop an uncoupled algorithm for irre-
ducible Markov games with a last-iterate convergence rate of O(t−

1
9+ε ) for any ε > 0 under

self-play (Section 5).
• Finally, for general Markov games without additional assumptions, we develop an uncoupled

algorithm with a path convergence rate of O(t− 1
10 ) under self-play (Section 6).

Our algorithms leverage recent advances on using entropy to regularize the policy updates [CWC21,
CMZ21] and the Nash-V-styled value updates [BJY20]. On the one hand, compared to [CWC21,
CMZ21], our algorithm has the following advantages: 1) it does not require the two players to
exchange their entropy information, which allows our algorithm to be fully uncoupled; 2) it does not
require the players to have coordinated policy updates, 3) it naturally extends to general Markov games
without any assumptions on the dynamics (e.g., irreducibility). On the other hand, our algorithm
inherits appealing properties of Nash-V [BJY20], but additionally guarantees path convergence during
execution.

2 Related Work

The study of two-player zero-sum Markov games originated from [Sha53], with many other works
further developing algorithms and establishing convergence properties [HK66, PAI69, VDW78,
FT91]. However, these works primarily focused on solving the game with full knowledge of its
parameters (i.e., payoff function and transition kernel). The problem of learning in zero-sum games
was first formalized by [Lit94]. Designing a provably uncoupled, rational, and convergent algorithm
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Table 1: (Sample-based) Learning algorithms for finding NE in two-player zero-sum games. Our
results are shaded. A halfcheck “✓–” in the convergent column means that the policy convergence is
proven only for one player (typically this is a result of asymmetric updates). (L) and (B) stand for
last-iterate convergence and best-iterate convergence, respectively. (P) stands for path convergence, a
weaker convergence notion we introduce (see Section 3, 6.1).
*: While [WLZL21a] also proposes an uncoupled and convergent algorithm for irreducible Markov
games, their algorithm requires coordinated updates and some prior knowledge of the game, while
ours does not. See Section 2.1 for a more detailed discussion.

Setting Algorithm Uncoupled? Converegent?
EXP3 vs. EXP3 ✓ ✗Matrix Game Algorithm 1 ✓ ✓(L)
[DFG20] ✓ ✓–(B)
[ZTLD22, AVHC22] ✓ ✓–(L)
[SZL+21] ✓ ✗
[CMZ21] ✗ ✓(L)
[WLZL21a] ✓∗ ✓(L)

Markov game +
assumptions on dynamics

Algorithm 2 ✓ ✓(L)
[WHL17, JJJN21, HLWY22]
[JLY22, XZS+22] ✗ ✓–(B)

[BJ20, XCWY20]
[LYBJ21, CZG22] ✗ ✓(B)

[BJY20, JLWY21] ✓ ✗
Markov Game

Algorithm 3 ✓ ✓(P)

is challenging, with many attempts [SL99, BV01, HW03, CS07, AY16, SPO22] falling short in one
aspect or another, often lacking either uncoupledness or convergence. Moreover, these works only
establish asymptotic convergence without providing a concrete convergence rate.

2.1 Non-asymptotic convergence guarantees

Recently, a large body of works on learning two-player zero-sum Markov games use regret minimiza-
tion techniques to establish non-asymptotic guarantees. They focus on fast computation under full
information of payoff and transitions [CWC21, CCDX23, ZLW+22, SLY23, YM23], though many
of their algorithms are decentralized and can be viewed as the first step towards the learning setting.

With rationality and uncoupledness satisfied, [DFG20] established one-sided policy convergence for
players using independent policy gradient with asymmetric learning rates. Such an asymmetric update
rule is also adopted by [ZTLD22, AVHC22] to establish one-sided policy convergence guarantees.
When using a symmetric update rule, [SZL+21] developed a decentralized-Q learning algorithm.
However, the convergence is only shown for the V -function maintained by the players instead of the
policies being used, so the policies may still cycle and are not provably convergent in our definition.
[ELS+23] studied regret minimization in general-sum Markov games and provided an algorithm
with sublinear regret under self-play and average-iterate convergence rates to equibria, while our
work focuses on last-iterate convergence rates to Nash equilibria.

To our knowledge, [WLZL21a] first provided an uncoupled, rational, and convergent algorithm with
non-asymptotic convergence guarantee, albeit only for irreducible Markov game. They achieved
this via optimistic gradient descent/ascent. Despite satisfying all our criteria, their algorithm still
has unnatural coordination between the players and a requirement on some prior knowledge of the
game such as the maximum revisiting time of the Markov game. Our algorithm removes all these
extra requirements. A follow-up work by [CMZ21] improved the rate of [WLZL21a] using entropy
regularization; however, this requires their players to inform the opponent about the entropy of their
own policy, making the algorithm coupled again. We show that such an exchange of information is
unnecessary under entropy regularization.

2.2 Further handling exploration

The algorithms introduced above all require full information or some assumption on the dynamics
of the Markov game. To handle exploration, some works design coupled learning algorithms
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which guarantee that the player’s long-term payoff is at least the minimax value [BT02, WHL17,
XCWY20, HLWY22, JLY22, JJJN21, XZS+22]. Interestingly, as shown in [WHL17, HLWY22,
JLY22, XZS+22], if the player is paired with an optimistic best-response opponent (instead of using
the same algorithm), the first player’s strategy can converge to the minimax policy. [XCWY20,
BJ20, LYBJ21, CZG22] developed another coupled learning framework to handle exploration, but
with symmetric updates on both players. In each round, the players need to jointly solve a general-
sum equilibrium problem due to the different exploration bonus added by each player. Hence, the
execution of these algorithms is more similar to the Nash-Q algorithm by [HW03].

So far, exploration has been handled through coupled approaches that are also not rational. To
our knowledge, the first uncoupled and rational algorithm that handles exploration is the Nash-V
algorithm by [BJY20]. Nash-V can output a nearly-minimax policy through weighted averaging
[JLWY21]; however, it is not provably convergent during execution. A major remaining open problem
is whether one can design a natural algorithm that is provably rational, uncoupled, and convergent
with exploration capability. Our work provides the first progress towards this goal.

2.3 Other works on last-iterate convergence

Uncoupled Learning dynamics in normal-form games with provable last-iterate convergence
rate receives extensive attention recently. Most of the works assume that the players re-
ceive gradient feedback, and convergence results under bandit feedback remain sparse. Lin-
ear convergence is shown for strongly monotone games or bilinear games under gradient feed-
back [Tse95, LS19, MOP20, WLZL21b] and sublinear rates are proven for strongly monotone games
with bandit feedback [BLM18, HIMM19, LZBZ21, TK22, DFR22, HH23]. Convergence rate to
strict Nash equilibrium is analyzed by [GVGM21]. For monotone games that includes two-player
zero-sum games as a special case, the last-iterate convergence rate of no-regret learning under gradient
feedback has been shown recently [GPD20, COZ22, GTG22, CZ23]. With bandit feedback, [MPS20]
showed an impossibility result that certain algorithms with optimal O(

√
T ) regret do not converge

in last-iterate. To the best of our knowledge, there is no natural uncoupled learning dynamics with
provable last-iterate convergence rate in two-player zero-sum games with bandit feedback.

3 Preliminaries

Basic Notations Throughout the paper, we assume for simplicity that the action set for the two
players are the same, denoted by A with cardinality A = |A|.1 We usually call player 1 the
x-player and player 2 the y-player. The set of mixed strategies over an action set A is denoted
as ∆A := {x :

∑
a∈A xa = 1; 0 ≤ xa ≤ 1,∀a ∈ A}. To simplify notation, we denote by

z = (x, y) the concatenated strategy of the players. We use ϕ as the entropy function such that
ϕ(x) = −

∑
a∈A xa lnxa, and KL as the Kullback–Leibler (KL) divergence such that KL(x, x′) =∑

a∈A xa ln
xa

x′
a

. The all-one vector is denoted by 1 = (1, 1, · · · , 1) .

Matrix Games In a two-player zero-sum matrix game with a loss matrix G ∈ [0, 1]A×A, when
the x-player chooses action a and the y-player chooses action b, the x-player suffers loss Ga,b and
the y-player suffers loss −Ga.b. A pair of mixed strategy (x⋆, y⋆) is a Nash equilibrium for G if for
any strategy profile (x, y) ∈ ∆A ×∆A, it holds that (x⋆)⊤Gy ≤ (x⋆)⊤Gy⋆ ≤ x⊤Gy⋆. Similarly,
(x⋆, y⋆) is a Nash equilibrium for a two-player zero-sum game with a general convex-concave loss
function f(x, y) : ∆A ×∆A → R if for all (x, y) ∈ ∆A ×∆A, f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆).
The celebrated minimax theorem [vN28] guarantees the existence of Nash equilibria in two-player
zero-sum games. For a pair of strategy (x, y), we use duality gap defined as GAP(G, x, y) ≜
maxy′ x⊤Gy′ −minx′ x′⊤Gy to measure its proximity to Nash equilibria.

Markov Games A generalization of matrix games, which models dynamically changing environ-
ment, is Markov games. We consider infinite-horizon discounted two-player zero-sum Markov games,
denoted by a tuple (S,A, (Gs)s∈S , (P

s)s∈S , γ) where (1) S is a finite state space; (2) A is a finite
action space for both players; (3) Player 1 suffers loss Gs

a,b ∈ [0, 1] (respectively player 2 suffers

1We make this assumption only to simplify notations; our proofs can be easily extended to the case where the
action sets of the two players are different.
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loss −Gs
a,b) when player 1 chooses action a and player 2 chooses action b at state s; (4) P is the

transition function such that P s
a,b(s

′) is the probability of transiting to state s′ when player 1 plays a
and player 2 plays b at state s; (5) γ ∈ [ 12 , 1) is a discount factor.

A stationary policy for player 1 is a mapping S → ∆A that specifies player 1’s strategy xs ∈ ∆A
at each state s ∈ S. We denote x = (xs)s∈S . Similar notations apply to player 2. We denote
zs = (xs, ys) as the concatenated strategy for the players and z = (x, y). The value function V s

x,y
denotes the expected loss of player 1 (or the expected payoff of player 2) given a pair of stationary
policy (x, y) and initial state s:

V s
x,y = E

[ ∞∑
t=1

γt−1Gst
at,bt
|s1 = s, at ∼ xst , bt ∼ yst , st+1 ∼ P st

at,bt
(·),∀t ≥ 1

]
.

The minimax game value on state s is defined as V s
⋆ = minx maxy V

s
x,y = maxy minx V

s
x,y. We

call a pair of policy (x⋆, y⋆) a Nash equilibrium if it attains minimax game value of a state s (such
policy pair necessarily attains the minimax game value over all states). The duality gap of (x, y)
is maxs (maxy′ V s

x,y′ −minx′ V s
x′,y). The Q-function on state s under policy pair (x, y) is defined

via Qs
x,y(a, b) = Gs

a,b + γ · Es′∼P s
a,b(·)[V

s′

x,y], which can be rewritten as a matrix Qs
x,y such that

V s
x,y = xsQs

x,yy
s. We denote Qs

⋆ = Qs
x⋆,y⋆

the Q-function under a Nash equilibrium (x⋆, y⋆). It is
known that Qs

⋆ is unique for any s even when multiple equilibria exist.

Uncoupled Learning with Bandit Feedback We assume the following uncoupled interaction
protocol: at each round t = 1, . . . , T , the players both observe the current state st, and then, with the
policy xt and yt in mind, they independently choose actions at ∼ xst

t and bt ∼ ystt , respectively. Both
of them then observe σt ∈ [0, 1] with E[σt] = Gst

at,bt
, and proceed to the next state st+1 ∼ P st

at,bt
(·).

Importantly, they do not observe each other’s action.

Notions of Convergence For Markov games with the irreducible assumption (Assumption 1),
given players’ history of play (st, xt, yt)t∈[T ], the best-iterate convergence rate is measured by the
average duality gap 1

T

∑T
t=1 maxs,x,y (V

s
xt,y − V s

x,yt
), while the stronger last-iterate convergence

rate is measured by maxs,x,y (V
s
xT ,y − V s

x,yT
), i.e., the duality gap of (xT , yT ). For general Markov

games, we propose the path convergence rate, which is measured by the average duality gap at the

visited states with respect to the optimal Q-function: 1
T

∑T
t=1 maxx,y (x

s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt ).

We remark that the path convergence guarantee is weaker than the counterpart of the other two notions
of convergence in general Markov games, but still provides meaningful implications (see detailed
discussion in Section 6.1 and Appendix F).

4 Matrix Games

In this section, we consider two-player zero-sum matrix games. We propose Algorithm 1 for
decentralized learning of Nash equilibria. We only present the algorithm for the x-player as the
algorithm for the y-player is symmetric.

Algorithm 1 Matrix Game with Bandit Feedback
1: Define: ηt = t−kη , βt = t−kβ , ϵt = t−kϵ where kη = 5

8 , kβ = 3
8 , kϵ = 1

8 .
Ωt =

{
x ∈ ∆A : xa ≥ 1

At2 , ∀a ∈ A
}

.
2: Initialization:: x1 = 1

A1.
3: for t = 1, 2, . . . do
4: Sample at ∼ xt, and receive σt ∈ [0, 1] with E [σt] = Gat,bt .
5: Compute gt where gt,a = 1[at=a]σt

xt,a+βt
+ ϵt lnxt,a,∀a ∈ A.

6: Update xt+1 ← argminx∈Ωt+1

{
x⊤gt +

1
ηt

KL(x, xt)
}

.
7: end for

The algorithm is similar to the EXP3-IX algorithm by [Neu15] that achieves a high-probability
regret bound for adversarial multi-armed bandits, but with several modifications. First (and most
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importantly), in addition to the standard loss estimators used in [Neu15], we add another negative
term ϵt lnxt,a to the loss estimator of action a (see Line 5). This is equivalent to the entropy
regularization approach in, e.g., [CWC21, CMZ21], since the gradient of the negative entropy
−ϕ(xt) is (lnxt,a + 1)a∈A and the constant 1 takes no effect in Line 6. Like [CWC21, CMZ21],
the entropy regularization drives last-iterate convergence; however, while their results require full-
information feedback, our result holds in the bandit feedback setting. The second difference is that
instead of choosing the players’ strategies in the full probability simplex ∆A, our algorithm chooses
from Ωt, a subset of ∆A where every coordinate is lower bounded by 1

At2 . The third is the choices of
the learning rate ηt, clipping factor βt, and the amount of regularization ϵt. The main result of this
section is the following last-iterate convergence rate of Algorithm 1.
Theorem 1 (Last-Iterate Convergence Rate). Algorithm 1 guarantees with probability at least
1−O(δ), for any t ≥ 1,

max
x,y∈∆A

(
x⊤
t Gy − x⊤Gyt

)
= O

(√
A ln3/2(At/δ)t−

1
8

)
.

Algorithm 1 also guarantees O(t− 1
8 ) regret even when the other player is adversarial. If we only

target at an expected bound instead of a high-probability bound, the last-iterate convergence rate can
be improved to O(

√
A ln3/2(At)t−

1
6 ). The details are provided in Appendix C.

4.1 Analysis Overview

We define a regularized zero-sum game with loss function ft(x, y) = x⊤Gy − ϵtϕ(x) + ϵtϕ(y)
over domain Ωt × Ωt, and denote by z⋆t = (x⋆

t , y
⋆
t ) its unique Nash equilibrium since ft is strongly

convex-strongly concave. The regularized game is a slight perturbation of the original matrix game G
over a smaller domain Ωt × Ωt, and we prove that z⋆t is an O(ϵt)-approximate Nash equilibrium of
the original matrix game G (Lemma 9). Therefore, it suffices to bound KL(z⋆t , zt) since the duality
gap of zt is at most O(

√
KL(z⋆t , zt) + ϵt).

Step 1: Single-Step Analysis We start with a single-step analysis of Algorithm 1, which shows:

KL(z⋆t+1, zt+1) ≤ (1− ηtϵt)KL(z⋆t , zt) + 20η2tA ln2 (At) + 2η2tAλt︸ ︷︷ ︸
instability penalty

+ ηtξt + ηtζt︸ ︷︷ ︸
estimation error

+vt

where we define vt = KL(z⋆t+1, zt+1)− KL(z⋆t , zt+1) (see Appendix B for definitions of λt, ξt, ζt)
The instability penalty comes from some local-norm of the gradient estimator gt. The estimation
error comes from the bias between the gradient estimator gt and the real gradient Gyt. We pay the
last term vt since the Nash equilibrium z∗t of the regularized game ft is changing over time.

Step 2: Strategy Convergence to NE of the Regularized Game Expanding the above recursion
up to t0, we get

KL(z⋆t+1, zt+1) ≤ O
( t∑

i=1

wi
tη

2
i︸ ︷︷ ︸

term1

+2A

t∑
i=1

wi
tη

2
i λi︸ ︷︷ ︸

term2

+

t∑
i=1

wi
tηiξi︸ ︷︷ ︸

term3

+

t∑
i=1

wi
tηiζi︸ ︷︷ ︸

term4

+

t∑
i=1

wi
tvi︸ ︷︷ ︸

term5

)
, (1)

where wi
t ≜

∏t
j=i+1(1− ηjϵj). To upper bound term1-term4, we apply careful sequence analysis

(Appendix A.1) and properties of the EXP3-IX algorithm with changing step size (Appendix A.2).
The analysis of term5 uses Lemma 13, which states vt = KL(z⋆t+1, zt+1) − KL(z⋆t , zt+1) ≤
O(ln(At)∥z⋆t+1 − z⋆t ∥1) = O(

ln2(At)
t ) and is slightly involved as Ωt and ϵt are both changing. With

these steps, we conclude that with probability at least 1−O(δ), KL(z⋆t , zt) = O
(
A ln3(At/δ)t−

1
4

)
.

5 Irreducible Markov Games

We now extend our results on matrix games to two-player zero-sum Markov games. Similarly to
many previous works, our first result makes the assumption that the Markov game is irreducible with
bounded travel time between any pair of states. The assumption is formally stated below:
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Assumption 1 (Irreducible Game). We assume that under any pair of stationary policies of the two
players, and any pair of states s, s′, the expected time to reach s′ from s is upper bounded by L.

We propose Algorithm 2 for uncoupled learning in irreducible two-player zero-sum games, which is
closely related to the Nash-V algorithm by [BJY20], but with additional entropy regularization. It
can also be seen as players using Algorithm 1 on each state s to update the policies (xs

t , y
s
t ) whenever

state s is visited, but with σt + γV
st+1

t as the observed loss to construct loss estimators. Importantly,
V s
1 , V

s
2 , . . . is a slowly changing sequence of value estimations that ensures stable policy updates

[BJY20, WLZL21a, SZL+21]. Note that in Algorithm 2, the updates of V s
t only use players’ local

information (Line 8).

Algorithm 2 Irreducible Markov Game
1: Define: ηt = (1 − γ)t−kη , βt = t−kβ , ϵt = 1

1−γ t
−kϵ , αt = t−kα with kα, kϵ, kβ , kη ∈ (0, 1),

Ωt =
{
x ∈ ∆A : xa ≥ 1

At2 , ∀a ∈ A
}

.
2: Initialization: xs

1 ← 1
A1, ns

1 ← 0, V s
1 ← 1

2(1−γ) , ∀s.
3: for t = 1, 2, . . . , do
4: τ = nst

t+1 ← nst
t + 1 (the number of visits to state st up to time t).

5: Draw at ∼ xst
t , observe σt ∈ [0, 1] with E [σt] = Gst

at,bt
, and observe st+1 ∼ P st

at,bt
(·).

6: Compute gt where gt,a =
1[at=a](σt+γV

st+1
t )

x
st
t,a+βτ

+ ϵτ lnx
st
t,a, ∀a ∈ A.

7: Update xst
t+1 ← argminx∈Ωτ+1

{
x⊤gt +

1
ητ

KL(x, xst
t )
}

.

8: Update V st
t+1 ← (1− ατ )V

st
t + ατ

(
σt + γV

st+1

t

)
.

9: For all s ̸= st, xs
t+1 ← xs

t , ns
t+1 ← ns

t , V s
t+1 ← V s

t .
10: end for

Comparison to Previous Works Although Algorithm 2 shares similarity with previous works that
also use entropy regularization, we believe that both the design and the analysis of our algorithm
are novel and non-trivial. To the best of our knowledge, all previous entropy regularized two-player
zero-sum Markov game algorithms are coupled (e.g., [CWC21, CMZ21, CCDX23]), while ours is the
first that achieves uncoupledness under entropy regularization. We further discuss this by comparing
our algorithm to those in [CCDX23], highlighting the new technical challenges we encounter.

The entropy-regularized OMWU algorithm in [CCDX23] is tailored to the full-information setting.
Moreover, in the value function update step both players need to know the entropy value of the
other player’s policy, which is unnatural. Indeed, the authors explicitly present the removal of this
information sharing as an open question. We answer this open question affirmatively by giving a
fully decentralized algorithm for zero-sum Markov games with provable last-iterate convergence
rates. In Algorithm 2 (Line 8), the update of the value function V is simple and does not require
any entropy information: V st

t+1 ← (1− ατ )V
st
t + ατ

(
σt + γV

st+1

t

)
. This modification results in a

discrepancy between the policy update and the value update. While the policy now incorporates a
regularization term, the value function does not. Such a mismatch is unprecedented in earlier studies
and necessitates a non-trivial approach to resolve. Additionally, Algorithm 2 operates on bandit
feedback instead of full-information feedback, presenting further technical challenges.

Algorithm 2 also offers improvement over the uncoupled algorithm of [WLZL21a]. The algorithm
of [WLZL21a] requires coordinated policy update where the players interact with each other using
the current policy for several iterations to get an approximately accurate gradient (the number of
iterations required depends on L as defined in Assumption 1), and then simultaneously update the
policy pair on all states. We do not require such unnatural coordination between the players or prior
knowledge on L.

Our main result is the following theorem on the last-iterate convergence rate of Algorithm 2.
Theorem 2 (Last-Iterate Convergence Rate). For any ε, δ > 0, Algorithm 2 with kα = 9

9+ε ,
kϵ =

1
9+ε , kβ = 3

9+ε , and kη = 5
9+ε guarantees, with probability at least 1 − O(δ), for any time

t ≥ 1,

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ O

(AL2+1/ε ln4+1/ε(SAt/δ) ln1/ε(t/(1− γ))

(1− γ)2+1/ε
· t−

1
9+ε

)
.
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5.1 Analysis Overview

We introduce some notations for simplicity. We denote by Es′∼P s [V s′

t ] the A×A matrix such that
(Es′∼P s [V s′

t ])a,b = Es′∼P s
a,b

[V s′

t ]. Let tτ (s) be the τ -th time the players visit state s, and define
x̂s
τ = xs

tτ (s)
and ŷsτ = ystτ (s). Then, define the regularized game for each state s via the loss function

fs
τ (x, y) = x⊤(Gs + γEs′∼P s [V s′

tτ (s)
])y − ϵτϕ(x) + ϵτϕ(y). Furthermore, let ẑsτ⋆ = (x̂s

τ⋆, ŷ
s
τ⋆) be

the equilibrium of fs
τ (x, y) over Ωτ × Ωτ . In the following analysis, we fix some t ≥ 1.

Step 1: Policy Convergence to NE of Regularized Game Using similar techniques to Step 1
and Step 2 in the analysis of Algorithm 1, we can upper bound KL(ẑsτ+1⋆, ẑ

s
τ+1) like Eq. (1) with

similar subsequent analysis for term1-term4. The analysis for term5 where vsi = KL(ẑsi+1⋆, ẑ
s
i+1)−

KL(ẑsi⋆, ẑ
s
i+1) is more challenging compared to the matrix game case since here V s

ti(s)
is changing

between two visits to state s. To handle this term, we leverage the following facts for any s′: (1) the
irreducibility assumption ensures that ti+1(s)− ti(s) ≤ O(L ln(St/δ)) thus the number of updates
of the value function at state s′ is bounded; (2) until time ti(s) ≥ i, state s′ has been visited at
least Ω( i

L ln(St/δ) ) times thus each change of the value function between ti(s) and ti+1(s) is at most

O(( i
L ln(St/δ) )

−kα). With these arguments, we can bound term5 byO
(
ln4(SAt/δ)Lτ−kα+kη+2kϵ

)
.

Overall, we have the following policy convergence of NE of the regularized game (Lemma 17):
KL(ẑsτ⋆, ẑ

s
τ ) ≤ O

(
A ln4(SAt/δ)Lτ−k♯

)
, where k♯ = min{kβ − kϵ, kη − kβ , kα − kη − 2kϵ}.

Step 2: Value Convergence Unlike matrix games, policy convergence to NE of the regular-
ized game is not enough for convergence in duality gap. We also need to bound |V s

t − V s
⋆ | since

the regularized game is defined using V s
t , the value function maintained by the algorithm, in-

stead of the minimax game value V s
⋆ . We use the following weighted regret quantities as a proxy:

Regsτ ≜maxx,y
(∑τ

i=1 α
i
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x
s, ŷsi )) ,

∑τ
i=1 α

i
τ (f

s
i (x̂

s
i , y

s
i )− fs

i (x̂
s
i , ŷ

s
i ))
)
, where

αi
τ = αi

∏τ
j=i+1(1− αj). We can upper bound the weighted regret Regsτ using a similar analysis as

in Step 1 (Lemma 19). We then show a contraction for |V s
tτ (s)

− V s
⋆ | with the weighted regret quanti-

ties: |V s
tτ (s)

− V s
⋆ | ≤ γ

∑τ
i=1 α

i
τ maxs′ |V s′

ti(s)
− V s′

⋆ |+ Õ(ϵτ + Regs
τ ). This leads to the following

convergence of V s
t (Lemma 20):|V s

t − V s
⋆ | ≤ Õ(t−k∗), where k∗ = min {kη, kβ , kα − kβ , kϵ}.

Obtaining Last-Iterate Convergence Rate Fix any t and let τ be the number of visits to s before
time t. So far we have shown (1) policy convergence of KL(ẑsτ⋆, ẑ

s
τ ) in the regularized game; (2) and

value convergence of |V s
t − V s

⋆ |. Using the fact that the regularized game is at mostO(ϵτ+|V s
t −V s

⋆ |)
away from the minimax game martrix Q⋆ and appropriate choices of parameters proves Theorem 2.

6 General Markov Games

In this section, we consider general two-player zero-sum Markov games without Assumption 1.
We propose Algorithm 3, an uncoupled learning algorithm that handles exploration and has path
convergence rate. Compared to Algorithm 2, the update of value function in Algorithm 3 uses a
bonus term bnsτ based on the optimism principle to handle exploration.

Theorem 3 below implies that we can achieve 1
t

∑t
τ=1 maxx,y (x

s⊤τ
τ Qsτ

⋆ ysτ − xs⊤τ Qsτ
⋆ ysττ ) =

O(t− 1
10 ) path convergence rate if we use the doubling trick to tune down u at a rate of t−

1
10 .

Theorem 3. For any u ∈
[
0, 1

1−γ

]
and T ≥ 1, there exists a proper choice of parameters ϵ, β, η

such that Algorithm 3 guarantees with probability at least 1−O(δ),

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A3 ln20(SAT/δ)

u9(1− γ)16

)
. (2)
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Algorithm 3 General Markov Game
1: Input: η ≤ β ≤ ϵ and T .
2: Define: Ω =

{
x ∈ ∆A : xa ≥ 1

AT , ∀a ∈ A
}

, ατ = H+1
H+τ , where H = ln(T )

1−γ .
bnsτ = κA ln2(SAT/δ)(β + η−1ατ )/(1− γ)2 for a sufficiently large absolute constant κ > 0

3: Initialization: V s
1, n

s
1 ← 0, xs

1 ← 1
A1, ∀s.

4: for t = 1, 2, . . . , do
5: τ = nst

t+1 ← nst
t + 1.

6: Sample at ∼ xst
t , observe σt ∈ [0, 1] with E [σt] = Gst

at,bt
, and observe st+1 ∼ P st

at,bt
(·).

7: Compute gt where gt,a =
1[at=a](σt+γV

st+1
t )

x
st
t,a+β

+ ϵ lnxst
t,a,∀a ∈ A.

8: Update xst
t+1 ← argminx∈Ω

{
x⊤gt +

1
ηKL(x, xst

t )
}

.

9: Update ∼V
st
t+1 ← (1− ατ )∼V

st
t + ατ

(
σt + γV

st+1

t − bnsτ
)

and V st
t+1 ← max

{
∼V

st
t+1, 0

}
.

10: For all s ̸= st, xs
t+1 ← xs

t , V s
t+1 ← V s

t , ∼V
s
t+1 ← ∼V

s
t , ns

t+1 ← ns
t .

11: end for

6.1 Path Convergence

Path convergence has multiple meaningful game-theoretic implications. By definition, It implies that
frequent visits to a state bring players’ policies closer to equilibrium, leading to both players using
near-equilibrium policies for all but o(T ) number of steps over time.

Path convergence also implies that both players have no regret compared to the game value V s
⋆ ,

which has been considered and motivated in previous works such as [BT02, TWYS20]. To see this,
we apply the results to the episodic setting, where in every step, with probability 1− γ, the state is
redrawn from s ∼ ρ for some initial distribution ρ. If the learning dynamics enjoys path convergence,

then E[
∑T

t=1 x
s⊤t
t Gstystt ] = (1 − γ)Es∼ρ[V

s
⋆ ]T ± o(T ). Hence the one-step average reward is

(1 − γ)Es∼ρ[V
s
⋆ ] and both players have no regret compared to the game value. A more important

implication of path convergence is that it guarantees stability of players’ policies, while cycling
behaviour is inevitable for any FTRL-type algorithms even in zero-sum matrix games [MPP18, BP18].
We defer the proof and more discussion of path convergence to Appendix F.

Finally, we remark that our algorithm is built upon Nash V-learning [BJY20], so it inherits proper-
ties of Nash V-learning, e.g., one can still output near-equilibrium policies through policy averag-
ing [JLWY21], or having no regret compared to the game value when competing with an arbitrary
opponent [TWYS20]. We demonstrate extra benefits brought by entropy regularization regarding the
stability of the dynamics.

6.2 Analysis Overview of Theorem 3

For general Markov games, it no longer holds that every state s is visited often, and thus the
analysis is much more challenging. We first define two regularized games based on V s

t and the
corresponding quantity V

s

t for the y-player. Define tτ (s), x̂s
τ , ŷsτ the same way as in the previous

section. Then define fs

τ
(x, y) ≜ x⊤(Gs+γEs′∼P s [V s′

tτ (s)
])y−ϵϕ(x)+ϵϕ(y), f

s

τ (x, y) ≜ x⊤(Gs+

γEs′∼P s [V
s′

tτ (s)])y − ϵϕ(x) + ϵϕ(y) and denote Jt = maxx,y(x
s⊤t
t (Gst + γEs′∼P st [V

s′

t ]y
st −

x
s⊤t
t (Gs + γEs′∼P st [V

s′

t ])y
st
t ). We first bound the “path duality gap" as follows

max
x,y

(
x
s⊤t
t Qst

⋆ ys − xs⊤t Qst
⋆ yst

)
≤ Jt +O

(
max
s′

(
V s′

⋆ − V
s′

t , V
s′

t − V s′

⋆

))
. (3)

Value Convergence: Bounding V s
t − V s

⋆ and V s
⋆ − V

s

t This step is similar to Step 2 in the
analysis of Algorithm 2. We first show an upper bound of the weighted regret (Lemma 23):∑τ

i=1 α
i
τ (f

s

i
(x̂s

i , ŷ
s
i ) − fs

i
(xs, ŷsi )) ≤ 1

2bnsτ , where αi
τ = αi

∏τ
j=i+1(1 − αj). Note that the

value function V s
t is updated using σt+ γV st+1

t −bnsτ . Thus when relating |V s
t −V s

⋆ | to the regret,
the regret term and the bonus term cancel out and we get V s

t ≤ V s
⋆ +O( ϵ ln(AT )

1−γ ) (Lemma 26). The

analysis for V s
⋆ −V

s

t is symmetric. By proper choice of ϵ, both terms are bounded by 1
8u. Combining
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the above with Eq. (3), we can upper bound the left-hand side of the desired inequality Eq. (2) by∑T
t=1 1

[
Jt ≥ 3

4u
]
, which is further upper bounded in Eq. (29) by

∑
s

nT+1(s)∑
τ=1

1

[
max

y
f
s

τ (x̂
s
τ , y

s)− f
s

τ (ẑ
s
τ ) ≥

u

8

]
+
∑
s

nT+1(s)∑
τ=1

1
[
fs

τ
(ẑsτ )−min

x
fs

τ
(xs, ŷsτ ) ≥

u

8

]
+

T∑
t=1

1
[
x
s⊤t
t

(
γEs′∼P st

[
V

s′

t − V s′

t

])
ystt ≥

u

4

]
. (4)

Policy Convergence to NE of Regularized Games To bound the first two terms, we show con-
vergence of the policy (x̂s

τ , ŷ
s
τ ) to Nash equilibria of both games fs

τ
and f

s

τ . To this end, fix any
p ∈ [0, 1], we define fs

τ = pfs

τ
+ (1 − p)f

s

τ and let ẑsτ⋆ = (x̂s
τ⋆, ŷ

s
τ⋆) be the equilibrium of

fs
τ (x, y). The analysis is similar to previous algorithms where we first conduct single-step analysis

(Lemma 22) and then carefully bound the weighted recursive terms. We show in Lemma 27 that
for any 0 < ϵ′ ≤ 1:

∑
s

∑nT+1(s)
τ=1 1 [KL(ẑsτ⋆, ẑ

s
τ ) ≥ ϵ′] ≤ O(S

2A ln5(SAT/δ)
ηϵ2ϵ′(1−γ)3 ). This proves policy

convergence: the number of iterations where the policy is far away from Nash equilibria of the
regularized games is bounded, which can then be translated to upper bounds on the first two terms.

Value Convergence: Bounding |V s

t − V s
t | It remains to bound the last term in Eq. (4). Define

ct = 1[xst
t (Es′∼P st [V

s′

t − V s′

t ])y
st
t ≥ ϵ̃] where ϵ̃ = u

4 . Then we only need to bound C ≜
∑T

t=1 ct.

We use the weighted sum PT ≜
∑T

t=1 ctx
st
t (Es′∼P st [V

s′

t − V s′

t ])y
st
t as a proxy. On the one hand,

PT ≥ Cϵ̃. On the other hand, in Lemma 25, by recursively tracking the update of the value function
and carefully choosing η and β, we upper bound PT by ≤ Cϵ̃

2 +O(AS ln4(AST/δ)
η(1−γ)3 ). Combining the

upper and lower bound of PT gives C ≤ O(AS ln4(AST/δ)
ηu(1−γ)3 ) (Corollary 2). Plugging appropriate

choices of ϵ, η, and β in the above bounds proves Theorem 3 (see Appendix E).

7 Conclusion and Future Directions

In this work, we study decentralized learning in two-player zero-sum Markov games with bandit
feedback. We propose the first uncoupled and convergent algorithms with non-asymptotic last-iterate
convergence rates for matrix games and irreducible Markov games, respectively. We also introduce a
novel notion of path convergence and provide algorithm with path convergence in Markov games
without any assumption on the dynamics. Previous results either focus on average-iterate convergence
or require stronger feedback/coordination or lack non-asymptotic convergence rates. Our results
contribute to the theoretical understanding of the practical success of regularization and last-iterate
convergence in multi-agent reinforcement learning.

Settling the optimal last-iterate convergence rate that is achievable by uncoupled learning dynamics is
an important open question. The following directions are promising towards closing the gap between
current upper bounds O(T−1/8) and O(T−1/(9+ε)) and lower bound Ω(T− 1

2 ), The impossibility
result by [MPS20] demonstrates that certain algorithms with O(

√
T ) regret diverge in last-iterate.

Their result indicates that the current Ω( 1√
T
) lower bound on convergence rate may not be tight. On

the other hand, our algorithms provides insights and useful templates to potential improvements on
the upper bound. For instance, instead of using EXP3-IX update, adapting optimistic policy update or
other accelerated first-order methods to the bandit feedback setting is an interesting future direction.
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A Auxiliary Lemmas

A.1 Sequence Properties

Lemma 1. Let 0 < h < 1, 0 ≤ k ≤ 2, and let t ≥
(

24
1−h ln 12

1−h

) 1
1−h

. Then

t∑
i=1

i−k
t∏

j=i+1

(1− j−h)

 ≤ 9 ln(t)t−k+h.

Proof. Define

s ≜
⌈
(k + 1)th ln t

⌉
We first show that s ≤ t

2 . Suppose not, then we have

(k + 1)th ln t >
t

2
− 1 ≥ t

4
(because t ≥ 12 > 4)

and thus t1−h < 4(k + 1) ln t ≤ 12 ln t. However, by the condition for t and Lemma 3, it holds that
t1−h ≥ 12 ln t, which leads to contradiction.
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Then the sum can be decomposed as

t−s∑
i=1

i−k
t∏

j=i+1

(1− j−h) +

t∑
i=t−s+1

i−k
t∏

j=i+1

(1− j−h)

≤ t× (1− t−h)s + s (t− s+ 1)
−k

≤ t× (e−t−h

)s + s×
(
t

2

)−k

≤ t× e−(k+1) ln t + s× 2k × t−k

≤ t−k +
(
(k + 1)th ln t+ 1

)
× 2k × t−k

≤ 9 ln(t)t−k+h.

Lemma 2. Let 0 < h < 1, 0 ≤ k ≤ 2, and let t ≥
(

24
1−h ln 12

1−h

) 1
1−h

. Then

max
1≤i≤t

i−k
t∏

j=i+1

(1− j−h)

 ≤ 4t−k.

Proof.

max
t
2≤i≤t

i−k
t∏

j=i+1

(1− j−h)

 ≤ ( t

2

)−k

≤ 22t−k = 4t−k

max
1≤i≤ t

2

i−k
t∏

j=i+1

(1− j−h)

 ≤ (1− t−h
) t

2 ≤
(
exp

(
−t−h

)) t
2 = exp

(
−1

2
t1−h

)
(a)

≤ exp

(
−1

2
× 12 ln t

)
=

1

t6
≤ t−k.

where in (a) we use Lemma 3. Combining the two inequalities finishes the proof.

Lemma 3. Let 0 < h < 1 and t ≥
(

24
1−h ln 12

1−h

) 1
1−h

. Then t1−h ≥ 12 ln t.

Proof. By the condition, we have

t1−h ≥ 2× 12

1− h
ln

12

1− h
.

Applying Lemma 12, we get

t1−h ≥ 12

1− h
ln(t1−h) = 12 ln t.

Lemma 4 (Lemma A.1 of [SSBD14]). Let a > 0. Then x ≥ 2a ln(a)⇒ x ≥ a ln(x).

Lemma 5 (Freedman’s Inequality). LetF0 ⊂ F1 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . , Xn be real
random variables such that Xi isFi-measurable, E[Xi|Fi−1] = 0, |Xi| ≤ b, and

∑n
i=1 E[X2

i |Fi−1] ≤
V for some fixed b > 0 and V > 0. Then with probability at least 1− δ,

n∑
i=1

Xi ≤ 2
√
V log(1/δ) + b log(1/δ).
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A.2 Properties Related to EXP3-IX

In Lemma 6 and Lemma 7, we assume thatF0 ⊂ F1 ⊂ F2 ⊂ · · · is a filtration, and assume that xi, ℓi
are Fi−1-measurable, where xi ∈ ∆A, ℓi ∈ [0, 1]A. Besides, ai ∈ [A] and σi are Fi-measurable with
E[ai = a|Fi−1] = xi,a and E[σi|Fi−1] = ℓi. Define ℓ̂i,a =

σi,a1[ai=a]
xi,a+βi

where βi is non-increasing.

Lemma 6 (Lemma 20 of [BJY20]). Let c1, c2, . . . , ct be fixed positive numbers. Then with probability
at least 1− δ,

t∑
i=1

ci

〈
xi, ℓi − ℓ̂i

〉
= O

A

t∑
i=1

βici +

√√√√ln(A/δ)

t∑
i=1

c2i

 .

Lemma 7 (Adapted from Lemma 18 of [BJY20]). Let c1, c2, . . . , ct be fixed positive numbers. Then
for any sequence x⋆

1, . . . , x
⋆
t ∈ ∆A such that x⋆

i is Fi−1-measurable, with probability at least 1− δ,
t∑

i=1

ci

〈
x⋆
i , ℓ̂i − ℓi

〉
= O

(
max
i≤t

ci ln(1/δ)

βt

)
.

Proof. Lemma 18 of [BJY20] states that for any sequence of coefficients w1, w2, · · · , wt such that
wi ∈ [0, 2βi]

A is Fi−1-measurable, we have with probability 1− δ,
t∑

i=1

ci

〈
wi, ℓ̂i − ℓi

〉
≤ max

i≤t
ci log(1/δ).

Since x⋆
i ∈ ∆A and βi is decreasing, we know 2βt · x⋆

i ∈ [0, 2βi]. Thus we can apply Lemma 18 of
[BJY20] and get with probability 1− δ,

t∑
i=1

ci

〈
x⋆
i , ℓ̂i − ℓi

〉
=

t∑
i=1

ci
2βt

〈
2βt · x⋆

i , ℓ̂i − ℓi

〉
≤ max

i≤t

ci
βt

log(1/δ).

Lemma 8 (Lemma 21 of [BJY20]). Let c1, c2, . . . , ct be fixed positive numbers. Then with probability
at least 1− δ, for all x⋆ ∈ ∆A,

t∑
i=1

ci

〈
x⋆, ℓ̂i − ℓi

〉
= O

(
max
i≤t

ci ln(A/δ)

βt

)
.

Lemma 9. Let (x1, y1) and (x2, y2) be equilibria of f1(·, ·) in the domain Z1 and f2(·, ·) in the
domain Z2 respectively. Suppose that Z1 ⊆ Z2, and that sup(x,y)∈Z1

|f1(x, y) − f2(x, y)| ≤ ϵ.
Then for any (x, y) ∈ Z2,

f2(x1, y)− f2(x, y1) ≤ 2ϵ+ 2d sup
(x̃,ỹ)∈Z2

∥∇f2(x̃, ỹ)∥∞

where d = maxz∈Z2 minz′∈Z1 ∥z − z′∥1

Proof. Since (x1, y1) is an equilibrium of f1, we have for any (x′, y′) ∈ Z1,

f1(x1, y
′)− f1(x

′, y1) ≤ 0,

which implies

f2(x1, y
′)− f2(x

′, y1) ≤ 2ϵ.

For any (x, y) ∈ Z2, we can find (x′, y′) ∈ Z1 such that ∥(x, y)− (x′, y′)∥1 ≤ d. Therefore, for any
(x, y) ∈ Z2,

f2(x1, y)− f2(x, y1)

≤ f2(x1, y
′)− f2(x

′, y1) + ∥x− x′∥1∥∇xf2(x, y)∥∞ + ∥y − y′∥1∥∇yf2(x, y)∥∞
≤ 2ϵ+ 2d sup

(x̃,ỹ)∈Z2

∥∇f2(x̃, ỹ)∥∞.
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A.3 Markov Games

Lemma 10 ([WLZL21a]). For any policy pair x, y, the duality gap on a two player zero-sum game
can be related to duality gap on individual states:

max
s,x′,y′

(
V s
x,y′ − V s

x′,y

)
≤ 2

1− γ
max
s,x′,y′

(xsQs
⋆y

′s − x′sQs
⋆y

s).

A.4 Online Mirror Descent

Lemma 11. Let

x′ = argmin
x̃∈Ω

{∑
a∈A

x̃a (ℓa + ϵa lnxa) +
1

η
KL(x̃, x)

}

for some convex set Ω ⊆ ∆A, ℓ ∈ [0,∞)A, and ϵ ∈ [0, 1
η ]

A. Then

(x− u)⊤(ℓ+ ϵ lnx) ≤ KL(u, x)− KL(u, x′)

η
+ η

∑
a∈A

xa(ℓa)
2 + η

∑
a∈A

ϵ2a ln
2 xa.

for any u ∈ Ω, where ϵ lnx denotes the vector (ϵa lnxa)a∈A.

Proof. By the standard analysis of online mirror descent, we have for any u ∈ Ω

(x− u)⊤(ℓ+ ϵ lnx) ≤ KL(u, x)− KL(u, x′)

η
+ (x− x′)⊤(ℓ+ ϵ lnx)− 1

η
KL(x′, x).

Below, we abuse the notation by defining KL(x̃, x) =
∑

a(x̃a ln
x̃a

xa
− x̃a + xa) without restricting x̃

to be a probability vector. Then following the analysis in the proof of Lemma 1 of [CLW21], we have

(x− x′)⊤(ℓ+ ϵ lnx)− 1

η
KL(x′, x)

≤ max
y∈RA

+

{
(x− y)⊤(ℓ+ ϵ lnx)− 1

η
KL(y, x)

}
=

1

η

∑
a

xa

(
η(ℓa + ϵa lnxa)− 1 + e−η(ℓa+ϵa ln xa)

)
≤ 1

η

∑
a

xa

(
ηϵa lnxa + η2ℓ2a − e−ηℓa + e−ηℓax−ηϵa

a

)
(z − 1 ≤ z2 − e−z for z ≥ 0)

= η
∑
a

xaℓ
2
a +

1

η

∑
a

(
ηϵaxa lnxa + e−ηℓa

(
x1−ηϵa
a − xa

))
≤ η

∑
a

xaℓ
2
a +

1

η

∑
a

(
ηϵaxa lnxa +

(
x1−ηϵa
a − xa

))
(ηℓa ≥ 0 and x1−ηϵa

a − xa ≥ 0)

≤ η
∑
a

xaℓ
2
a +

1

η

∑
a

(
ηϵaxa lnxa − ηϵax

1−ηϵa lnxa

)
(by Lemma 12)

≤ η
∑
a

xaℓ
2
a +

1

η

∑
a

(ηϵa lnxa)
2x1−ηϵa

a (by Lemma 12)

≤ η
∑
a

xaℓ
2
a +

1

η

∑
a

(ηϵa lnxa)
2. (ηϵa ≤ 1 and xa ∈ (0, 1))

Lemma 12. For x ∈ (0, 1) and y > 0, we have x1−y − x ≤ −yx1−y lnx.
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Proof.

x1−y − x = e(ln
1
x )(y−1) − e(ln

1
x )(−1)

= y

(
ln

1

x

)
e(ln

1
x )ỹ (for some ỹ ∈ [−1, y − 1])

≤ y

(
ln

1

x

)
e(ln

1
x )(−1+y)

= −y(lnx)x1−y

where the second equality is by the mean value theorem.

B Last-Iterate Convergence Rate of Algorithm 1

Proof of Theorem 1. The proof is divided into three parts. In Part I, we establish a descent inequality
for KL(z⋆t , zt). In Part II, we give an upper bound KL(z⋆t , zt) by recursively applying the descent
inequality. Finally in Part III, we show last-iterate convergence rate on the duality gap of zt = (xt, yt).
In the proof, we assume without loss of generality that t ≥ t0 = ( 24

1−kη−kϵ
ln( 12

1−kη−kϵ
))

1
1−kη−kϵ =

(96 ln(48))4 since the theorem holds trivially for constant t.

Part I.

ft(xt, yt)− ft(x
⋆
t , yt)

= (xt − x⋆
t )

⊤Gyt + ϵt

(∑
a

xt,a lnxt,a −
∑
a

x⋆
t,a lnx

⋆
t,a

)

= (xt − x⋆
t )

⊤Gyt + ϵt

(∑
a

(xt,a − x⋆
t,a) lnxt,a

)
− ϵt

∑
a

x⋆
t,a

(
lnx⋆

t,a − lnxt,a

)
︸ ︷︷ ︸

=KL(x⋆
t ,xt)

= (xt − x⋆
t )

⊤gt − ϵtKL(x⋆
t , xt) +

∑
a

xt,a

(
(Gyt)a −

1[at = a]σt

xt,a + βt

)
︸ ︷︷ ︸

≜ ξ
t

+
∑
a

x⋆
t,a

(
1[at = a]σt

xt,a + βt
− (Gyt)a

)
︸ ︷︷ ︸

≜ ζ
t

(by the definition of gt)

≤ KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ ηt

∑
a

xt,a

(
1[at = a]

xt,a + βt

)2

+ ηt
∑
a

ϵ2t ln
2(xt,a)− ϵtKL(x⋆

t , xt) + ξ
t
+ ζ

t

(by Lemma 11)

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ 2ηt

∑
a

(
1[at = a]

xt,a + βt
+ ϵ2t ln

2(xt,a)

)
+ ξ

t
+ ζ

t

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt

+ 2ηtA×
1

A

∑
a

(
1[at = a]

xt,a + βt
− 1

)
︸ ︷︷ ︸

≜λt

+2ηtA+ 2ηtAϵ2t ln
2
(
At2
)
+ ξ

t
+ ζ

t

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ 10ηtA ln2 (At) + 2ηtAλt + ξ

t
+ ζ

t
. (5)

Rearranging the above inequality, we get

KL(x⋆
t+1, xt+1)

≤ (1− ηtϵt)KL(x⋆
t , xt) + ηt(ft(x

⋆
t , yt)− ft(xt, yt)) + 10η2tA ln2 (At) + 2η2tAλt + ηtξt + ηtζt + vt,
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where vt ≜ KL(x⋆
t+1, xt+1) − KL(x⋆

t , xt+1). Similarly, since the algorithm for the y-player is
symmetric, we have the following:

KL(y⋆t+1, yt+1)

≤ (1− ηtϵt)KL(y⋆t , yt) + ηt(ft(xt, yt)− ft(xt, y
⋆
t )) + 10η2tA ln2 (At) + 2η2tAλt + ηtξt + ηtζt + vt

where

λt ≜
1

A

∑
b

(
1[bt = b]

yt,b + βt
− 1

)
ξt ≜

∑
b

yt,b

((
−(G⊤xt)b + 1

)
− 1[bt = b](−σt + 1)

yt,b + βt

)
ζt ≜

∑
b

y⋆t,b

(
1[bt = b](−σt + 1)

yt,b + βt
−
(
−(G⊤xt)b + 1

))
vt ≜ KL(y⋆t+1, yt+1)− KL(y⋆t , yt+1).

Adding the two inequalities above up and using the fact that ft(x⋆
t , yt)− ft(xt, y

⋆
t ) ≤ 0, we get

KL(z⋆t+1, zt+1) ≤ (1− ηtϵt)KL(z⋆t , zt) + 20η2tA ln2 (At) + 2η2tAλt + ηtξt + ηtζt + vt, (6)

where □ ≜ □+□ for □ = λt, ξt, ζt, vt.

Part II. Expanding the recursion in Eq. (6), and using the fact that 1− η1ϵ1 = 0, we get

KL(z⋆t+1, zt+1) ≤ 20A ln2(At)

t∑
i=1

wi
tη

2
i︸ ︷︷ ︸

term1

+2A

t∑
i=1

wi
tη

2
i λi︸ ︷︷ ︸

term2

+

t∑
i=1

wi
tηiξi︸ ︷︷ ︸

term3

+

t∑
i=1

wi
tηiζi︸ ︷︷ ︸

term4

+

t∑
i=1

wi
tvi︸ ︷︷ ︸

term5

where wi
t ≜

∏t
j=i+1(1− ηjϵj). We can bound each term as follows.

By Lemma 1 and the fact that that t ≥ t0, we have

term1 ≤ O
(
A ln2(At) ln(t)t−2kη+(kη+kϵ)

)
= O

(
A ln3(At)t−kη+kϵ

)
= O

(
A ln3(At)t−

1
2

)
.

Using Lemma 7 with x⋆ = 1
A1, ℓi = 1 for all i, and ci = wi

tη
2
i , we have with probability 1− δ

t2 ,

term2 = O
(
A ln(At/δ)maxi≤t ci

βt

)
(a)
= O

(
A ln(At/δ)tkβ × t−2kη

)
= O

(
A ln(At/δ)t−

1
2

)
where in (a) we use Lemma 2 with the fact that t ≥ t0.
Using Lemma 6 with ci = wi

tηi, we have with probability at least 1− δ
t2 ,

term3 ≤ O

A

t∑
i=1

βici +

√√√√ln(At/δ)

t∑
i=1

c2i


= O

A

t∑
i=1

i−kβ−kη

t∏
j=i+1

(
1− j−kη−kϵ

)+

√√√√√ln(At/δ)

t∑
i=1

i−2kη

t∏
j=i+1

(1− j−kη−kϵ)




= O
(
A ln(t)t−kβ+kϵ + t−

1
2kη+

1
2kϵ log(At/δ)

)
(by Lemma 1 and t ≥ t0)

= O
(
A log(At/δ)t−

1
4

)
.

Using Lemma 7 with ci = wi
tηi, we get with probability at least 1− δ

t2 ,

term4 = O
(
ln(At/δ)maxi≤t ci

βt

)
(a)

≤ O
(
ln(At/δ)t−kη+kβ

)
= O

(
ln(At/δ)t−

1
4

)
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where (a) is by Lemma 2 and t ≥ t0.
By Lemma 13 and Lemma 1,

term5 = O

(
ln2(At)

t∑
i=1

wi
tt

−1

)
= O

(
ln3(At)t−1+kη+kϵ

)
= O

(
ln3(At)t−

1
4

)
.

Combining all terms above, we get that with probability at least 1− 3δ
t2 ,

KL(z⋆t+1, zt+1) = O
(
A ln3(At/δ)t−

1
4

)
. (7)

Using an union bound over t, we see that Eq. (7) holds for all t ≥ t0 with probability at least
1−O(δ).

Part III. Using Lemma 9 with ft(x, y) and x⊤Gy with domains Ωt × Ωt and ∆A ×∆A, we get
that for any (x, y) ∈ ∆A ×∆A,

x⋆⊤
t Gy − x⊤Gy⋆t ≤ O

(
ϵt ln(A) +

1

t

)
= O

(
ln(A)t−kϵ

)
= O

(
ln(A)t−

1
8

)
.

Further using Eq. (7), we get that with probability at least 1−3δ, for any t and any (x, y) ∈ ∆A×∆A,

x⊤
t Gy − x⊤Gyt ≤ O

(
ln(A)t−

1
8 + ∥zt − z⋆t ∥1

)
(a)
= O

(
ln(A)t−

1
8 +

√
KL(z⋆t , zt)

)
= O

(√
A ln3/2(At/δ)t−

1
8

)
where (a) is by Pinsker’s inequality. This completes the proof of Theorem 1.

Lemma 13. |vt| = O
(
ln2(At)t−1

)
.

Proof.

|vt| =
∣∣KL(z⋆t+1, zt+1)− KL(z⋆t , zt+1)

∣∣
≤ O

(
ln(At)∥z⋆t+1 − z⋆t ∥1

)
(by Lemma 14)

= O
(
ln2(At)t−1

)
. (by Lemma 15)

Lemma 14. Let x, x1, x2 ∈ Ωt. Then

|KL(x1, x)− KL(x2, x)| ≤ O (ln(At)∥x1 − x2∥1) .

Proof.

KL(x1, x)− KL(x2, x)

=
∑
a

(
x1,a ln

x1,a

xa
− x2,a ln

x2,a

xa

)
=
∑
a

(x1,a − x2,a) ln
x1,a

xa
+
∑
a

x2,a

(
ln

x1,a

xa
− ln

x2,a

xa

)
≤ O (ln(At)∥x1 − x2∥1)− KL(x2, x1)

≤ O (ln(At)∥x1 − x2∥1) .

Similarly, KL(x2, x)− KL(x1, x) ≤ O (ln(At)∥x1 − x2∥1).

Lemma 15. ∥z⋆t − z⋆t+1∥1 = O
(

ln(At)
t

)
.
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Proof. Notice that the feasible sets for the two time steps are different. Let (x′
t+1, y

′
t+1) be such that

x′
t+1 = pt+1

A 1+ (1− pt+1)x
⋆
t+1 and y′t+1 = pt+1

A 1+ (1− pt+1) y
⋆
t+1 where pt+1 = min{1, 2t−3}.

Since (x∗
t+1, y

∗
t+1) ∈ Ωt+1×Ωt+1, we have that for any a, x′

t+1,a ≥
pt+1

A +(1−pt+1)
1

A(t+1)2 ≥
1

At2 .
Hence, (x′

t+1, y
′
t+1) ∈ Ωt × Ωt.

Because (x⋆
t+1, y

⋆
t+1) is the equilibrium of ft+1 in Ωt+1 × Ωt+1, we have that for any (x, y) ∈

Ωt+1 × Ωt+1,

ft+1(x, y
⋆
t+1)− ft+1(x

⋆
t+1, y)

= ft+1(x, y
⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t+1) + ft+1(x

⋆
t+1, y

⋆
t+1)− ft+1(x

⋆
t+1, y)

≥ ϵt+1KL(x, x⋆
t+1) + ϵt+1KL(y, y⋆t+1)

≥ 1

2
ϵt+1

(
∥x− x⋆

t+1∥21 + ∥y − y⋆t+1∥21
)

(Pinsker’s inequality)

≥ 1

4
ϵt+1∥z − z⋆t+1∥21.

where the first inequality is due to the following calculation:

ϵt+1KL(x, x⋆
t+1) = ft+1(x, y

⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t+1)−∇xft+1(x

⋆
t+1, y

⋆
t+1)

⊤(x− x⋆
t+1)

≤ ft+1(x, y
⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t+1)

where we use ∇xft+1(x
⋆
t+1, y

⋆
t+1)

⊤(x− x⋆
t+1) ≥ 0 since x⋆

t+1 is the minimizer of ft+1(·, y⋆t+1) in
Ωt+1. Specially, we have

ft+1(x
⋆
t , y

⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t ) ≥

1

4
ϵt+1∥z⋆t − z⋆t+1∥21. (8)

Similarly, because (x⋆
t , y

⋆
t ) is the equilibrium of ft in Ωt × Ωt, we have

ft(x
′
t+1, y

⋆
t )− ft(x

⋆
t , y

′
t+1) ≥

1

4
ϵt∥z′t+1 − z⋆t ∥21,

which implies

ft(x
⋆
t+1, y

⋆
t )− ft(x

⋆
t , y

⋆
t+1)

= ft(x
′
t+1, y

⋆
t )− ft(x

⋆
t , y

′
t+1) + ft(x

⋆
t+1, y

⋆
t )− ft(x

′
t+1, y

⋆
t ) + ft(x

⋆
t , y

′
t+1)− ft(x

⋆
t , y

⋆
t+1)

≥ 1

4
ϵt∥z′t+1 − z⋆t ∥21 − sup

x∈Ωt+1

∥∇xft(x, y
⋆
t )∥∞∥x′

t+1 − x⋆
t+1∥1 − sup

y∈Ωt+1

∥∇yft(x
⋆
t , y)∥∞∥y′t+1 − y⋆t+1∥1

≥ 1

8
ϵt∥z⋆t+1 − z⋆t ∥21 −

1

4
ϵt∥z′t+1 − z⋆t+1∥21 −O

(
ln(At)× 1

t3

)
≥ 1

8
ϵt∥z⋆t+1 − z⋆t ∥21 −O

(
ln(At)

t3

)
. (9)

In the first inequality, we use the fact that ft(x, y) is convex in x and concave in y and Hölder’s
inequality. In the second inequality, we use the triangle inequality, ∥∇xft(x, y)∥∞ ≤ maxa{(Gy)a+
ln(xa)} ≤ O(ln(At)), and ∥∇yft(x, y)∥∞ ≤ maxb{(G⊤x)b+ln(yb)} ≤ O(ln(At)). In the second
and third inequality, we use ∥z′t+1 − z⋆t+1∥1 = O( 1

t3 ) by the definition of z′t+1.

Combining Eq. (8) and Eq. (9), we get

3

8
ϵt+1∥z⋆t − z⋆t+1∥21

≤ ft+1(x
⋆
t , y

⋆
t+1)− ft(x

⋆
t , y

⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t ) + ft(x

⋆
t+1, y

⋆
t ) +O

(
ln(At)

t3

)
= (ft+1 − ft)(x

⋆
t , y

⋆
t+1)− (ft+1 − ft)(x

⋆
t+1, y

⋆
t ) +O

(
ln(At)

t3

)
≤ sup

x,y∈Ωt+1×Ωt+1

∥∇ft+1(x, y)−∇ft(x, y)∥∞∥(x⋆
t , y

⋆
t+1)− (x⋆

t+1, y
⋆
t )∥1 +O

(
ln(At)

t3

)
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= sup
x,y∈Ωt+1×Ωt+1

∥∇ft+1(x, y)−∇ft(x, y)∥∞∥z⋆t − z⋆t+1∥1 +O
(
ln(At)

t3

)
Solving the inequality, we get

∥z⋆t − z⋆t+1∥1 ≤ O

(
1

ϵt+1
sup

x,y∈Ωt+1×Ωt+1

∥∇ft+1(x, y)−∇ft(x, y)∥∞ +
ln1/2(At)
√
ϵt+1t3/2

)
(10)

≤ O

(
(ϵt − ϵt+1) ln(At)

ϵt+1
+

ln1/2(At)
√
ϵt+1t3/2

)

= O

(
t−kϵ−1 ln(At)

t−kϵ
+

ln1/2(At)
√
ϵt+1t3/2

)

= O
(
ln(At)

t

)
.

C Improved Last-Iterate Convergence under Expectation

In this section, we analyze Algorithm 4, which is almost identical to Algorithm 1 but does not involve
the parameter βt. The choices of stepsize ηt and amount of regularization ϵt are also tuned differently
to obtain the best convergence rate.

Algorithm 4 Matrix Game with Bandit Feedback
1: Define: ηt = t−kη , ϵt = t−kϵ where kη = 1

2 , kϵ = 1
6 .

Ωt =
{
x ∈ ∆A : xa ≥ 1

At2 , ∀a ∈ A
}

.
2: Initialization:: x1 = 1

A1.
3: for t = 1, 2, . . . do
4: Sample at ∼ xt, and receive σt ∈ [0, 1] with E [σt] = Gat,bt .
5: Compute gt where gt,a = 1[at=a]σt

xt,a
+ ϵt lnxt,a,∀a ∈ A.

6: Update xt+1 ← argminx∈Ωt+1

{
x⊤gt +

1
ηt

KL(x, xt)
}

.
7: end for

Theorem 4. Algorithm 4 guarantees E
[
maxx,y∈∆A

(x⊤
t Gy − x⊤Gyt)

]
= O

(√
A ln3/2(At)t−

1
6

)
for any t.

Proof. With the same analysis as in Part I of the proof of Theorem 1, we have

ft(xt, yt)− ft(x
⋆
t , yt)

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ 10ηtA ln2 (At) + 2ηtAλt + ξ

t
+ ζ

t
.

where

ξ
t
≜
∑
a

xt,a

(
(Gyt)a −

1[at = a]σt

xt,a

)
, ζt ≜

∑
a

x⋆
t,a

(
1[at = a]σt

xt,a
− (Gyt)a

)
,

λt ≜
1

A

∑
a

(
1[at = a]

xt,a
− 1

)
.

Unlike in Theorem 1, here these three terms all have zero mean. Thus, following the same arguments
that obtain Eq. (6) and taking expectations, we get

Et[KL(z⋆t+1, zt+1)] ≤ (1− ηtϵt)KL(z⋆t , zt) + 20η2tA ln2 (At) + Et[vt]
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≤ (1− ηtϵt)KL(z⋆t , zt) +O
(
η2tA ln2 (At) +

ln2(At)

t

)
(by Lemma 13)

where vt = KL(z⋆t+1, zt+1)− KL(z⋆t , zt+1) and Et[·] is the expectation conditioned on history up to
round t. Then following the same arguments as in Part II of the proof of Theorem 1, we get

E[KL(z⋆t+1, zt+1)] ≤ O

(
A ln2(At)

t∑
i=1

wi
tη

2
i + ln2(At)

t∑
i=1

wi
tt

−1

)
(define wi

t ≜
∏t

j=i+1(1− ηjϵj))

≤ O
(
A ln3(At)t−kη+kϵ + ln3(At)t−1+kη+kϵ

)
= O

(
A ln3(At)t−

1
3

)
.

Finally, following the arguments in Part III, we get

E
[
max
x,y

(
x⊤
t Gy − x⊤Gyt

)]
≤ O

(
ln(A)t−kϵ +

√
E [KL(z⋆t , zt)]

)
= O

(√
A ln3/2(At)t−

1
6

)
.

D Last-Iterate Convergence Rate of Algorithm 2

D.1 On the Assumption of Irreducible Markov Game

Proposition 1. If Assumption 1 holds, then for any L′ = 2L log2(S/δ) consecutive steps, under any
(non-stationary) policies of the two players, with probability at least 1− δ, every state is visited at
least once.

Proof. We first show that for any pair of states s′, s′′, under any non-stationary policy pair, the
expected time to reach s′′ from s′ is upper bounded by L. For a particular pair of states (s′, s′′),
consider the following modified MDP: let the reward be r(s, a) = 1[s ̸= s′′], and the transition be
the same as the original MDP on all s ̸= s′′, while P (s′′|s′′, a) = 1 (i.e., making s′′ an absorbing
state). Also, let s′ be the initial state. By construction, the expected total reward of this MDP is the
travelling time from s′ to s′′. By Theorem 7.1.9 of [Put14], there exists a stationary optimal policy in
this MDP. The optimal expected total value is then upper bounded by L by Assumption 1. Therefore,
for any (possibly sub-optimal) non-stationary policies, the travelling time from s′ to s′′ must also be
upper bounded by L.

Divide L′ steps into log2(S/δ) intervals each of length 2L, and consider a particualr s. Conditioned
on s not visited in all intervals 1, 2, . . . , i − 1, the probability of still not visiting s in interval i is
smaller than 1

2 (because for any s′, Pr[Ts′→s > 2L] ≤ E[Ts′→s]
2L ≤ L

2L = 1
2 , where Ts′→s denotes

the travelling time from s′ to s). Therefore, the probability of not visiting s in all log2(S/δ) intervals
is upper bounded by 2− log2(S/δ) = δ

S . Using a union bound, we conclude that with probability at
least 1− δ, every state is visited at least once within L′ steps.

Corollary 1. If Assumption 1 holds, then with probability 1− δ, for any t ≥ 1, players visit every
state at least once in every 6L ln(St/δ) consecutive iterations before time t.

Proof. First, we fix time t ≥ 1 and define t′ = 3L ln(St3/δ). Let us consider the following time
intervals: [1, t′], [t′, 2t′], . . . , [t − t′, t]. Using Proposition 1, we known for each interval, with
probability at least 1 − δ

t3 , players visit every state s. Using a union bound over all intervals, we
have with probability at least 1 − δ

t2 , in every interval, players visit every state s. Since every 2t′

consecutive iterations must contain an interval of length L′, we have with probability at least 1− δ
t2 ,

players visit every state s in every 2t′ consecutive iterations until time t. Applying union bound over
all t ≥ 1 completes the proof.

According to Corollary 1, in the remaining of this section , we assume that for any t ≥ 1, players
visit every state at least once in every 6L ln(St/δ) iterations until time t.
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D.2 Part I. Basic Iteration Properties

Lemma 16. For any xs ∈ Ωτ+1,

fs
τ (x̂

s
τ , ŷ

s
τ )− fs

τ (x
s, ŷsτ )

≤
(1− ητ ϵτ )KL(xs, x̂s

τ )− KL(xs, x̂s
τ+1)

ητ
+

10ητA ln2(Aτ)

(1− γ)2
+

2ητA

(1− γ)2
λs
τ + ξs

τ
+ ζs

τ
(xs).

(see the proof for the definitions of λs
τ , ξ

s

τ
, ζs

τ
(·))

Proof. Consider a fixed s and a fixed τ , and let t = tτ (s) be the time when the players visit s at the
τ -th time.

fs
τ (x̂

s
τ , ŷ

s
τ )− fs

τ (x
s, ŷsτ )

= (x̂s
τ − xs)⊤

(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ − ϵτϕ(x̂

s
τ ) + ϵτϕ(x

s)

= (x̂s
τ − xs)⊤

[(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ + ϵτ ln x̂

s
τ

]
− ϵτKL(xs, x̂s

τ )

= (x̂s
τ − xs)⊤gt − ϵτKL(xs, x̂s

τ ) + (x̂s
τ )

⊤

((
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ −

1[âsτ = a]
(
σt + γV

st+1

t

)
x̂s
τ,a + βτ

)
︸ ︷︷ ︸

ξs
τ

+ (xs)⊤

(
1[âsτ = a]

(
σt + γV

st+1

t

)
x̂s
τ,a + βτ

−
(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ

)
︸ ︷︷ ︸

ζs
τ
(xs)

≤
(1− ητ ϵτ )KL(xs, x̂s

τ )− KL(xs, x̂s
τ+1)

ητ

+
10ητA ln2(Aτ)

(1− γ)2
+

2ητA

(1− γ)2
× 1

|A|
∑
a

(
1[âsτ = a]

x̂s
τ,a + βτ

− 1

)
︸ ︷︷ ︸

λs
τ

+ξs
τ
+ ζs

τ
(xs),

where we omit some calculation steps due to the similarity to Eq. (5).

D.3 Part II. Policy Convergence to the Nash of Regularized Game

Lemma 17. With probability at least 1−O(δ), for all s ∈ S, t ≥ 1 and τ ≥ 1 such that tτ (s) ≤ t,
we have

KL(ẑsτ⋆, ẑ
s
τ ) ≤ O

(
A ln5(SAt/δ)L2τ−k♯

)
,

where k♯ = min{kβ − kϵ, kη − kβ , kα − kη − 2kϵ}.

Proof. In this proof, we abbreviate ζs
i
(x̂s

i⋆) as ζs
i
. By Lemma 16, for all i ≤ τ we have

KL(x̂s
i⋆, x̂

s
i+1) ≤ (1− ηiϵi)KL(x̂s

i⋆, x̂
s
i ) + ηi (f

s
i (x̂

s
i⋆, ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i ))

+
10η2iA ln2(Aτ)

(1− γ)2
+

2η2iA

(1− γ)2
λs
i + ηiξ

s

i
+ ηiζ

s

i
.

Similarly, for all i ≤ τ , we have

KL(ŷsi⋆, ŷ
s
i+1) ≤ (1− ηiϵi)KL(ŷsi⋆, ŷ

s
i ) + ηi (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i⋆))

+
10η2iA ln2(Aτ)

(1− γ)2
+

2η2iA

(1− γ)2
λ
s

i + ηiξ
s

i + ηiζ
s

i .
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Adding the two inequalities up, and using fs
i (x̂

s
i⋆, ŷ

s
i ) − fs

i (x̂
s
i , ŷ

s
i⋆) ≤ 0 because (x̂s

i⋆, ŷ
s
i⋆) is the

equilibrium of fs
i , we get for i ≤ τ

KL(ẑsi+1⋆, ẑ
s
i+1) ≤ (1− ηiϵi)KL(ẑsi⋆, ẑ

s
i ) +

20η2iA ln2(Aτ)

(1− γ)2
+

2η2iA

(1− γ)2
λs
i + ηiξ

s
i + ηiζ

s
i + vsi ,

(11)

where vsi = KL(ẑsi+1⋆, ẑ
s
i+1)− KL(ẑsi⋆, ẑ

s
i+1) and □s = □s +□

s
for □ = ξi, ζi.

Expanding Eq. (11), we get

KL(ẑsτ+1⋆, ẑ
s
τ+1) ≤

20A ln2(Aτ)

(1− γ)2

τ∑
i=1

wi
τη

2
i︸ ︷︷ ︸

term1

+
2A

(1− γ)2

τ∑
i=1

wi
τη

2
i λ

s
i︸ ︷︷ ︸

term2

+

τ∑
i=1

wi
τηiξ

s
i︸ ︷︷ ︸

term3

+

t∑
i=1

wi
τηiζ

s
i︸ ︷︷ ︸

term4

+

τ∑
i=1

wi
τv

s
i︸ ︷︷ ︸

term5

.

These five terms correspond to those in Eq. (6), and can be handled in the same way. For term1 to
term4, we follow exactly the same arguments there, and bound their sum as with probability at least
1−O

(
δ

Sτ2

)
,

4∑
j=1

termj = O
(
A ln3(SAτ/δ)

(
τ−kη+kϵ + τ−2kη+kβ + τ−kβ+kϵ + τ−

1
2kη+

1
2kϵ + τ−kη+kβ

))
.

To bound term5, by Lemma 14 and Lemma 18, we have

|vsτ | = O (ln(Aτ)) · ∥ẑsτ⋆ − ẑsτ+1⋆∥1 = O
(
ln4(SAt/δ)L2 · τ−kα+kϵ

)
.

Therefore, by Lemma 1,

term5 =

τ∑
i=1

wi
τv

s
i = O

(
ln5(SAt/δ)L2 · τ−kα+kη+2kϵ

)
.

Combining all the terms with union bound over s ∈ S and τ ≥ 1 finishes the proof.

Lemma 18. For any sand τ ≥ 0 such that tτ (s) ≤ t, ∥ẑsτ⋆−ẑsτ+1⋆∥1 = O
(
ln3(SAt/δ)L2 · τ−kα+kϵ

)
.

Proof. The bound holds trivially when τ ≤ 2L. Below we focus on the case with τ > 2L. By exactly
the same arguments as in the proof of Lemma 15, we have an inequality similar to Eq. (10):

∥zsτ⋆ − zsτ+1⋆∥1

= O

(
1

ϵτ+1
sup
xs,ys

∥∇fs
τ (x

s, ys)−∇fs
τ+1(x

s, ys)∥∞ +
ln1/2(Aτ)
√
ϵτ+1τ3/2

)

≤ O

(
1

ϵτ+1
sup
s′

∣∣∣V s′

tτ (s)
− V s′

tτ+1(s)

∣∣∣+ (ϵτ − ϵτ+1) ln(Aτ)

ϵτ+1
+

ln1/2(Aτ)
√
ϵτ+1τ3/2

)

≤ O
(

1

ϵτ+1
sup
s′

∣∣∣V s′

tτ (s)
− V s′

tτ+1(s)

∣∣∣+ ln(Aτ)

τ

)
. (12)

Since tτ (s) ≤ t and we assume that every state is visited at least once in 6L log(St/δ) steps
(Corollary 1), we have that for any state s′, ns′

tτ (s)
≥ tτ (s)

6L log(St/δ) − 1. Thus, whenever V s′

t updates

between tτ (s) and tτ+1(s), the change is upper bounded by 1
1−γ (

tτ (s)
6L log(St/δ) − 1)−kα . Besides,

between tτ (s) and tτ+1(s), V s′

t can change at most 6L log(St/δ) times. Therefore,∣∣∣V s′

tτ (s)
− V s′

tτ+1(s)

∣∣∣
≤ 1

1− γ
× 6L log(St/δ)×

(
tτ (s)

6L log(St/δ)
− 1

)−kα

≤ 1

1− γ
× 6L log(St/δ)×

(
τ

6L log(St/δ)
− 1

)−kα

= O
(
L2 ln2(St/δ)τ−kα

1− γ

)
, (13)

where the last inequality holds since kα < 1. Combining Eq. (12) and Eq. (13) with the fact that
ϵτ = 1

1−γ τ
−kϵ finishes the proof.
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D.4 Part III. Value Convergence

For positive integers τ ≥ i, we define αi
τ = αi

∏τ
j=i+1(1− αj).

Lemma 19 (weighted regret bound). With probability 1 − O(δ), for any s, any visitation count
τ ≥ τ0, and any xs ∈ Ωτ+1,

τ∑
i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x
s, ŷsi )) ≤ O

(
A ln3(SAτ/δ)τ−k′

1− γ

)
.

where k′ = min {kη, kβ , kα − kβ}.

Proof. We will be considering a weighted sum of the instantaneous regret bound established in
Lemma 16. However, notice that for fs

i , Lemma 16 only provides a regret bound with comparators
in Ωi+1. Therefore, for a fixed xs ∈ Ωτ+1, we define the following auxiliary comparators for all
i = 1, . . . , τ :

x̃s
i =

pi
A
1+ (1− pi)x

s

where pi ≜
(τ+1)2−(i+1)2

(i+1)2[(τ+1)2−1] . Since xs ∈ Ωτ+1, we have that for any a, x̃s
i,a ≥

pi

A + 1−pi

A(τ+1)2 =
1

A(i+1)2 , and thus x̃s
i ∈ Ωi+1.

Applying Lemma 16 and considering the weighted sum of the bounds, we get
τ∑

i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x̃
s
i , ŷ

s
i ))

≤
τ∑

i=1

αi
τ

(
(1− ηiϵi)KL(x̃s

i , x̂
s
i )− KL(x̃s

i , x̂
s
i+1)

ηi
+

10ηiA ln2(Aτ)

(1− γ)2
+

2ηiA

(1− γ)2
λs
i + ξs

i
+ ζs

i
(x̃s

i )

)

≤
τ∑

i=2

(
αi
τ (1− ηiϵi)

ηi
KL(x̃s

i , x̂
s
i )−

αi−1
τ

ηi−1
KL(x̃s

i−1, x̂
s
i )

)
︸ ︷︷ ︸

term0

(notice that (1− η1ϵ1) = 0)

+
10A ln2(Aτ)

(1− γ)2

τ∑
i=1

αi
τηi︸ ︷︷ ︸

term1

+
2A

(1− γ)2

τ∑
i=1

αi
τηiλ

s
i︸ ︷︷ ︸

term2

+

τ∑
i=1

αi
τξ

s

i︸ ︷︷ ︸
term3

+

τ∑
i=1

αi
τζ

s

i
(x̃s

i )︸ ︷︷ ︸
term4

.

term0 =

τ∑
i=2

KL(x̃s
i , x̂

s
i )

(
αi
τ (1− ηiϵi)

ηi
− αi−1

τ

ηi−1

)
+

τ∑
i=2

αi−1
τ

ηi−1

(
KL(x̃s

i−1, x̂
s
i )− KL(x̃s

i , x̂
s
i )
)

(a)

≤ 0 +O

(
ln(Aτ)

τ∑
i=2

αi−1
τ

ηi−1
∥x̃s

i−1 − x̃s
i∥1

)

= O

(
ln(Aτ)

τ∑
i=2

αi−1
τ

ηi−1
|pi−1 − pi|

)

≤ O

(
ln(Aτ)

τ∑
i=2

αi−1
τ

ηi−1

1

(i− 1)2

)

= O
(
ln(Aτ)

1− γ
τkη−2

)
(by Lemma 1)

where (a) is by Lemma 14 and the following calculation:

αi
τ (1− ηiϵi)

ηi
× ηi−1

αi−1
τ

=
ηi−1

ηi
× αi

αi−1
× 1− ηiϵi

1− αi
=

(
i− 1

i

)−kη+kα

× 1− i−kη−kϵ

1− i−kα
≤ 1× 1 = 1.
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We proceed to bound other terms as follows: with probability at least 1−O
(

δ
Sτ2

)
term1 = O

(
A ln3(Aτ)

1− γ
τ−kη

)
, (Lemma 1)

term2 = O
(
A ln(SAτ/δ)

1− γ
×max

i≤τ

αi
τηi
βτ

)
(Lemma 7)

= O
(
A ln(SAτ/δ)τ−kα−kη+kβ

1− γ

)
, (Lemma 2)

term3 = O

 A

1− γ

τ∑
i=1

βiα
i
τ +

1

1− γ

√√√√ln(SAτ/δ)

τ∑
i=1

(αi
τ )

2

 (Lemma 6)

= O

A ln(Aτ)τ−kβ

1− γ
+

1

1− γ

√√√√ln(SAτ/δ)

τ∑
i=1

αi
ταi

 (Lemma 1)

= O

A ln(SAτ/δ)
(
τ−kβ + τ−

kα
2

)
1− γ

 , (Lemma 1)

term4 =

τ∑
i=1

αi
τpiζ

s

i

(
1

A
1

)
+

τ∑
i=1

αi
τ (1− pi)ζ

s

i
(xs) (by the linearity of ζs

i
(·))

= O
(
ln(SAτ/δ)

1− γ
max
i≤τ

αi
τ

βτ

)
(Lemma 7)

= O
(
ln(SAτ/δ)τ−kα+kβ

1− γ

)
. (Lemma 2)

Combining all terms, we get
τ∑

i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x̃
s
i , ŷ

s
i )) = O

(
A ln3(SAτ/δ)

(
τ−kη + τ−kβ + τ−kα+kβ

)
1− γ

)
. (14)

Finally,
τ∑

i=1

αi
τ (f

s
i (x̃

s
i , ŷ

s
i )− fs

i (x
s, ŷsi )) = O

(
ln(Aτ)

1− γ

τ∑
i=1

αi
τ∥x̃s

i − xs∥1

)

= O

(
ln(Aτ)

1− γ

τ∑
i=1

αi
τpi

)
= O

(
ln(Aτ)

τ2(1− γ)

)
. (15)

Adding up Eq. (14) and Eq. (15) and applying union bound over all s ∈ S and τ finish the proof.

Lemma 20. With probability at least 1−O(δ), for any state s ∈ S and time t ≥ 1, we have

|V s
t − V s

⋆ | ≤ O

(
A ln(SAt/δ)

(1− γ)2

(
L ln(St/δ)

1− γ
ln

t

1− γ

) k∗
1−kα

(
L ln(St/δ)

t

)k∗
)
,

where k∗ = min {kη, kβ , kα − kβ , kϵ}.

Proof. Fix an s and a visitation count τ . Let ti be the time index when the players visit s for the i-th
time. Then with probability at least 1− δ

Sτ2 ,

V s
tτ =

τ∑
i=1

αi
τ

(
σti + γV

sti+1

ti

)
≤

τ∑
i=1

αi
τ x̂

s⊤
i

(
Gs + γEs′∼P s

[
V s′

ti

])
ŷsi +

τ∑
i=1

αi
τ

[
σti + γV

sti+1

ti − x̂s⊤
i

(
Gs + γEs′∼P s

[
V s′

ti

])
ŷsi

]
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=

τ∑
i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i ) + ϵiϕ(x̂

s
i )− ϵiϕ(ŷ

s
i )) +O

 1

1− γ

√√√√ln(Sτ/δ)

τ∑
i=1

(αi
τ )

2


(Azuma’s inequality)

≤
τ∑

i=1

αi
τf

s
i (x̂

s
i , ŷ

s
i ) +O

(
ϵτ ln(A) +

ln(SAτ/δ)τ−
kα
2

1− γ

)

≤ min
x

τ∑
i=1

αi
τf

s
i (x

s, ŷsi ) +O

(
ϵτ ln(A) +

A ln3(SAτ/δ)τ−k′

1− γ

)
(k′ is defined in Lemma 19 with k′ ≤ 1

2 (kβ + kα − kβ) =
kα

2 )

≤ min
xs

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

ti

])
ŷsi +O

(
A ln3(SAτ/δ)τ−k∗

1− γ

)

≤ min
xs

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ŷsi + γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)

≤ min
xs

max
ys

(xs)⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ys + γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)

≤ V s
⋆ + γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)
.

Similar inequality can be also obtained through the perspective of the other player: with probability
at least 1− δ

Sτ2

V s
tτ ≥ V s

⋆ − γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣−O(A ln3(SAτ/δ)τ−k∗

1− γ

)
,

which, combined with the previous inequality and union bound over s ∈ S and τ ≥ 1, gives the
following relation: with probability at least 1−O(δ), for any s ∈ S and τ ≥ 1,∣∣V s

tτ − V s
⋆

∣∣ ≤ γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)
. (16)

Before continuing, we first some auxiliary quantities. For a fixed t, define

u(t) =

⌈(
16× 6L ln(St/δ)

1− γ
ln

t

1− γ

) 1
1−kα

⌉
;

for fixed (τ, t) we further define

v(τ, t) =

⌊
τ − 3τkα ln

t

1− γ

⌋
.

Now we continue to prove a bound for |V s
t − V s

⋆ |. Suppose that Eq. (16) can be written as∣∣V s
tτ − V s

⋆

∣∣ ≤ γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ C1A ln3(SAτ/δ)τ−k∗

1− γ
(17)

for a universal constant C1 ≥ 1. Below we use induction to show that for all t,

|V s
t − V s

⋆ | ≤ Φ(t) ≜
8C1A ln3(SAt/δ)

(1− γ)2

(
6L ln(St/δ)(u(t) + 1)

t

)k∗

. (18)

This is trivial for t = 1.

Suppose that Eq. (18) holds for all time 1, . . . , t − 1 and for all s. Now we consider time t and a
fixed state s. We denote L′ = 6L ln(St/δ). Let τ = ns

t+1 and let 1 ≤ t1 < t2 < · · · < tτ ≤ t
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be the time indices when the players visit state s. If t ≤ L′(u(t) + 1), then Eq. (18) is trivial. If
t ≥ L′(u(t) + 1), we have τ ≥ t

L′ − 1 ≥ u(t). Therefore,

|V s
t − V s

⋆ |
= |V s

tτ − V s
⋆ | (tτ is the last time up to time t when V s

t is updated)

≤ γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ C1A ln3(SAτ/δ)τ−k∗

1− γ
(by Eq. (17))

≤ γ

v(τ,t)∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ γ

τ∑
i=v(τ,t)+1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ C1A ln3(SAτ/δ)τ−k∗

1− γ

(a)

≤ γτ × (1− γ)3

t3
× 1

1− γ
+ γ

τ∑
i=v(τ,t)+1

αi
τΦ(ti) +

C1A ln3(SAτ/δ)τ−k∗

1− γ

≤ γ

τ∑
i=v(τ,t)+1

αi
τΦ(ti) +

2C1A ln3(SAτ/δ)τ−k∗

1− γ
(induction hypothesis)

≤ γ
τ∑

i=v(τ,t)+1

αi
τΦ(t)×

(
t

ti

)k∗

+
2C1A ln3(SAτ/δ)τ−k∗

1− γ

(by the definition of Φ and that u(·) is an increasing function)
(b)

≤ γ

(
1 +

1− γ

2

) τ∑
i=v(τ,t)+1

αi
τΦ(t) +

2C1A ln3(SAτ/δ)τ−k∗

1− γ

≤ γ

(
1 +

1− γ

2

)
Φ(t) +

2C1A ln3(SAt/δ)
(

t
2L′

)−k∗

1− γ
(t ≥ τ ≥ t

L′ − 1 ≥ t
2L′ since t ≥ L′(u(t) + 1) ≥ 2L′)

≤ γ

(
1 +

1− γ

2

)
Φ(t) +

1− γ

2
Φ(t)

= Φ(t).

In (a) we use the following property: if τ ≥ u(t) and i ≤ v(τ, t), then

αi
τ = i−kα

τ∏
j=i+1

(
1− j−kα

)
≤
(
1− τ−kα

)τ−i

≤
(
1− τ−kα

)3τkα ln t
1−γ ≤ exp

(
−τ−kα · 3τkα ln

t

1− γ

)
=

(1− γ)3

t3

In (b) we use the following calculation:

t

ti
≤ tτ+1

ti
= 1 +

tτ+1 − ti
ti

≤ 1 +
L′(τ + 1− i)

i

≤ 1 + L′
(

τ + 1

v(τ, t)
− 1

)
≤ 1 + L′

(
τ + 1

τ − 4τkα ln t
1−γ

− 1

)

= 1 + L′

(
1 + 1

τ

1− 4τkα−1 ln t
1−γ

− 1

)

≤ 1 + L′

(
1 + 1−γ

16L′

1− 1−γ
4L′

− 1

)

≤ 1 + L′
(
1− γ

2L′

)
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= 1 +
1− γ

2

where the first inequality is due to the fact that at time t, state s has only been visited for τ times;
the second inequality is because for any k > j, we have tj ≥ j and tk − tj ≤ L′(k − j); the third
inequality is by i ≥ v(τ, t); the fourth inequality is by the definition of v(τ, t); the fifth inequality
is because 4τkα−1 ln t

1−γ ≤
1−γ
4L′ since τ ≥ u(t), and 1

τ < 1
u(t) ≤

1−γ
16L′ since u(t) ≥ 16L′

1−γ ; the last

inequality is because 1+ 1
16a

1− 1
4a
≤ 1 + 1

2a for a ∈ [0, 1].

D.5 Part IV. Combining

In this subsection, we combine previous lemmas to show last-iterate convergence rate of Algorithm 2
and prove Theorem 2.
Lemma 21. With probability at least 1−O(δ), for any time t ≥ 1,

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ O

(
AL2+1/ε ln4+1/ε(SAt/δ) ln1/ε(t/(1− γ))

(1− γ)2+1/ε
t−

1
9+ε

)
.

Proof. Using Lemma 10, we can bound the duality gap of the whole game by the duality gap on an
individual state:

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ 2

1− γ
max
s,x,y

(xs
tQ

s
⋆y

s − xsQs
⋆y

s
t )

=
2

1− γ
max
s,x,y

(
xs
t

(
Gs + γEs′∼P s

[
V s′

⋆

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

⋆

])
yst

)
≤ 2

1− γ
max
s,x,y

(
xs
t

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
yst

)
+

4γ

1− γ
max

s
|V s

t − V s
⋆ |

With probability at least 1−O(δ), for any s, xs, ys, and t ≥ 1, denote τ the number of visitation to
state s until time t, then

xs
t

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
yst

= x̂s
τ

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ

≤ x̂s
τ

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ŷsτ + 2max

s′
|V s′

t − V s′

tτ (s)
|

≤ x̂s
τ⋆

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ŷsτ⋆ + 2max

s′
|V s′

t − V s′

tτ (s)
|+O(∥ẑsτ − ẑsτ⋆∥1)

≤ 2ϵτ ln(A) +O
(
1

τ

)
+ 2max

s′
|V s′

t − V s′

tτ (s)
|+O(

√
KL(ẑsτ , ẑsτ⋆)) (Lemma 9)

≤ O
(
ln(A)

1− γ
τ−kϵ

)
+O

(
L ln(St/δ)τ−kα

1− γ

)
+O

(√
A ln5(SAt/δ)L2τ−

k♯
2

)
. (Lemma 17)

Combing the above two inequality with Lemma 17 and Lemma 20 and the choice of parameters
kα = 9

9+ε , kε = 1
9+ε , kβ = 3

9+ε , and kη = 5
9+ε , we have k♯ = min{kβ − kϵ, kη − kβ , kα − kη −

2kϵ} = 2
9+ε , k∗ = min {kη, kβ , kα − kβ , kϵ} = 1

9+ε , and

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ 2

1− γ
max
s,x,y

(
xs
t

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
yst

)
+

4γ

1− γ
max

s
|V s

t − V s
⋆ |

≤ O

(√
A ln5/2(SAt/δ)

(1− γ)2
Lτ−min{kϵ,

k♯
2 ,kα}

)
+O

(
A ln3(SAt/δ)

(1− γ)3

(
L ln(St/δ)

1− γ
ln

t

1− γ

) k∗
1−kα

(
L ln(St/δ)

t

)k∗
)
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= O

(
AL2+1/ε ln4+1/ε(SAt/δ) ln1/ε(t/(1− γ))

(1− γ)3+1/ε
· t−

1
9+ε

)
. ( t

L ≤ τ ≤ t)

E Convergent Analysis of Algorithm 3

E.1 Part I. Basic Iteration Properties

Definition 1. Let tτ (s) be the τ -th time the players visit state s. Define x̂s
τ = xs

tτ (s)
, ŷsτ = ystτ (s),

âsτ = atτ (s), b̂
s
τ = btτ (s),. Furthermore, define

fs

τ
(x, y) ≜ x⊤

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
y − ϵϕ(x) + ϵϕ(y),

f
s

τ (x, y) ≜ x⊤
(
Gs + γEs′∼P s

[
V

s′

tτ (s)

])
y − ϵϕ(x) + ϵϕ(y).

Lemma 22. For any xs ∈ Ω,

fs

τ
(x̂s

τ , ŷ
s
τ )− fs

τ
(xs, ŷsτ )

≤
(1− ηϵ)KL(xs, x̂s

τ )− KL(xs, x̂s
τ+1)

η
+

10ηA ln2(AT )

(1− γ)2
+

2ηA

(1− γ)2
λs
τ + ξs

τ
+ ζs

τ
(xs).

where

λs
τ =

1

A

∑
a

(
1[âsτ = a]

x̂s
τ,a + β

− 1

)
,

ξs
τ
= (x̂s

τ )
⊤

((
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ −

1[âsτ = a]
(
σt + γV

st+1

t

)
x̂s
τ,a + β

)
,

ζs
τ
(xs) = (xs)⊤

(
1[âsτ = a]

(
σt + γV

st+1

t

)
x̂s
τ,a + β

−
(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ

)
.

Proof. The proof is exactly the same as that of Lemma 16.

E.2 Part II. Value Convergence

Lemma 23 (weighted regret bound). There exists a large enough universal constant κ (used in the
definition of bnsτ ) such that with probability 1−O(δ), for any state s, visitation count τ , and any
xs ∈ Ω,

τ∑
i=1

αi
τ

(
fs

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )

)
≤ 1

2
bnsτ .

Proof. Fix state s and visitation count τ ≤ T . Applying Lemma 22 and considering the weighted
sum of the bounds, we get
τ∑

i=1

αi
τ

(
fs

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )

)
≤

τ∑
i=1

αi
τ

(
(1− ηϵ)KL(xs, x̂s

i )− KL(xs, x̂s
i+1)

η
+

10ηA ln2(AT )

(1− γ)2
+

2ηA

(1− γ)2
λs
i + ξs

i
+ ζs

i
(xs)

)

≤ α1
τ (1− ηϵ)

η
KL(xs, x̂s

1) +

τ∑
i=2

(
αi
τ (1− ηϵ)

η
KL(xs, x̂s

i )−
αi−1
τ

η
KL(xs, x̂s

i )

)
︸ ︷︷ ︸

term0
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+
10ηA ln2(AT )

(1− γ)2

τ∑
i=1

αi
τ︸ ︷︷ ︸

term1

+
2ηA

(1− γ)2

τ∑
i=1

αi
τλ

s
i︸ ︷︷ ︸

term2

+

τ∑
i=1

αi
τξ

s

i︸ ︷︷ ︸
term3

+

τ∑
i=1

αi
τζ

s

i
(xs)︸ ︷︷ ︸

term4

.

Since αi−1
τ = αi−1(1−αi)

αi
αi
τ ≥ (1− αi)α

i
τ ,

term0 ≤
α1
τ

η
KL(xs, x̂s

1) +

τ∑
i=2

KL(xs, x̂s
i )

(
αi
τ (1− ηϵ)

η
− αi

τ (1− αi)

η

)

≤ ln(AT )

(
α1
τ

η
+

τ∑
i=2

αi
ταi

η

)
= O

(
ln(AT )ατ

η

)
.

We proceed to bound other terms as follows: wiht probability at least 1− δ
Sτ2

term1 = O
(
A ln2(AT )η

(1− γ)2

)
, (

∑τ
i=1 α

i
τ = 1)

term2 =
2ηA

(1− γ)2

τ∑
i=1

αi
τ

(
1

A

∑
a

(
1[âsi = a]

x̂s
i,a + β

− 1

))

≤ 2A

(1− γ)2
×O

(
ln(ASτ/δ)max

i≤τ

αi
τη

β

)
(by Lemma 7)

= O
(
A ln(AST/δ)ατ

(1− γ)2
× η

β

)
,

term3 = O

 A

1− γ

τ∑
i=1

βαi
τ +

1

1− γ

√√√√ln(ASτ/δ)

τ∑
i=1

(αi
τ )

2

 (by Lemma 6)

= O

 Aβ

1− γ
+

1

1− γ

√√√√ln(ASτ/δ)

τ∑
i=1

αi
ταi


= O

(
A ln(AST/δ) (β + ατ )

1− γ

)
,

term4 = O
(
ln(ASτ/δ)

1− γ
max
i≤τ

αi
τ

β

)
= O

(
ln(AST/δ)ατ

(1− γ)β

)
.

Combining all terms and applying a union bound over s ∈ S and τ , we get with probability 1−O(δ)
such that for any s ∈ S, visitation count τ , and xs ∈ Ω,

τ∑
i=1

αi
τ

(
fs

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )

)
= O

(
A ln2(AST/δ)

(
η + β + (η−1 + β−1)ατ

)
(1− γ)2

)

= O
(
A ln2(SAT/δ)(β + ατ/η)

(1− γ)2

)
. (using η ≤ β)

This implies the conclusion of the lemma.

Lemma 24. For all t, s, V
s

t ≥ V s
t .

Proof. We prove it by induction on t. The inequality clearly holds for t = 1 by the initialization.
Suppose that the inequality holds for 1, 2, . . . , t− 1 and for all s. Now consider time t and state s.
Let τ = ns

t , and let 1 ≤ t1 < t2 < . . . < tτ < t be the time indices when the players visit state s.
By the update rule,

∼
V s
t − ∼V

s
t =

τ∑
i=1

αi
τ

(
γV

sti+1

ti − γV
sti+1

ti + 2bnsi
)
> 0

33



where the inequality is by the induction hypothesis. Therefore,

V
s

t − V s
t = min

{∼
V s
t , H

}
−max

{
∼V

s
t , 0

}
> 0.

In the last inequality we also use the fact that ∼V
s
t ≤ H and

∼
V s
t ≥ 0. Note that by the induction

hypothesis and the update rule of V
s

t and V s
t , we have 0 ≤ V s

i < V
s

i ≤ H for all s and 1 ≤ i ≤ t−1.
Thus ∼V

s
t =

∑τ
i=1 α

i
τ (γV

sti+1

ti − bnsi) ≤ H and similarly
∼
V s
t ≥ 0.

Lemma 25. Let c = (c1, . . . , cT ) be any non-negative sequence with ci ≤ cmax∀i and
∑T

t=1 ct = C.
Then

T∑
t=1

ct

(
V

st+1

t − V
st+1

t

)
≤ O

(
CA ln3(AST/δ)β

(1− γ)3
+

cmaxAS ln4(AST/δ)

η(1− γ)3

)
.

Proof.

Zc ≜
T∑

t=1

ct

(
V

st+1

t − V
st+1

t

)
≤

T∑
t=1

ct

(
V

st+1

t+1 − V
st+1

t+1

)
+O

(
cmax

∑
s

T∑
t=1

(∣∣∣V s

t+1 − V
s

t

∣∣∣+ ∣∣V s
t+1 − V s

t

∣∣))

≤
T∑

t=1

ct−1

(
V

st
t − V st

t

)
+O

(
cmax

∑
s

T∑
i=1

αi

1− γ

)
(shifting the indices and define c0 = 0)

≤
T∑

t=1

ct−1

(∼
V st
t − ∼V

st
t

)
+O

(
cmaxS

1− γ
×H lnT

)
(using αi =

H+1
H+i )

=
∑
s

nT+1(s)∑
τ=1

ctτ (s)−1

(∼
V s
tτ (s)

− ∼V
s
tτ (s)

)
+O

(
cmaxS ln2 T

(1− γ)2

)
(H = lnT

1−γ )

= γ
∑
s

nT+1(s)∑
τ=1

ctτ (s)−1

τ−1∑
i=1

αi
τ−1

(
V

sti(s)+1

ti(s)
− V

sti(s)+1

ti(s)
+ 2bnsi

)
+O

(
cmaxS ln2 T

(1− γ)2

)

≤ γ
∑
s

nT+1(s)−1∑
i=1

nT+1(s)∑
τ=i+1

αi
τ−1ctτ (s)−1


︸ ︷︷ ︸

c′
ti(s)

(
V

sti(s)+1

ti(s)
− V

sti(s)+1

ti(s)

)

+O

∑
s

nT+1(s)∑
τ=2

ctτ (s)−1bnsτ−1 +
cmaxS ln2 T

(1− γ)2


≤ γ

T∑
t=1

c′t

(
V

st+1

t − V
st+1

t

)
+O

∑
s

Cs/cmax∑
τ=1

cmaxbnsτ +
cmaxS ln2 T

(1− γ)2


(Cs ≜

∑nT+1(s)
τ=1 ctτ (s)−1)

≤ γ

T∑
t=1

c′t

(
V

st+1

t − V
st+1

t

)

+O

∑
s

Cs/cmax∑
τ=1

cmaxA ln2(AST/δ)(β + ατ/η)

(1− γ)2
+

cmax ln
2 T

(1− γ)2


≤ γ

T∑
t=1

c′t

(
V

st+1

t − V
st+1

t

)
+O

(
CA ln2(AST/δ)β

(1− γ)2
+

cmaxAS ln3(AST/δ)

η(1− γ)2

)
. (19)
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Note that c′t is another sequence with

c′i ≤ c′max ≤ cmax sup
i

∞∑
τ=i

αi
τ ≤

(
1 +

1

H

)
cmax

and
T∑

t=1

c′t ≤
T∑

t=1

ct = C

since
∑τ

i=1 α
i
τ = 1 for any τ ≥ 1. Thus, we can unroll the inequality Eq. (19) for H times, which

gives

Zc ≤ γH

(
1 +

1

H

)H
cmaxT

1− γ
+H ×O

(
CA ln2(AST/δ)β

(1− γ)2
+

cmaxAS ln3(AST/δ)

η(1− γ)2

)
= O

(
CA ln3(AST/δ)β

(1− γ)3
+

cmaxAS ln4(AST/δ)

η(1− γ)3

)
where in the inequality we use that (1+ 1

H )H ≤ e and γH = (1− (1− γ))H ≤ e−(1−γ)H = 1
T .

Corollary 2. There exists a universal constant C1 > 0 such that for any ϵ̃ ≥ C1A ln3(AST/δ)β
(1−γ)3 , with

probability at least 1−O(δ),

T∑
t=1

1
[
xst⊤
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt ≥ ϵ̃

]
≤ O

(
AS ln4(AST/δ)

ηϵ̃(1− γ)3

)
.

Proof. We apply Lemma 25 with the following definition of ct:

ct = 1
[
xst
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt ≥ ϵ̃

]
,

which gives

T∑
t=1

ct

(
V

st+1

t − V
st+1

t

)
≤ C2 ×

(
CA ln3(AST/δ)β

(1− γ)3
+

AS ln4(AST/δ)

η(1− γ)3

)
(20)

for some universal constant C2 and C =
∑T

t=1 ct. By Azuma’s inequality, for some universal
constant C3 > 0, with probability 1− δ,

T∑
t=1

ctx
st
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt −

T∑
t=1

ct

(
V

st+1

t − V
st+1

t

)

≤ C3

1− γ

√√√√ln(S/δ)

T∑
t=1

c2t =
C3

1− γ

√
ln(S/δ)C

≤ C3 ×
Cβ

1− γ
+ C3 ×

ln(S/δ)

η(1− γ)
. (by AM-GM and that η ≤ β)

(21)

Combining Eq. (20) and Eq. (21), we get

T∑
t=1

ctx
st
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt

≤ (C2 + C3)×
(
CA ln3(AST/δ)β

(1− γ)3
+

AS ln4(AST/δ)

η(1− γ)3

)
.
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By the definition of ct, the left-hand side above is lower bounded by ϵ̃
∑T

t=1 ct = Cϵ̃. Define
C1 = 2(C2 + C3). Then by the condition on ϵ′, the right-hand side above is above inequality is
bounded by

Cϵ̃

2
+

C1

2

(
AS ln4(AST/δ)

η(1− γ)3

)
by the condition on ϵ̃. Combining the upper bound and the lower bound, we get

C ≤ C1 ×
(
AS ln4(AST/δ)

ηϵ̃(1− γ)3

)
.

Lemma 26. With probability at least 1−O(δ), for any t ≥ 1,

V s
t ≤ V s

⋆ +O
(
ϵ ln(AT )

1− γ

)
, V

s

t ≥ V s
⋆ −O

(
ϵ ln(AT )

1− γ

)
.

Proof. Fix a t and s, let τ = nt(s), and let ti be the time index in which s is visited the i-th time.
With probability at least 1− δ

ST , we have

∼V
s
t =

τ∑
i=1

αi
τ

(
σti + γV

sti+1

ti − bnsi
)

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
+

τ∑
i=1

αi
τ

(
σti + γV

sti+1

ti − xs⊤

ti (Gs + Es′∼P st [V s′
ti

])y
s
ti

)
−

τ∑
i=1

αi
τbnsi

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
+

1

1− γ

√√√√2

τ∑
i=1

(αi
τ )

2 log(ST/δ)−
τ∑

i=1

αi
τbnsi

(by Hoeffding’s inequality)

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
+

1

1− γ

√
2ατ log(ST/δ)−

τ∑
i=1

αi
τbnsi

(
∑τ

i=1 α
i
τ ≤ 1)

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
− 1

2
bnsτ

(
∑τ

i=1 α
i
τ ≥ 1

2 and bnsτ is decreasing, and
√
ατ ≤ ατ

η + η ≤ ατ

η + β)

≤ min
x∈Ω

τ∑
i=1

αi
τ

(
fs

i
(xs, ysti)

)
+

τ∑
i=1

αi
τ

(
ϵϕ(xs

ti)− ϵϕ(ysti)
)

(by Lemma 23)

≤ min
x∈Ω

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

ti

])
ysti +O(ϵ ln(AT )). (xa ≥ 1

AT for any x ∈ Ω.)

Therefore, using a union bound over s and t, we have with probability 1− δ, for all s and t,

V s
t = max{∼V

s
t , 0} ≤ min

x

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

ti

])
ysti + C4ϵ ln(AT ) (22)

for some universal constant C4. Next, we use induction to show the first inequality. Suppose that

V s
t′ ≤ V s

⋆ +
C4ϵ ln(AT )

1− γ
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for all s and t′ < t. Then by Eq. (22),

V s
t ≤ min

x

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆ +
C4ϵ ln(AT )

1− γ

])
ysti + C4ϵ ln(AT )

= min
x

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ysti +

C4ϵ ln(AT )

1− γ

≤ min
x

τ∑
i=1

max
y

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ys +

C4ϵ ln(AT )

1− γ

= min
x

max
y

(xs)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ys +

C4ϵ ln(AT )

1− γ

= V s
⋆ +

C4ϵ ln(AT )

1− γ
,

which proves the first desired inequality. The other inequality can be proven in the same way.

E.3 Part III. Policy Convergence to the Nash of the Regularized Game

Lemma 27. Let 0 ≤ p ≤ 1 be arbitrarily chosen, and define

fs
τ (x

s, ys) ≜ pfs

τ
(xs, ys) + (1− p)f

s

τ (x
s, ys)

= xs⊤
(
Gs + Es′∼P s

[
pV s′

tτ (s) + (1− p)V
s′

tτ (s)

])
ys − ϵϕ(xs) + ϵϕ(ys).

Furthermore, let ẑsτ⋆ = (x̂s
τ⋆, ŷ

s
τ⋆) be the equilibrium of fs

τ (x, y), and define zst⋆ = ẑsτ⋆ where
τ = nt(s). Then with probability at least 1−O(δ), the following holds for any 0 < ϵ′ ≤ 1:

∑
s

nT+1(s)∑
i=1

1 [KL(ẑsi⋆, ẑ
s
i ) ≥ ϵ′] ≤ O

(
S2A ln5(SAT/δ)

ηϵ2ϵ′(1− γ)3

)
if η and β satisfy the following

β ≤ C5(1− γ)3

A ln3(AST/δ)
ϵϵ′ (23)

η ≤ C6(1− γ)

A ln3(AST/δ)
βϵ′ (24)

with sufficiently small universal constant C5, C6 > 0.

Proof. In this proof, we write ζs
i
(x̂s

i⋆) as ζ
i
. By Lemma 22, we have

KL(x̂s
i⋆, x̂

s
i+1) ≤ (1− ηϵ)KL(x̂s

i⋆, x̂
s
i ) + η

(
fs

i
(x̂s

i⋆, ŷ
s
i )− fs

i
(x̂s

i , ŷ
s
i )
)

+
10η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξs

i
+ ηζs

i
.

Similarly,

KL(ŷsi⋆, ŷ
s
i+1) ≤ (1− ηϵ)KL(ŷsi⋆, ŷ

s
i ) + η

(
f
s

i (x̂
s
i , ŷ

s
i )− f

s

i (x̂
s
i , ŷ

s
i⋆)
)

+
10η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λ
s

i + ηξ
s

i + ηζ
s

i .

Adding the two inequalities up, we get

KL(ẑsi+1⋆, ẑ
s
i+1)

≤ (1− ηϵ)KL(ẑsi⋆, ẑ
s
i ) +

20η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξsi + ηζsi + vsi
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+ η
(
f
s

i (x̂
s
i , ŷ

s
i )− fs

i
(x̂s

i , ŷ
s
i ) + fs

i
(x̂s

i⋆, ŷ
s
i )− f

s

i (x̂
s
i , ŷ

s
i⋆)
)

(25)

where vsi = KL(ẑsi+1⋆, ẑ
s
i+1) − KL(ẑsi⋆, ẑ

s
i+1) and □s = □s + □

s
. By Lemma 24, we have

fs

i
(x, y) ≤ f

s

i (x, y) for all x, y, and thus fs

i
(x̂s

i⋆, ŷ
s
i )− f

s

i (x̂
s
i , ŷ

s
i⋆) ≤ fs

i (x̂
s
i⋆, ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i⋆) ≤ 0.

Therefore, Eq. (25) further implies

KL(ẑsi+1⋆, ẑ
s
i+1)

≤ (1− ηϵ)KL(ẑsi⋆, ẑ
s
i ) +

20η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξsi + ηζsi + vsi + η∆s

i

≤ (1− ηϵ)KL(ẑsi⋆, ẑ
s
i ) +

20η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξsi + ηζsi + vsi +

1

2
ηϵϵ′ +

[
η∆s

i −
1

2
ηϵϵ′

]
+

where ∆s
i = f

s

i (x̂
s
i , ŷ

s
i )− fs

i
(x̂s

i , ŷ
s
i ) and in the last step we use a ≤ [a− b]+ + b.

Unrolling the recursion, we get with probability at least 1−O(δ), for all s and τ (we show that the
inequality holds for any fix s and τ with probability 1−O( δ

ST ) and then apply the union bound over
s and τ ),

KL(ẑsτ+1⋆, ẑ
s
τ+1)

≤ (1− ηϵ)τKL(ẑs1⋆, ẑ
s
1) +

20η2A ln2(AT )

(1− γ)2

τ∑
i=1

(1− ηϵ)τ−i

︸ ︷︷ ︸
term1

+
2η2A

(1− γ)2

τ∑
i=1

(1− ηϵ)τ−iλs
i︸ ︷︷ ︸

term2

+ η

τ∑
i=1

(1− ηϵ)τ−iξsi︸ ︷︷ ︸
term3

+ η

τ∑
i=1

(1− ηϵ)τ−iζsi︸ ︷︷ ︸
term4

+

τ∑
i=1

(1− ηϵ)τ−ivsi︸ ︷︷ ︸
≜ term5(s,τ)

+
1

2
ηϵϵ′

τ∑
i=1

(1− ηϵ)τ−i + η

τ∑
i=1

(1− ηϵ)τ−i

[
∆s

i −
1

2
ϵϵ′
]
+︸ ︷︷ ︸

≜ term6(s,τ)

(a)

≤ O(e−ηϵτ ln(AT )) + ln3(AST/δ)×O
(

ηA

ϵ(1− γ)2
+

η2A

β(1− γ)2
+

βA

ϵ(1− γ)
+

1

1− γ

√
η

ϵ
+

η

β(1− γ)

)
+ term5(s, τ) +

1

2
ϵ′ + term6(s, τ)

(b)

≤ O
(
e−ηϵτ ln(AT )

)
+

3

4
ϵ′ + term5(s, τ) + term6(s, τ) (26)

where in (a) we use the following calculation:

term1 ≤ O
(
η2A ln2(AT )

(1− γ)2
× 1

ηϵ

)
≤ O

(
ηA ln2(AT )

ϵ(1− γ)2

)
.

term2 ≤ O
(

η2A

(1− γ)2
maxi≤τ (1− ηϵ)τ−i ln(AST/δ)

β

)
= O

(
η2A

(1− γ)2
ln(AST/δ)

β

)
(by Lemma 8)

term3 ≤ O

 ηA

1− γ

τ∑
i=1

β(1− ηϵ)τ−i + η

√√√√ln(AST/δ)

τ∑
i=1

(1− ηϵ)τ−i

 (by Lemma 6)

= O
(

βA

ϵ(1− γ)
+

√
ln(AS/δ)

η

ϵ

)
.

term4 ≤ O
(

η

1− γ
× maxi≤τ (1− ηϵ)τ−i ln(AST/δ)

β

)
= O

(
η ln(AST/δ)

β(1− γ)

)
,

(by Lemma 8)
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and in (b) we use the conditions Eq. (23) and Eq. (24).

We continue to bound the sum of term5 and term6 over t. Note that∑
s

nT+1(s)∑
τ=1

term5(s, τ) ≤
∑
s

nT+1(s)∑
τ=1

τ∑
i=1

(1− ηϵ)τ−ivsi ≤
1

ηϵ

∑
s

nT+1(s)∑
i=1

vsi ≤ O
(
S2 ln3(AT )

ηϵ2(1− γ)2

)
,

(27)
where in the last inequality we use the following calculation:
nT+1(s)∑

i=1

|vsi | ≤ O (ln(Aτ))×
nT+1(s)∑

i=1

∥ẑsi⋆ − ẑsi+1⋆∥1 (by Lemma 14)

= O (ln(AT ))× ln(AT )

ϵ
×

nT+1(s)∑
i=1

sup
s′

(
p
∣∣∣V s′

ti
− V s′

ti+1

∣∣∣+ (1− p)
∣∣∣V s′

ti − V
s′

ti+1

∣∣∣)
(by the same calculation as Eq. (12))

≤ O
(
ln2(AT )

ϵ

)
×
∑
s′

T∑
t=1

(∣∣∣V s′

t − V s′

t+1

∣∣∣+ ∣∣∣V s′

t − V
s′

t+1

∣∣∣)
≤ O

(
ln2(AT )

ϵ
× S lnT

(1− γ)2

)
(|V s

t − V s
t+1| ≤ H+1

H+τ ×
1

1−γ1[st = s] by the update rule)

= O
(
S ln3(AT )

ϵ(1− γ)2

)
,

and that∑
s

nT+1(s)∑
τ=1

term6(s, τ)

=
∑
s

nT+1(s)∑
τ=1

η

τ∑
i=1

(1− ηϵ)τ−i

[
∆s

i −
1

2
ϵϵ′
]
+

≤
∑
s

nT+1(s)∑
i=1

nT+1(s)∑
τ=i

η(1− ηϵ)τ−i

[
∆s

i −
1

2
ϵϵ′
]
+

≤ 1

ϵ

∑
s

nT+1(s)∑
i=1

[
∆s

i −
1

2
ϵϵ′
]
+

=
1

ϵ

∑
s

nT+1(s)∑
i=1

jmax∑
j=−1

1
[
ϵϵ′2j ≤ ∆s

i ≤ ϵϵ′2j+1
]
ϵϵ′2j+1 (define jmax = log2

(
1

(1−γ)ϵϵ′

)
)

≤ 1

ϵ

jmax∑
j=−1

T∑
t=1

1
[
∆st

i ≥ ϵϵ′2j
]
ϵϵ′2j+1

≤ 1

ϵ

jmax∑
j=−1

O
(
AS ln4(AST/δ)

ηϵϵ′2j(1− γ)3

)
× ϵϵ′2j+1

(by Corollary 2 with ϵ̃ = ϵϵ′2j and the assumption that ϵϵ′ ≳ A ln3(AST/δ)β
(1−γ)3 )

= O
(
AS ln5(AST/δ)

ηϵ(1− γ)3

)
(without loss of generality, assume log2

(
1

(1−γ)ϵϵ′

)
≲ log T )

(28)
From Eq. (26), we have∑

s

nT+1(s)∑
τ=1

1 [KL(ẑsτ⋆, ẑ
s
τ ) ≥ ϵ′]

39



≤
∑
s

nT+1(s)∑
τ=1

1

[
O(e−ηϵτ ln(AT )) ≥ 1

12
ϵ′
]
+
∑
s

nT+1(s)∑
τ=1

1

[
term5(s, τ) >

1

12
ϵ′
]

+
∑
s

nT+1(s)∑
τ=1

1

[
term6(s, τ) >

1

12
ϵ′
]

≤ S ×O
(
ln(AT )

ηϵϵ′

)
+O

(
S2 ln3(AT )

ηϵ2ϵ′(1− γ)2

)
+O

(
AS ln5(AST/δ)

ηϵϵ′(1− γ)3

)
≤ O

(
S2A ln5(SAT/δ)

ηϵ2ϵ′(1− γ)3

)
where in the second-to-last inequality we use Eq. (27) and Eq. (28). This finishes the proof.

E.4 Part IV. Combining

Theorem 5. For any u ∈
[
0, 1

1−γ

]
, there exists a proper choice of parameters ϵ, β, η such that

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A3 ln17(SAT/δ)

u9(1− γ)13

)
.

with probability at least 1−O(δ).

Proof. We will choose ϵ such that u ≥ C7
ϵ ln(AT )

1−γ with a sufficiently large universal constant C7. By
Lemma 26, we have

max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
≤ max

x,y

(
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − xs⊤t

(
Gs + γEs′∼P st

[
V s′

t

])
ystt

)
+O

(
ϵ ln(AT )

1− γ

)
≤ max

x,y

(
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − xs⊤t

(
Gs + γEs′∼P st

[
V s′

t

])
ystt

)
+

u

4
.

Therefore, we can upper bound the left-hand side of the desired inequality by

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − xs⊤t

(
Gs + γEs′∼P st

[
V s′

t

])
ystt

)
≥ 3

4
u

]

≤
T∑

t=1

1

[
max

y
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − x

s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
ystt ≥

u

4

]

+

T∑
t=1

1
[
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
ystt − x

s⊤t
t

(
Gst + γEs′∼P st

[
V s′

t

])
ystt ≥

u

4

]
+

T∑
t=1

1
[
x
s⊤t
t

(
Gst + γEs′∼P st

[
V s′

t

])
yst −min

x
xs⊤t

(
Gst + γEs′∼P st

[
V s′

t

])
ystt ≥

u

4

]
.

(29)

For the first term in Eq. (29), we can bound it by

∑
s

nT+1(s)∑
i=1

1

[
max

y
f
s

i (x̂
s
i , y

s)− f
s

i (x̂
s
i , ŷ

s
i ) ≥

u

4
−O (ϵ ln(AT ))

]

≤
∑
s

nT+1(s)∑
i=1

1

[
max

y
f
s

i (x̂
s
i , y

s)− f
s

i (x̂
s
i , ŷ

s
i ) ≥

u

8

]
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≤
∑
s

nT+1(s)∑
i=1

1

[
max

y
f
s

i (x̂
s
i⋆, y

s)− f
s

i (x̂
s
i⋆, ŷ

s
i⋆) +O

(
∥ẑsi − ẑsi⋆∥1

ln(AT )

1− γ

)
≥ u

8

]
(because ∥∇fs

i (x, y)∥∞ ≤ O
(

ln(AT )
1−γ

)
— similar to the calculation in Eq. (9))

(here we choose (x̂s
i⋆, ŷ

s
i⋆) to be the equilibrium under f

s

i (x, y))

≤
∑
s

nT+1(s)∑
i=1

1

[
O
(
∥ẑsi − ẑsi⋆∥1

ln(AT )

1− γ

)
≥ u

8

]

≤
∑
s

nT+1(s)∑
i=1

1

[
KL(ẑsi⋆, ẑ

s
i ) ≥ Ω

(
u2(1− γ)2

ln2(AT )

)]
≤ O

(
S2A ln7(SAT/δ)

ηϵ2u2(1− γ)5

)
(by Lemma 27 with ϵ′ = Θ

(
u2(1−γ)2

ln2(AT )

)
)

The third term in Eq. (29) can be bounded in the same way. The second term in Eq. (29) can be
bounded using Corollary 2 by

O
(
SA ln4(SAT/δ)

ηu(1− γ)3

)
.

Overall, we have
T∑

t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A ln7(SAT/δ)

ηϵ2u2(1− γ)5

)
. (30)

Notice that the parameters ϵ, β, η needs to satisfy the conditions specified in this lemma and Lemma 27,
with which we apply ϵ′ = Θ

(
u2(1−γ)2

ln2(SAT/δ)

)
. The constraints suggest the following parameter choice

(under a fixed u):

ϵ = Θ

(
u(1− γ)

ln(SAT/δ)

)
β = Θ

(
(1− γ)3

A ln3(SAT/δ)
ϵϵ′
)

= Θ

(
u3(1− γ)6

A ln6(SAT/δ)

)
η = Θ

(
(1− γ)

A ln3(SAT/δ)
βϵ′
)

= Θ

(
u5(1− γ)9

A2 ln11(SAT/δ)

)
Using these parameters in Eq. (30), we get

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A3 ln20(SAT/δ)

u9(1− γ)16

)
.

F Discussions on Convergence Notions for General Markov Games

In general Markov games, learning the equilibrium policy pair on every state is impossible because
some state might have exponentially small visitation probability under all policies. Therefore, a
reasonable definition of convergence is the convergence of the following quantity to zero:

1

T

T∑
t=1

max
x,y

(
V st
xt,y − V st

x,yt

)
, (31)

which is similar to the best-iterate convergence defined in Section 3, but over the state sequence visited
by the players instead of taking max over s. It is also a strict generalization of the sample complexity
bound for single-player MDPs under the discounted criteria (see e.g., [LH14, WDCW20]).
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The path convergence defined in our work is, on the other hand, that the following quantity converges
to zero:

1

T

T∑
t=1

max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
. (32)

Since maxy(x
s⊤Qs

⋆y
s) ≤ maxy(x

s⊤Qs
x,yy

s) = maxy V
s
x,y for any x, the convergence of Eq. (31)

is stronger than Eq. (32).

Implications of Path Convergence Although Eq. (32) does not imply the more standard best-iterate
guarantee Eq. (31), it still has meaningful implications. By definition, It implies that frequent visits
to a state bring players’ policies closer to equilibrium, leading to both players using near-equilibrium
policies for all but o(T ) number of steps over time.

Path convergence also implies that both players have no regret compared to the game value V s
⋆ , which

has been considered and motivated in previous works such as [BT02, TWYS20]. To see this more
clearly, we apply the results to the episodic setting, where in every step, with probability 1− γ, the
state is redrawn from s ∼ ρ for some initial distribution ρ (every time the state is redrawn from ρ, we
call it a new episode). We can show that if Eq. (32) vanishes, then every player’s long-term average
payoff is at least the game value. First, notice that if Eq. (32) converges to zero, then

T∑
t=1

(V st
⋆ − x

s⊤t
t Qst

⋆ ystt ) ≤ max
y

T∑
t=1

(
x
s⊤t
t Qst

⋆ yst − x
s⊤t
t Qst

⋆ ystt

)
≤

T∑
t=1

(
max

y
x
s⊤t
t Qst

⋆ yst − x
s⊤t
t Qst

⋆ ystt

)
= o(T ). (33)

Now fix an i and let ti be time index at the beginning of episode i. Let Et = 1 indicate the event that
episode i has not ended at time t. Then

E

[
ti+1−1∑
t=ti

(
V st
⋆ − x

s⊤t
t Qst

⋆ ystt

)]

= E

[ ∞∑
t=ti

1[Et = 1]
(
V st
⋆ − x

s⊤t
t Gstystt − γV

st+1
⋆

)]

= E

[ ∞∑
t=ti

1[Et = 1]
(
V st
⋆ − x

s⊤t
t Gstystt − 1[Et+1 = 1]V

st+1
⋆

)]

= E
[
V

sti
⋆

]
− E

[ ∞∑
t=ti

1[Et = 1]x
s⊤t
t Gstystt

]

= Es∼ρ [V
s
⋆ ]− E

[
ti+1−1∑
t=ti

x
s⊤t
t Gstystt

]
.

Combining this with Eq. (33), we get

E

[
T∑

t=1

x
s⊤t
t Gstystt

]
≥ (#episodes in T steps)Es∼ρ[V

s
⋆ ]− o(T )

≥ (1− γ)Es∼ρ[V
s
⋆ ]T − o(T ).

Hence the one-step average reward is at least (1− γ)Es∼ρ[V
s
⋆ ]. A symmetric analysis shows that it

is also at most (1− γ)Es∼ρ[V
s
⋆ ]. This shows that both players have no regret compared to the game

value. Notice that this is only a loose implication of the path convergence guarantee because of the
loose second inequality in Eq. (33).

Remark on the notion of “last-iterate convergence” in general Markov games While Eq. (31)
corresponds to best-iterate convergence for general Markov games, an even stronger notion one can
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pursue after is “last-iterate convergence.” As argued above, it is impossible to require that the policies
on all states to converge to equilibrium. To address this issue, we propose to study this problem
under the episodic setting described above, in which the state is reset after every trajectory whose
expected length is 1

1−γ . In this case, last-iterate convergence will be defined as the convergence of
the following quantity to zero when i→∞:

Es∼ρ

[
max
x,y

(
V s
xti

,y − V s
x,yti

)]
where we recall that i is the episode index and (xti , yti) are the policies used by the two players at
the beginning of episode i. While last-iterate convergence seems reasonable and possibly achievable,
we are unaware of such results even for the degenerated case of single-player MDPs — the standard
regret bound corresponds to best-iterate convergence, while the techniques we are aware of to prove
last-iterate convergence in MDPs require additional assumptions on the dynamics.
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