
7 Appendix

Figure 5: Comparison of GenStat architecture to selected graph generative models.

7.1 Proofs

7.1.1 Proposition 1

Let pθ be the marginal likelihood defined in Equation (2). Then

− ln pθ(Ii) = − ln pθ(Ii1, . . . , IiM) ≤EZ∼qθ(Z|Ii1,...,IiM)

[
− ln

∫
pθ(Ii1, . . . , IiM |Ã)pθ(Ã|Z)dÃ

]
+KL(qθ(Z|Ii1, . . . , IiM)||p(Z)). (9)

Proof.
− ln pθ(Ii) ≤ EZ∼qθ(Z|Ii)

[
− ln pθ(Ii|Z)

]
+KL(qθ(Z|Ii)||p(Z))

= EZ∼qθ(Z|Ii)
[
− ln

∫
pθ(Ii|Ã)pθ(Ã|Z) dÃ

]
+KL(qθ(Z|Ii)||p(Z))

= EZ∼qθ(Z|Ii1,...,IiM)

[
− ln

∫
pθ(Ii1, . . . , IiM |Ã)pθ(Ã|Z) dÃ

]
+KL(qθ(Z|Ii1, . . . , IiM)||p(Z)) (10)

7.1.2 Observation 1

Suppose that a GGM parameterized by θ is trained with the GenStat architecture and permutation-
invariant descriptor functions Φ. Then the following hold.

1. The gradient updates of θ given a training graph Ai are permutation-invariant.
2. The model distribution pθ(A) is permutation-invariant if the generated adjacency matrix is

computed by applying a random permutation to the GenStat output.
3. The inference distribution Pθ(A) in Equation (6) is permutation-invariant.

Proof. For training invariance, note that a GenStat loss function must depend on the graph statistics
only, that is Lθ(Ai) = Lθ(φ(Ai)) (see Equation (4) for an example). Therefore

Lθ(Ai) = Lθ(φ(Ai)) = Lθ(φ(Aiπ)) = Lθ(Aiπ).
Since the loss function is permutation-invariant, so are its gradient updates, which establishes claim
1.

For the second claim, recall that pθ(A) is the generative distribution defined by Equation (1). Adding
a random permutation means that the final probability p∗(A) of generating an adjacency matrix A is
essentially the probability of generating a permutation of A:

p∗(A) =
∑
π

pθ(Aπ)/n! (11)

16

The probability p∗ is permutation-invariant: if A is a permutation of Aπ , then they can be generated
by the same adjacency matrices A′ with the same probability.

Let Aπ be a permutation of matrix A. Since the statistics are permutation-invariant, we have that
Φ(A) = Φ(Aπ). Therefore

Pθ(A) = pθ(Φ(A))/CΦ(A) = pθ(Φ(Aπ))/CΦ(Aπ) = Pθ(Aπ)

which establishes claim 3.

7.1.3 Proposition 2

Let R = (R1...RM) be a set of independent randomized algorithms, outputting perturbed node-level
statistics, such that algorithm Rm satisfies εm-Edge LDP. Then a GenStat GGM trained on the
outputs of R satisfies

∑M
m=1 εm-Edge LDP.

Proof. This proof uses two properties of LDP: composability and immunity to post-processing [2].

Lemma 1. Collected data (local node-level statistics calculated and perturbed by R) from each node
satisfies

∑M
m=1 εm-Edge LDP.

Figure 6: PGM of the randomized algorithms.

Proof. Figure 6 illustrates the PGM of Randomized algorithms. Randomized algorithms are indepen-
dent given the neighbour list l,

p(Rm(l) = sm, Rm′(l) = sm′) = p(Rm(l) = sm)p(Rm′(l) = sm′),

and as a result,

p(R(l) = s) =
M∏
m=1

p(Rm(l) = sm) . (12)

Applying the definition of edge differential privacy for each Rm,

M∏
m=1

p(Rm(l) = sm) ≤
M∏
m=1

eεmp(Rm(l′) = sm) = e
∑M
m=i εmp(R(l′) = s) (13)

where the last equation is the definition of
∑M
m=1 εm-Edge LDP.

The GGM parameters are a function of the perturbed graph statistics as learning input. The generated
graphs are a function of the GGM parameters. Since the generated graphs cannot contain more
information than the perturbed graph statistics, immunity to post-processing (f(R(l)) guarantees
LDP for any function f) [2].

7.2 Implementation and neural network design detail

The encoder consists of 2 layers of FCNNs which follow a Batch Norm layer [31]. The layers are
followed by a LeakyReLU activation function and a Layer Normalization [3]. The latent vector Z is
normally distributed and its mean and variance are generated from two separate one layer FCNNs
over the output of the shared FCNNs.

17

For further efficiency, we replace the Monte Carlo decoder of Equation (5) with a deterministic
decoder ÃZ . The deterministic decoder is implemented by a trainable FCNN that takes as input a
latent graph level representation Z. Similar to [4] and [70], the decoder assumes a fixed maximum
number of nodes, N , where isolated nodes are added to smaller graphs and is parameterized by 4
FCNN, which returns the flattened probabilistic adjacency matrix ÃZ [24, Sec.9.1.2]. Each of the
first 3 FCLs are followed by a LeakyReLU activation function and a Layer Normalization [3]. The
last layer of the decoder is followed by a sigmoid activation function and the descriptor functions
Φ = {φm()}Mm=1. Figure 2b shows the overall architecture.

To estimate the variance σ2
m for a reconstructed statistic IiM (Equation (2)), we use the optimal

σ-VAE method from the calibrated Gaussian framework [62, 89].

In this study, following [43, 88], we focus on undirected unweighted graphs. The implementation
can be easily extended to directed graphs. We also use the β-VAE [26] setting to balance the
reconstruction log-likelihood with the KLD term, where β ∈ {1, 4, 20}. Inspired by Vaswani et al.
[74] the model uses Adam optimizer with 1 cycle learning rate schedule where the learning rate varies
from lr/25 to lr ∈ {0.001, 0.0003, 0.0001}, then down to lr/100. Hyperparameters are selected by
validation set performance. The model is trained for 40, 000 epochs for all the datasets with batch
size 64, except for the Protein dataset which is trained for 10, 000 epochs and batch size 32.

k-HOP neighbors histogram. The leaky version of the min function handles sparse gradients for
longer steps and dense graphs. The leaky min function is defined as follows,

LeakyMin(Akuv, 1) =
{

Akuv, if Akuv ≤ 1

αAkuv + 1, otherwise,
(14)

where, in our implementation, α = 0.01.

Synthetic Graph Generation. At test time, following [70], graphs are generated as follows: 1)
graph latent representation is sampled from the prior p(Z). 2) The decoder computes a probabilistic
latent adjacency matrix Ã. 3) A 0.5 threshold is applied to convert link probabilities into hard binary
links.

7.3 Histogram function

In this study, histogram functions are utilized to summarize node-level statistics into a vector
representation, ensuring permutation invariance and providing graph-level statistics [9, 53, 57].
This study adopts a differentiable soft histogram function [77] with Gaussian membership function,
defined over B = O(

√
N) centers. Following [49], this study adopts a multiple binning model and

utilizes equal-width and equal-frequency binning schemas, Algorithm 1 and 2. The bins’ centers are
calculated in a prepossessing step. The differentiable histogram function is based on a soft assignment
of points to bins given the bin centers. In detail, the membership of datapoint xi to the bin center Cb
is given by,

M(xi) = e
−
(
xi−Cb
γ

)2
, (15)

where γ is a constant.

Algorithm 1 Equal-Width Binning

Require: A set of data points D = x1, x2, ..., xn, the desired number of bins B
Ensure: A set of B bins’ center C1, C2, ..., CB , where each bin contains approximately the same

width
1: w = (max(D)−min(D))/B . Compute the bins’ width
2: for b = 0 to B do
3: Cb = min(D) + b · w . Define the center of the bin
4: end for
5: return the set of B bins’ center C1, C2, ..., CB .

18

Algorithm 2 Equal-Frequency Binning

Require: A set of data points D = x1, x2, ..., xn, the desired number of bins B
Ensure: A set of B bins’ center C1, C2, ..., CB , where each bin contains approximately the same

number of data points
1: k = n/B . Compute the number of data point in each bin
2: Sort the data points in increasing order: D′ = x′1, x

′
2, ..., x

′
n where x′1 ≤ x′2 ≤ ... ≤ x′n

3: Assign the first k data points to the first bin B1, the next k data points to the second bin B2, and
so on, until all data points have been assigned to a bin.

4: for b = 0 to B do
5: Cb = mean(Bb) . Define the center of the bin
6: end for
7: return the set of B bins’ center C1, C2, ..., CB .

7.4 Baselines

This section briefly describes the graph generative models which we use for benchmarking.

BTER. A statistics-based GGM that takes degree and clustering coefficient sequences as sufficient
statistics [67].
Chung-Lu. A statistics-based GGM that takes the degree sequence as sufficient statistics [5].
Erdos-Roni. A statistics-based model that only requires graph density (probability of an edge
existing between any pair of nodes) [18].
SBM. A statistics-based GGM that requires clustering membership for each node and an edge
propensities between clusters [1].
GraphVAE-MM. An all-at-once deep GGM that generate the graph in O(1) steps [89].
BiGG. Auto-regressive deep GGM that leverages graphs sparsity and generates the graph in O(log n)
steps [6].
GRAN. Auto-regressive deep GGM that generates a graph in O(n) steps, a block of nodes and
associated edges at step [43].
GraphRNN. Auto-regressive deep GGM that generates the graph inO(n2) steps. Each step generates
one entry in the GraphRNN design (O(n2) steps), or one column in the GraphRNN-S design (O(n)
steps) [88].

For statistics-based GGMs we used the public repository provided by [69]. For the deep GGMs we
used the original papers’ public repository; hence no consent was needed to curate this study. For
all baselines, we used the hyper-parameters setting provided by the original papers and trained the
models for a maximum of 24 hours.

7.5 Datasets

Following previous studies [43, 88, 89], we use synthetic and real graph datasets as follows.

ogbg-molbbbp (ogbg-mol). Includes 2039 real-world molecular graphs with 2 ≤ |V | ≤ 132 [27].
Protein. Includes 918 real-world Protein graphs with 100 ≤ |V | ≤ 500 [12].
IMDb-BINARY (IMDb). Comprises the ego-graphs of 1000 actors/actresses who played roles in
movies in IMDb [84].
PTC. Is a dataset of 344 chemical compounds that reports the carcinogenicity of male and female
rats [73].
MUTAG. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds [8].
Lobster Tree (Lobster). Consists of 100 synthetic graphs with 10 ≤ |V | ≤ 100. Generated using
the code from [88].
Grid. Consists of 100 synthetic 2D graphs, regular tiling of the 2D plane with equilateral squares,
with 100 ≤ |V | < 400 [88].
Triangle Grid. Consists of 100 synthetic 2D graphs, regular tiling of the 2D plane with equilateral
triangles, with 100 ≤ |V | < 400 [89].

The datasets utilized in this research study do not include any personally identifiable information or
offensive/harmful content regarding individuals or communities. These datasets are openly accessible
and publicly available.

19

7.6 Evaluation metrics and experimental setting details

The GNN-based evaluation metrics. These metrics are based on the representations obtained
by GNNs. Thompson et al. [72] suggested utilizing randomly initialized GNNs (Random-GNN),
inspired by the ability of GNNs to extract meaningful graph representations without any training.
Shirzad et al. [68] proposed using representations from contrastively trained GNNs (Pretrained-GNN),
rather than random GNNs, to fully leverage the expressive power of GNNs. Following Shirzad et al.
[68] we add higher-order local information of nodes including the degree of a node, three-node and
four-node clustering features for each node as explicit features.

MMD RBF and F1 PR. The MMD RBF metric calculates the MMD of graph representations in
two sets and primarily measures the fidelity or realism of generated graphs [88]. F1 PR evaluates
the percentage of generated graph representations that fall within the manifold of test graph
representations (precision) and the percentage of test graph representations that fall within the
manifold of generated graph representations (recall). This metric considers the diversity of the
generated graphs as a factor [72].

The GNN-based evaluation metrics are computed using the packages specified in the original paper
[68, 72]. Statistic-based evaluation metrics are computed using an implementation provided in Liao
et al. [43]. Following O’Bray et al. [55] we report scores computed from a 50/50 split of the data sets
as an Ideal score. For Pretrained-GNN based metrics we trained the GNNs on 60% of the data and
reported scores computed from the 50/50 split of the rest of the samples as Ideal score.

7.7 Evaluation of GGMs in detail

Table 3 reports the detailed scores for F1 PR, as we reported in the main text, we observe a substantial
improvement in comparison with statistic-based GGMs. The F1 PR metrics collapse on synthetic
datasets with highly regular structures for Pretrained-GNN. For datasets with highly regular structures,
Pretrained-GNNs learn instantly to discriminate the real graphs from the generated ones very easily,
and for generated graphs with even very small perturbations measure a substantial distance [68]. The
problem was noted in the original paper.

Figure 7 shows a qualitative comparison of GenStat with SOTA adjacency-based GGMs on real-world
datasets. We do not show results for GraphRNN because it is both qualitatively and quantitatively
clearly worse than later methods. The GRAN graphs are the least realistic, and tend to merge different
communities, therefore exhibiting fewer communities in the test graph. This is especially visible
in the IMDb and Lobster graphs. For synthetic grid datasets (Triangle and Grid) we find that the
graphs generated by GenStat are visually worse than those generated by adjacency-based models,
including GRAN. The grid dataset outputs are not shown in the figure, but are available in the
GenStat’s repository.

7.8 Benchmark effectiveness in detail

In this paper, following Yoon et al. [87] we use link prediction as a downstream task to evaluate
GGMs’ effectiveness for benchmarking graph neural networks.

The link prediction task is to estimate the probability that a pair of nodes in a graph are connected
by a link. Following [37, 47], we remove a fraction of edges with the same number of non-existent
edges, as a test set, from the input graphs. We test the GNN model predictions of the test set after
training on the remaining edges. The test set comprises 20% held-out edges, together with the same
number of non-existent edges. For a given dataset, the link prediction experiment is performed 10
times, each using a random train/test split, and the mean of the performance metric is reported.

The GNN effectiveness is computed as follows.

1. Train a GGM (e.g., GenStat) on the original dataset (e.g., IMDb). Generate a synthetic
graph dataset of the same size as the original one (e.g. IMDb-Synth).

2. Score each GNN model (e.g., GCN) on the original graph dataset for the downstream task.
E.g., for link prediction, divide links into training and test edges, train the GNN, report test

20

performance metric (Accuracy is the GNN test metric in Yoon et al. [87]). Call this score
GNN-original.

3. Score each GNN model (e.g., GCN) on the synthetic graph dataset for the downstream task.
Call this score GNN-synthetic.

4. For each dataset, report the correlation between the GNN-original and the GNN-synthetic
scores. Yoon et al. [87] use Pearson correlation, Spearman rank correlation, and MSE
(squared difference beween the accuracy scores).

Table 7 illustrates the idea by showing the link prediction accuracies and the resulting correla-
tions/MSE benchmark effectiveness scores for the Protein dataset. Following [87] we choose popular
GNN models for benchmarking: GCN [38], GIN [83], SGC [82], and GAT [75]. Link prediction was
performed with a dot product decoder as in [87], and the models were trained for 200 epochs. Table 8
compares the benchmark effectiveness of GenStat with that of BiGG, the SOTA adjacency-based
GGM. Again this is an apples-to-oranges comparison because BiGG has access to the entire adjacency
matrix. In these experiments, we use random random features concatenated with higher-order local
information of nodes as the nodes’ feature matrices.

7.9 Code overview

The GenStat implementation is provided at https://github.com/kiarashza/GenStat.git.
The file "GlobalPrespective.py" includes the training pipeline as well as the implementation of the
objective function. Source codes for loading the real and synthetic graphs are included in "data.py".
"data/LDP/" contains the perturbed adjacency matrices used for graph generation with LDP guarantee.
All the Python packages used in our experiments are provided in "requirement.yml". Generated graph
samples for GenStat are provided in the "ReportedResult/" directory, both in the pickle and png format.
https://drive.google.com/drive/folders/1mF-kU021-ceNh6ejLgf41sSE9FEzc01Q con-
tains the generated samples by the baselines. "GNN.py" contains the implementation of the GNN
models we used for benchmarking in Section 4.4. We used "GraphGenerationWithLDP.py", "Graph-
Generation.py", "BechmarkingGNNs.py" for the GenStat’s reported result in the Section 4. These
files contain the necessary commands and hyperparameters used in the experiments.

7.10 System architecture

The code for all models is run on the same system, an Intel(R) Core(TM) i9-9820X CPU 3.30GHz and
Nvidia TITAN RTX GPU with TU102-core. Because of package compatibility issues, GraphRNN(-S)
is run on an Intel(R) Core(TM) i7-5820K CPU 3.30GHz and a GM200 GeForce GTX TITAN X.

Table 3: Comparison of GenStat with statistics-based GGMs for the GNN-based F1 PR score (higher
is better). The best result is in bold and the second best is underlined. The F1 PR of generated
graphs by GenStat is substantially higher than those of the baselines. For example, on Protein, the
GenStat F1 PR score is 92.95% vs. 53.93% for the next best method with Random-GNN, and 87.37%
vs. 23.76% for Pretrained-GNN.

Dataset Metric 50/50 split GenStat* BTER Chung-Lu Erdos-Renyi SBM

ogbg-mol Random-GNN 97.63± 0.39 89.96± 4.78 65.64± 19.45 92.67± 1.04 62.56± 10.67 61.25± 8.24
Pretrained-GNN 95.09± 0.61 68.77± 4.43 80.89± 2.44 80.71± 3.3 43.53± 5.59 38.16± 2.35

Protein Random-GNN 97.39± 0.46 83.72± 7.05 71.08± 10.48 8.10± 14.86 2.71± 5.58 15.46± 13.50
Pretrained-GNN 95.02± 1.14 79.95± 17.14 23.76± 8.97 0.00± 0.00 0.00± 0.00 1.70± 2.62

IMDb Random-GNN 98.75± 0.29 85.40± 3.32 53.93± 12.35 9.35± 4.05 37.68± 10.13 48.33± 12.50
Pretrained-GNN 97.12± 0.72 71.89± 5.72 88.47± 4.50 13.66± 8.66 41.49± 11.88 18.78± 5.89

PTC Random-GNN 98.22± 0.80 94.79± 1.78 89.14± 4.2 96.47± 2.51 68.56± 7.95 69.93± 8.41
Pretrained-GNN 98.08± 1.67 82.35± 11.33 73.48± 4.29 76.43± 3.03 39.98± 5.05 43.18± 4.98

MUTAG Random-GNN 98.69± 0.24 82.78± 12.31 65.64± 19.45 73.78± 14.45 30.60± 17.31 52.11± 18.65
Pretrained-GNN 96.67± 0.7 51.98± 10.87 58.73± 8.95 53.74± 8.32 16.9± 12.41 28.39± 6.68

Lobster Random-GNN 95.48± 0.92 97.43± 0.00 82.22± 14.13 92.35± 4.22 37.23± 16.85 64.70± 22.43
Pretrained-GNN 95.38± 2.53 89.94± 3.68 69.78± 4.77 73.47± 8.66 43.86± 4.48 43.59± 4.92

Grid Random-GNN 100.0± 0.00 50.40± 28.42 64.00± 42.76 56.48± 40.43 56.31± 39.43 30.44± 38.00
Pretrained-GNN 100.0± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.0± 0.00

Triangle Grid Random-GNN 97.8± 0.91 75.86± 22.18 59.37± 37.23 1.33± 4.00 2.00± 4.26 18.66± 26.26
Pretrained-GNN 94.09± 2.14 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

21

https://github.com/kiarashza/GenStat.git
https://drive.google.com/drive/folders/1mF-kU021-ceNh6ejLgf41sSE9FEzc01Q

Table 4: Comparison of GenStat with statistic-based GGMs for the statistic-based MMD score (lower
is better). The best result is in bold and the second best is underlined. GenStat generates graphs with
up to 1-2 orders of magnitude better statistics-based MMDs on almost all datasets.

Dataset Metric 50/50 split GenStat* BTER Chung-Lu Erdos-Renyi SBM

ogbg-molbbbp Deg. 2e−4 0.004 1e-4 0.001 0.029 0.028
Clus. 2e−5 3e-4 0.089 0.079 0.461 0.299
Orbit. 9e−5 0.009 0.001 0.001 0.037 0.018
Spect. 5e−4 0.015 0.013 0.013 0.022 0.023
Diam. 0.002 0.036 0.031 0.024 0.350 0.292

Protein Deg. 4−5 0.002 0.001 4e-5 0.019 0.027
Clu. 0.004 0.072 0.097 0.606 0.519 0.242
Orbit. 5e−4 0112 0.204 1.121 1.065 0.917
Spec 4e−4 0.008 0.031 0.067 0.064 0.051
Diam. 0.003 0.012 0.78 1.151 1.108 0.511

IMDb Deg. 0.001 0.048 0.007 0.038 0.036 0.068
Clus. 0.004 0.291 0.138 0.372 0.261 0.350
Orbit. 0.004 0.020 0.314 0.330 0.196 0.296
Spect. 0 0.054 0.014 0.107 0.102 0.100
Diam. 4e−5 0.059 0.231 0.223 0.109 0.439

MUTAG Deg. 3e−4 0.001 7e-4 0.003 0.036 0.056
Clus. 0 0.004 0.132 0.245 0.606 0.577
Orbit. 1e−5 0.002 0.002 0.005 0.046 0.014
Spec. 0.005 0.036 0.024 0.028 0.038 0.033
Diam. 0.013 0.072 0.044 0.080 0.178 0.361

PTC Deg. 1e−4 0.037 textbf0.009 0.015 0.113 0.107
Clus. 9e−5 0.008 0.114 0.094 0.309 0.240
Orbit. 8e−5 0.005 9e-4 0.002 0.011 0.002
Spec. 0.002 0.032 0.024 0.031 0.037 0.041
Diam. 0.013 0.0265 0.039 0.089 0.029 0.083

Triangle Grid Deg. 3e−5 0.075 0.002 0.007 0.223 0.239
Clus. 0.002 1.175 0.933 1.434 1.174 1.087
Orbit. 8e−5 0.239 0.479 1.857 1.701 1.492
Spec. 0.004 0.036 0.058 0.094 0.091 0.083
Diam. 0.014 0.499 1.074 1.474 1.466 1.407

Grid Deg. 1e−5 0.044 5e-4 0.001 0.286 0.293
Clus. 0 0 0.147 0.245 0.754 0.033
Orbit. 2e−5 0.015 0.061 0.051 0.853 0.802
Spec. 0.004 0.040 0.057 0.050 0.045 0.041
Diam. 0.014 0.314 1.288 1.447 1.097 1.113

Lobster Deg. 0.002 0.014 0.003 0.009 0.199 0.15
Clus. 0 0.005 0.297 0.362 0.229 0.082
Orbit. 0.002 0.084 0.042 0.040 0.065 0.124
Spec. 0.005 0.051 0.036 0.040 0.193 0.105
Diam. 0.032 0.335 0.181 0.082 0.080 0.069

Table 5: Comparison of GenStat with adjacency-based GGMs for the GNN-based F1 PR score
(higher is better). Although GenStat is limited to graph statistics (less information), for real-world
datasets, it ranks among the top two models in 8 out of 10 reported F1 PR scores.

Dataset Metric 50/50 split GenStat* GraphVAE-MM BiGG GRAN GraphRNN-S GraphRNN

ogbg-mol Random-GNN 97.63± 0.39 89.96± 4.78 92.95± 2.05 95.26± 1.09 89.90± 2.34 49.62± 9.32 16.05± 0.51
Pretrained-GNN 95.09 ± 0.61 68.77 ± 4.43 83.57 ± 1.86 86.59 ± 1.20 75.91 ± 1.68 30.91 ± 6.33 10.96 ± 3.32

Protein Random-GNN 97.39± 0.46 83.72± 7.05 78.99± 5.75 76.60± 13.4 93.93± 1.67 39.47± 25.45 0.00± 0.00
Pretrained-GNN 95.02 ± 1.14 79.95 ± 17.14 74.91 ± 3.6 75.52 ± 2.03 71.94 ± 6.32 2.67 ± 2.80 0.00 ± 0.0

IMDb Random-GNN 98.75± 0.29 85.40± 3.32 92.39± 3.74 88.74± 1.33 88.92± 1.08 0.00± 0.00 0.95± 2.85
Pretrained-GNN 97.12 ± 0.72 71.89 ± 5.72 88.08 ± 5.16 90.06 ± 1.55 88.38 ± 15.16 0.00 ± 0.00 0.00 ± 0.00

PTC Random-GNN 98.22± 0.80 94.79± 1.78 87.13± 2.5 97.28± 0.93 68.38± 8.52 65.63± 13.85 85.10± 6.34
Pretrained-GNN 98.08 ± 1.67 82.35 ± 11.33 81.06 ± 5.47 92.42 ± 1.39 42.32 ± 6.51 68.73 ± 9.66 70.84 ± 15.09

MUTAG Random-GNN 98.69 ± 0.24 82.78 ± 12.31 80.67 ± 11.73 73.70 ± 4.52 84.83 ± 3.26 17.67 ± 12.26 0.00 ± 0.00
Pretrained-GNN 96.67 ± 0.70 51.98 ± 10.87 57.68 ± 7.65 73.14 ± 3.22 70.50 ± 1.87 6.05 ± 3.63 33.64 ± 12.04

Lobster Random-GNN 95.48± 0.92 97.43± 0.00 95.36± 2.21 95.77± 2.54 74.12± 12.69 31.18± 28.03 22.00± 6.12
Pretrained-GNN 95.38 ± 2.53 89.94 ± 3.68 87.83 ± 5.72 97.42 ± 2.00 48.58 ± 6.11 10.2 ± 6.33 83.17 ± 4.01

Grid Random-GNN 100.0 ± 0.00 50.40 ± 28.42 97.46 ± 5.12 92.16 ± 0.81 80.27 ± 2.17 55.63 ± 28.51 3.15 ± 4.03
Pretrained-GNN 100.0 ± 0.00 0.00 ± 0.00 39.03 ± 7.02 74.57 ± 13.59 41.91 ± 23.33 0.00 ± 0.00 0.00 ± 0.00

Triangle Grid Random-GNN 97.80± 0.91 75.68± 22.18 85.10± 2.82 66.88± 13.26 15.58± 3.96 17.09± 7.88 19.35± 16.34
Pretrained-GNN 94.09 ± 2.14 0.00 ± 0.00 70.12 ± 4.25 84.67 ± 18.23 12.98 ± 4.24 0.00 ± 0.00 0.00 ± 0.00

22

Te
st

G
en

St
at

*
G

ra
ph

VA
E

-M
M

G
R

A
N

B
iG

G

(a) ogbg-mol (b) Protein (c) IMDb (d) Lobster

Figure 7: Visual comparison of GenStat with SOTA adjacency-based GGMs. The top row shows
randomly selected graphs from the test set for each dataset, datasets with varying structural charac-
teristics. The other rows show graphs generated by each model. The generated graphs shown are the
two visually most similar samples in the generated set. The quality of generated graphs by SOTA
deep GGMs is indistinguishable from those generated by GenStat. Unlike adjacency-based GGMs,
GenStat does not have access to nodes interaction and is restricted to certain graph-level statistics.

(a) ogbg-mol (b) PTC (c) Triangle Grid

Figure 8: Comparison of GenStat (statistics-based GGM) with BiGG (adjacency-based GGM) under
ε-Edge LDP guarantee, in terms of the Random GNN-Based MMD RBF score. A lower score is better.
The lower bound ε = 0 ensures perfect privacy. It was not feasible to train BiGG on the dense Protein
dataset, due to out-of-memory Error.

23

Table 6: Comparison of GenStat with adjacency-based GGMs for the statistic-based MMD score
(lower is better). The best result is in bold and the second best is underlined. Compared to the
state-of-the-art GGMs (that require access to all adjacencies), the GenStat graphs reach competitive
graph quality for real datasets, while limited to graph-level statistics.

Dataset Statistic 50/50 split GenStat* GraphVAE-MM GraphRNN-S GraphRNN GRAN BiGG

ogbg-molbbbp Deg. 2e−4 0.004 0.001 0.016 0.002 0.008 0.003

Clus. 2e−5 3e-4 0.005 0.572 9e−4 0.353 0.001

Orbit. 9e−5 0.009 8e−4 0.006 4e−4 0.013 5e-5

Spect. 5e−4 0.015 0.005 0.045 0.135 0.056 0.007
Diam. 0.002 0.036 0.018 0.199 0.495 0.317 0.033

Protein Deg. 4e−5 0.002 0.006 0.046 0.012 0.003 0.007
Clus. 0.004 0.172 0.059 0.324 0.123 0.059 0.099
Orbit. 5e−4 0.112 0.152 0.316 0.264 0.053 0.316
Spect. 4e−4 0.008 0.007 0.028 0.018 0.004 0.012
Diam. 0.003 0.012 0.091 0.302 0.342 0.009 0.181

IMDb Deg. 0.001 0.048 0.061 0.439 0.353 0.018 0.023
Clus. 0.004 0.291 0.303 1.052 1.051 0.019 0.071
Orbit. 0.004 0.020 0.082 1.214 0.935 0.033 0.030
Spect. 0 0.054 0.074 0.502 0.417 0.018 0.022

Diam. 4e−5 0.059 0.043 1.023 0.490 1e-4 1e−4

Mutag Deg. 3e−4 0.001 0.001 0.006 0.006 6e-4 0.004
Clus. 0 0.004 0 5e−4 0.21 0.015 2e−4

Orbit. 1e−5 0.002 1e−4 0.002 8e−4 0.007 3e−4

Spect. 0.005 0.036 0.019 0.105 0.070 0.053 0.015
Diam. 0.013 0.072 0.015 1.157 0.819 0.685 0.073

PTC Deg. 1e−4 0.037 0.020 0.022 0.005 0.013 0.001
Clus. 9e−5 0.008 3e-4 0.254 0.003 0.137 0.002

Orbit. 8e−5 0.005 0.003 0.035 0.002 0.006 7e-5

Spect. 0.002 0.032 0.018 0.057 0.075 0.034 0.004
Diam. 0.013 0.265 0.043 0.270 0.397 0.194 0.010

Triangle Grid Deg. 3e−5 0.075 0.001 0.053 0.033 0.134 0.001
Clus. 0.002 1.175 0.093 1.094 1.167 0.678 0.107
Orbit 8e−5 0.239 0.001 0.121 0.107 0.673 0.004
Spect 0.004 0.0361 0.013 0.033 0.030 0.184 0.020
Diam. 0.014 0.499 0.133 1.124 1.121 1.133 1.123

Grid Deg. 1e−5 0.044 5e-4 0.014 0.013 0.003 0.002
Clus. 0 0 0 0.003 0.166 1e−4 3e−5

Orbit. 2e−5 0.015 0.001 0.090 0.019 0.007 0.003
Spect. 0.004 0.040 0.014 0.112 0.111 0.012 0.018
Diam. 0.014 0.314 0.065 0.128 0.461 0.281 0.328

Lobster Deg. 0.002 0.014 2e-4 0.016 0.004 0.005 0.001
Clus. 0 0.005 0 0.319 0 0.304 0
Orbit 0.002 0.084 0.008 0.285 0.033 0.331 6e-4

Spect 0.005 0.051 0.017 0.045 0.035 0.043 0.012
Diam. 0.032 0.335 0.187 0.242 0.384 0.446 0.101

Table 7: The effectiveness of GenStat for benchmarking GNNs on Protein dataset. The Table shows
GNN models’ link prediction accuracies trained and tested on a) Original graphs (second column)
and b) GenStat graphs (third column) and the resulting correlations/MSE benchmark effectiveness
scores for the Protein dataset.

GNN Model Accuracy on Original graphs Accuracy on GenStat graphs Pearson Spearman MSE

GAT 63.05 69.14 0.6223 0.6 0.0036
GCN 63.39 66.29
GIN 55.33 65.01
SGC 57.68 59.91

24

Table 8: Comparison of the benchmark effectiveness of GenStat , Statistic-based GGM, with that
BiGG, the SOTA adjacency-based GGM. The benchmark effectiveness of GenStat for link prediction
is impressive, considering that the model does not observe specific links during training time (unlike
BiGG).

Pearson Spearman MSE
Dataset BiGG GenStat* BiGG GenStat* BiGG GenStat*

ogbg-molbbbp 0.8069 0.7468 0.4 0.8 0.0010 0.0005
Protein 0.9127 0.6223 0.8 0.6 0.0187 0.0036
IMDb 0.0596 0.0873 0.0 0.4 0.0344 0.0062
PTC 0.8928 0.5570 0.8 0.6 0.0018 0.0038
MUTAG 0.9857 0.8900 0.8 0.4 0.0010 0.0014
Lobster 0.9148 0.5046 0.8 0.6 0.0026 0.0066
Grid 0.6896 0.9983 0.8 1.0 0.0042 0.0001
Triangle Grid 0.9637 0.8518 1.0 0.4 0.0158 0.0023

Table 9: Comparison of deep GGMs in terms of train time. The numbers show the average training
time per epoch. We do not show results for GraphRNNs, it is much slower than later methods [89].

Dataset GRAN BiGG GraphVAE-MM GenStat*
ogbg-mol 4.62 23.14 2.71 0.721
Protein 9.51 130.28 4.87 2.59
IMDb 1.39 19.42 2.67 0.388
PTC 2.36 7.66 0.33 0.139
MUTAG 0.90 5.20 0.16 0.079
Lobster 1.12 18.02 0.15 0.041
Grid 7.62 97.75 0.49 0.14
Triangle Grid 12.61 82.86 0.42 0.07

Table 10: Comparison of deep GGMs in terms of generation time. The numbers show the average
generation time per batch. Small numbers are rounded up to 0.001.

Dataset GRAN BiGG GraphVAE-MM GenStat*
ogbg-mol 37.62 0.11 0.001 0.001
Protein 44.19 2.93 0.001 0.001
IMDb 2.36 0.24 0.001 0.001
PTC 0.7 0.07 0.001 0.001
MUTAG 24.63 0.08 0.001 0.001
Lobster 1.34 2.00 0.001 0.001
Grid 29.27 0.31 0.001 0.001
Triangle Grid 22.11 2.59 0.001 0.001

25

	Appendix
	Proofs
	Proposition 1
	Observation 1
	Proposition 2

	Implementation and neural network design detail
	Histogram function
	Baselines
	Datasets
	Evaluation metrics and experimental setting details
	Evaluation of GGMs in detail
	Benchmark effectiveness in detail
	Code overview
	System architecture

