
A Proof of Theorems

The proof of the key lemma (Lemma 5), which establishes a connection between the margin operator
and the robust margin operator, is presented in the main content.

We still need to demonstrate that the properties in PAC-Bayes analysis hold for both the margin
operator and the robust margin operator. The following proofs are adapted from the work of
(Neyshabur et al., 2017b), with the steps being kept independent of the (robust) margin operator. We
will begin by finishing the proofs of Lemma 6 and Lemma 7. Afterward, we will proceed to complete
the proof of Theorem 1, which is our primary result.

A.1 Proof of Lemma 6

Proof of Lemma 6.1:

For any i ∈ [k],

|fw+u(x)[i]− fw(x)[i]| ≤ ∥fw+u(x)− fw(x)∥2.

For any i, j ∈ [k],

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ 2|fw+u(x)[i]− fw(x)[i]| ≤ 2∥fw+u(x)− fw(x)∥2.

Therefore, it is left to bound ∥fw+u(x)− fw(x)∥. It is provided in (Neyshabur et al., 2017b), we
provide the proof here for reference. Let ∆i =

∣∣f i
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∣∣
2
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The above inequality together with
(
1 + 1

d

)d ≤ e proves the lemma statement. The induction base
clearly holds since ∆0 = |x− x|2 = 0. For any i ≥ 1, we have the following:
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,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0.
The ℓ2 norm of outputs of layer i is bounded by |x|2 Πi

j=1 ∥Wj∥2 and by the lemma assumption we
have ∥Ui+1∥2 ≤ 1

d ∥Wi+1∥2. Therefore, using the induction step, we get the following bound:
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Then we complete the proof of Lemma 6.1. By combining Lemma 6.1 and Lemma 5, we directly
obtain Lemma 6.2.
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A.2 Proof of Lemma 7

The proof of Lemma 7.1 and 7.2 is similar. We provide the proof of Lemma 7.2 below. The proof of
Lemma 7.1 follows the proof of Lemma 7.2 by replacing the robust margin operator by the margin
operator.

Let w′ = w + u. Let Sw be the set of perturbations with the following property:

Sw ⊆
{
w′

∣∣∣∣ max
i,j∈[k],x∈X

|RM(fw′(x), i, j)−RM(fw(x), i, j)| < γ

2

}
.

Let q be the probability density function over the parameters w′. We construct a new distribution Q̃
over predictors fw̃ where w̃ is restricted to Sw with the probability density function:

q̃(w̃) =
1

Z

{
q(w̃) w̃ ∈ Sw

0 otherwise.

Here Z is a normalizing constant and by the lemma assumption Z = P [w′ ∈ Sw] ≥ 1
2 . By the

definition of Q̃, we have:

max
i,j∈[k],x∈X

|RM(fw̃(x), i, j)−RM(fw(x), i, j)| < γ

2
.

Since the above bound holds for any x in the domain X , we can get the following a.s.:

R0(fw) ≤ R γ
2
(fw̃)

R̂ γ
2
(fw̃) ≤ R̂γ(fw)

Now using the above inequalities together with the equation (5), with probability 1 − δ over the
training set we have:

R0(fw) ≤ Ew̃

[
R γ

2
(fw̃)

]
≤ Ew̃

[
R̂ γ

2
(fw̃)

]
+ 2

√
2(KL (w̃∥P ) + ln 2m

δ )

m− 1

≤ R̂γ(fw) + 2

√
2(KL (w̃∥P ) + ln 2m

δ )

m− 1

≤ R̂γ(fw) + 4

√
KL (w′∥P ) + ln 6m

δ

m− 1
,

The last inequality follows from the following calculation.

Let Sc
w denote the complement set of Sw and q̃c denote the density function q restricted to Sc

w and
normalized. Then,

KL(q||p) = ZKL(q̃||p) + (1− Z)KL(q̃c||p)−H(Z),

where H(Z) = −Z lnZ− (1−Z) ln(1−Z) ≤ 1 is the binary entropy function. Since KL is always
positive, we get,

KL(q̃||p) = 1

Z
[KL(q||p) +H(Z))− (1− Z)KL(q̃c||p)] ≤ 2(KL(q||p) + 1).

A.3 Proof of Theorem 1

Given the local perturbation bound of the robust margin operator and Lemma 5, the proof of Theorem
1 follows the procedure of the proof of Theorem 2.

Let β =
(∏d

i=1 ∥Wi∥2
)1/d

and consider a network with the normalized weights W̃i =
β

∥Wi∥2
Wi.

Due to the homogeneity of the ReLU, we have that for feedforward networks with ReLU activations
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fw̃ = fw, and so the (empirical and expected) loss (including margin loss) is the same for w and w̃.

We can also verify that
(∏d

i=1 ∥Wi∥2
)
=

(∏d
i=1

∥∥∥W̃i

∥∥∥
2

)
and ∥Wi∥F

∥Wi∥2
=

∥W̃i∥
F

∥W̃i∥
2

, and so the excess

error in the Theorem statement is also invariant to this transformation. It is therefore sufficient to
prove the Theorem only for the normalized weights w̃, and hence we assume w.l.o.g. that the spectral
norm is equal across layers, i.e. for any layer i, ∥Wi∥2 = β.

Choose the distribution of the prior P to be N (0, σ2I), and consider the random perturbation
u ∼ N (0, σ2I), with the same σ, which we will set later according to β. More precisely, since the
prior cannot depend on the learned predictor w or its norm, we will set σ based on an approximation
β̃. For each value of β̃ on a pre-determined grid, we will compute the PAC-Bayes bound, establishing
the generalization guarantee for all w for which |β − β̃| ≤ 1

dβ, and ensuring that each relevant value
of β is covered by some β̃ on the grid. We will then take a union bound over all β̃ on the grid. For now,
we will consider a fixed β̃ and the w for which |β − β̃| ≤ 1

dβ, and hence 1
eβ

d−1 ≤ β̃d−1 ≤ eβd−1.

Since u ∼ N (0, σ2I), we get the following bound for the spectral norm of Ui (Tropp, 2012):

PUi∼N(0,σ2I) [∥Ui∥2 > t] ≤ 2he−t2/2hσ2

.

Taking a union bond over the layers, we get that, with probability ≥ 1
2 , the spectral norm of the

perturbation Ui in each layer is bounded by σ
√
2h ln(4dh). Plugging this spectral norm bound into

the Lipschitz of robust margin operator we have that with probability at least 1
2 ,

max
i,j∈[k],x∈X

|RM(fw′(x), i, j)−RM(fw(x), i, j)| (10)

≤2e(B + ϵ)βd
∑
i

∥Ui∥2
β

=e(B + ϵ)βd−1
∑
i

∥Ui∥2 ≤ e2d(B + ϵ)β̃d−1σ
√
2h ln(4dh) ≤ γ

2
, (11)

where we choose σ = γ

42d(B+ϵ)β̃d−1
√

h ln(4hd)
to get the last inequality, the first inequality is Lemma

6.2. The second inequality is the tail bound above. Hence, the perturbation u with the above value of
σ satisfies the assumptions of the Lemma 4.

We now calculate the KL-term in Lemma 4 with the chosen distributions for P and u, for the above
value of σ.

KL(w + u||P )

≤|w|2

2σ2
=

422d2(B + ϵ)2β̃2d−2h ln(4hd)

2γ2

d∑
i=1

∥Wi∥2F

≤O

(
(B + ϵ)2d2h ln(dh)

β2d

γ2

d∑
i=1

∥Wi∥2F
β2

)

≤O

(
(B + ϵ)2d2h ln(dh)

Πd
i=1 ∥Wi∥22

γ2

d∑
i=1

∥Wi∥2F
∥Wi∥22

)
.

Hence, for any β̃, with probability ≥ 1− δ and for all w such that, |β − β̃| ≤ 1
dβ, we have:

R0(fw) ≤ R̂γ(fw) +O


√√√√ (B + ϵ)2d2h ln(dh)Πd

i=1 ∥Wi∥22
∑d

i=1

∥Wi∥2F
∥Wi∥22

+ ln m
δ

γ2m

 . (12)

For other ℓp attacks, the results are directly obtained by Lemma 4 of (Xiao et al., 2022a).

A.4 Proof of Theorem 8

It is based on a slight modification of the key lemma. if gw(x) has a (A1|x|, · · · , Ad|x|)-local
perturbation bound, i.e.,

|gw(x)− gw′(x)| ≤
d∑

i=1

Ai|x|∥Wi −W ′
i∥,
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the robustified function infx′∈C(x) gw(x′) has a (A1D, · · · , AdD)-local perturbation bound.

Proof: Let
x(w) = arg inf

x′∈C(x)
gw(x′),

x(w′) = arg inf
x′∈C(x)

gw′(x′),

Then,
| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤

max{|gw(x(w))− gw′(x(w))|, |gw(x(w′))− gw′(x(w′))|}.
It is because gw(x(w))− gw′(x(w′)) ≤ gw(x(w′))− gw′(x(w′)) and gw′(x(w′))− gw(x(w)) ≤
gw′(x(w))− gw(x(w)). Therefore,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)|

≤
d∑

i=1

Ai|x(w)|∥Wi −W ′
i∥

≤
d∑

i=1

AiD∥Wi −W ′
i∥.

Therefore, combining the local perturbation bound and Lemma 7.2, we complete the proof.

A.5 Proof of Theorem 9

As shown in the proof of Lemma 6, it is left to bound ∥fw+u(x) − fw(x)∥. Let ∆i =∣∣f i
w+u(x)− f i

w(x)
∣∣
2
. We will prove using induction that for any i ≥ 0:
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d
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)
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.

The above inequality together with
(
1 + 1

d

)d ≤ e proves the lemma statement. The induction base
clearly holds since ∆0 = |x− x|2 = 0. For any i ≥ 1, we have the following:

∆i+1 =
∣∣(Wi+1 + Ui+1)ϕi(f
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w+u(x))−Wi+1ϕi(f

i
w(x)) + (f i

w+u(x)− f i
w(x))

∣∣
2

=
∣∣(Wi+1 + Ui+1)

(
ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

)
+ Ui+1ϕi(f

i
w(x)) + (f i

w+u(x)− f i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
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,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0.
The ℓ2 norm of outputs of layer i is bounded by |x|2 Πi

j=1(∥Wj∥2+1) and by the lemma assumption
we have ∥Ui+1∥2 ≤ 1

d ∥Wi+1∥2. Therefore, using the induction step, we get the following bound:
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d

)
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Therefore, the margin operator of ResNet is locally (A1|x|, · · · , Ad|x|)-Lipschitz w.r.t. w, where

Ai = 2e

d∏
l=1

(∥Wl∥2 + 1)/(∥Wi∥2 + 1).
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For any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w, we have:

L0(fRN)− L̂γ(fRN)

≤O

√
B2d2h ln(dh)Φ(fRN) + ln dm

δ

γ2m

 ;

By a combination of Lemma 5 and Lemma 7, for any δ, γ > 0, with probability ≥ 1 − δ over a
training set of size m, for any w, we have:

R0(fRN)− R̂γ(fRN)

≤O

√
(B + ϵ)2d2h ln(dh)Φ(fRN) + ln dm

δ

γ2m

 ,

where Φ(fRN) = Πd
i=1(∥Wi∥2 + 1)2

∑d
i=1

∥Wi∥2
F

(∥Wi∥2+1)2 .

B PAC-Bayesian Framework for Robust Generalization

PAC-Bayes analysis (McAllester, 1999) is a framework to provide generalization guarantees for
randomized predictors drawn from a learned distribution Q (as opposed to a single predictor) that
depends on the training data set. The expected generalization gap over the posterior distribution Q
can be bounded in terms of the Kullback-Leibler divergence between the prior distribution P and the
posterior distribution Q, KL(P∥Q).

A direct corollary of Eq. (5) is that, the expected robust error of fw+u can be bounded as follows

Eu[R
adv
0 (fw+u)]

≤ Eu[R̂
adv
0 (fw+u)] + 2

√
2
(
KL (w + u∥P ) + ln 2m

δ

)
m− 1

.
(13)

By a slight modification of Lemma 4, the following lemma given in the work of (Farnia et al., 2018)
shows how to obtain an robust generalization bound.
Lemma 10 (Farnia et al. (2018)). Let fw(x) : X → Rk be any predictor (not necessarily a neural
network) with parameters w, and P be any distribution on the parameters that is independent of the
training data. Then, for any γ, δ > 0, with probability ≥ 1− δ over the training set of size m, for any
w, and any random perturbation u s.t. Pu[maxx∈X

∣∣fw+u(x+ δadvw+u(x))− fw(x+ δadvw (x))
∣∣
∞

< γ
4 ] ≥

1
2 , we have:

Radv
0 (fw) ≤ R̂adv

γ (fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

Table 1: Comparison of the empirical results of the standard generalization bound and robust
generalization in the experiment of training MNIST, CIFAR-10 and CIFAR-100 on VGG networks.

MNIST CIFAR-10 CIFAR-100
Standard Generalization Gap 1.13% 9.21% 23.61%
Bound in Theorem 2 (Neyshabur et al., 2017b) 1.33× 104 1.34× 109 3.41× 1011

Robust Generalization Gap 9.67% 51.41% 78.82%
Bound in Theorem 3 (Farnia et al., 2018) NA NA NA
Bound in Theorem 1 (Ours) 3.23× 104 5.97× 1010 1.66× 1013

C Empirical Study of the Generalization Bounds

The spectral complexity Φ(fw) induced by adversarial training is significantly larger. We conducted
experiments training MNIST, CIFAR-10, and CIFAR-100 datasets using VGG-19 networks, following
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the training parameters described in (Neyshabur et al., 2017a).4 The results are presented in Table
1. It is evident that adversarial training can induce a larger spectral complexity, resulting in a larger
generalization bound.5 We refer the readers to our previous work (Xiao et al., 2022a) for more
experiments results about norm-based complexity of adversarially-trained models. These experiments
align with the findings presented by (Bartlett et al., 2017), indicating: 1) spectral complexity scales
with the difficulty of the learning task, and 2) the generalization bound is sensitive to this complexity.

4The settings of standard training follows the experiments in https://github.com/bneyshabur/
generalization-bounds.

5The settings of adversarial training follows the experiments in https://github.com/JiancongXiao/
Adversarial-Rademacher-Complexity.
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