
PAC-Bayesian Spectrally-Normalized Bounds for
Adversarially Robust Generalization

Jiancong Xiao1,∗, Ruoyu Sun2,3,4,†, Zhi-Quan Luo2,4,†
1University of Pennsylvania, PA, USA

2Scool of Data Science, The Chinese University of Hong Kong, Shenzhen, China
3Shenzhen International Center for Industrial and Applied Mathematcs

4Shenzhen Research Institute of Big Data
jcxiao@upenn.edu, {sunruoyu,luozq}@cuhk.edu.cn

Abstract

Deep neural networks (DNNs) are vulnerable to adversarial attacks. It is found
empirically that adversarially robust generalization is crucial in establishing de-
fense algorithms against adversarial attacks. Therefore, it is interesting to study the
theoretical guarantee of robust generalization. This paper focuses on norm-based
complexity, based on a PAC-Bayes approach (Neyshabur et al., 2017b). The main
challenge lies in extending the key ingredient, which is a weight perturbation bound
in standard settings, to the robust settings. Existing attempts heavily rely on addi-
tional strong assumptions, leading to loose bounds. In this paper, we address this
issue and provide a spectrally-normalized robust generalization bound for DNNs.
Compared to existing bounds, our bound offers two significant advantages: Firstly,
it does not depend on additional assumptions. Secondly, it is considerably tighter,
aligning with the bounds of standard generalization. Therefore, our result provides
a different perspective on understanding robust generalization: The mismatch terms
between standard and robust generalization bounds shown in previous studies do
not contribute to the poor robust generalization. Instead, these disparities solely due
to mathematical issues. Finally, we extend the main result to adversarial robustness
against general non-ℓp attacks and other neural network architectures.

1 Introduction

Even though deep neural networks (DNNs) have impressive performance on many machine learning
tasks, they are often highly susceptible to adversarial perturbations imperceptible to the human eye
(Goodfellow et al., 2015; Madry et al., 2018). They have received enormous attention in the machine
learning literature over recent years and a large number of defense algorithms (Gowal et al., 2020;
Rebuffi et al., 2021) are proposed to improve the robustness in practice. Nonetheless, it still fails to
deliver satisfactory performance. One major challenge stems from adversarially robust generalization.
For example, Madry et al. (2018) demonstrated that the robust generalization gap can extend up to
50% on CIFAR-10. In contrast, the standard generalization gap is notably small in practical settings.
Hence, a theoretical question arises: Why is there a huge difference between standard generalization
and robust generalization? This paper focuses on norm-based generalization analysis.

In classical learning theory, one of the most well-known findings is that the generalization bound
for neural networks depends on the norms of their layers (Bartlett, 1998). To further explore the
generalization of deep learning, a series of work aimed at improving the norm-based bound (Bartlett &
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Mendelson, 2002; Neyshabur et al., 2015; Golowich et al., 2018), mainly using tools of Rademacher
complexity. The tightest bound is given by Bartlett et al. (2017), using a covering number approach.
Neyshabur et al. (2017b) gave a different and simpler proof based on PAC-Bayes analysis, presented
an almost equally tight bound. The key step involves bounding the change in output of the predictors
in response to slight variations in the predictor parameters. In particular, considering fw(x) as the
predictor parameterized by w, the crucial component for providing the generalization bound lies
in bounding the gap |fw(x)− fw′(x)|, where w and w′ are close. The weight perturbation bound,
which addresses this aspect, is presented in Lemma 2 of Neyshabur et al. (2017b).

To comprehend the limited robust generalization capabilities of deep learning, a line of research
endeavors to extend the norm-based bounds into robust settings. However, this has proven to be a
challenging mathematical problem, as researchers have attempted the mentioned approaches including
the Rademacher complexity (Khim & Loh, 2018; Yin et al., 2019; Awasthi et al., 2020), covering
number (Gao & Wang, 2021; Xiao et al., 2022a; Mustafa et al., 2022), and the PAC-Bayes analysis
(Farnia et al., 2018), yet a satisfactory solution remains elusive. For more details, see Section 2.

Figure 1: Demonstration of the main challenge of
providing robust generalization bound. The weight
perturbation bound (Neyshabur et al., 2017b)
seems hard to extend to adversarial settings.

We use the PAC-Bayesian approach as an ex-
ample to illustrate the mathematical challenge.
The weight perturbations in adversarial settings
differ from those in standard settings. When
considering two predictors fw(·) and fw′(·),
the adversarial examples against these predic-
tors are distinct, leading to a gap referred to
as robust weight perturbation (defined later in
Problem 1). It remains unclear how to estab-
lish a bound for robust weight perturbation. The
combined changes in input and weights can po-
tentially cause a significant alteration in the func-
tion value. The main challenge is illustrated in
Figure 1, the details of which will be provided
in Section 6.2. As a result, Farnia et al. (2018)
introduced additional assumption to control this
gap and provide bounds in adversarial settings. However, the assumption imposed limitations on the
effectiveness of the bounds due to two reasons: Firstly, the assumption of sharp gradients throughout
the domain is a strong requirement. Secondly, without this assumption, the bounds become un-
bounded (=+∞). Similarly, other existing norm-based bounds also depend on additional assumptions
or involve higher-order terms in certain factors.

Given that the existing robust generalization bounds are much larger than standard generalization
bounds, these results suggest a possible hypothesis: The significant disparity between standard and
robust generalization in practical scenarios could potentially be attributed to the mismatch terms
between the standard bounds and the robust bounds. However, verifying this hypothesis is challenging
because it remains unclear whether the existence of these terms or assumptions is due to mathematical
issues. Therefore, the current bounds are insufficient to address the main theoretical question.

In this paper, we address this problem and present a PAC-Bayes spectrally-normalized robust gen-
eralization bound without additional assumptions. Our robust generalization bound is as tight as
the standard generalization bound, with an additional factor representing the perturbation intensity
ϵ. Furthermore, our bound is strictly smaller than the previous generalization bounds proposed in
adversarial robustness settings. To provide an initial overview of the main result, we begin by defining
the spectral complexity of a d-layer neural network fw as follows:

Φ(fw) = Πd
i=1 ∥Wi∥22

d∑
i=1

(∥Wi∥2F / ∥Wi∥22), (1)

where Wi is the weights of fw in each of the d layers.

Theorem (Informal). Let m be the number of samples and the training samples x is bounded by
B. ϵ is the attack intensity. Let fw : X → Rk be a d-layer feedforward network. Then, with high
probability, we have

Robust Generalization ≤ O(
√

(B + ϵ)2Φ(fw)/m).
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When ϵ = 0, the bound reduces to the standard generalization bound presented by Neyshabur et al.
(2017b). Our results give a different perspecitve from existing bounds. The additional factors or
assumptions are solely due to mathematical considerations. Our findings suggest that the implicit
difference of the spectral complexity Φ(fw) likely contributes to the significant disparity between
standard and robust generalization.

Figure 2: Demonstration of the framework: per-
turbation bound of robustified function. Under
this framework, a standard generalization bound
directly implies a robust generalization bound.

Technical Proof. It is shown that the robust
weight perturbation is not controllable with-
out additional assumptions. Therefore, exist-
ing tools are not sufficient to derive the bounds.
The main technical tools to derive the bounds
are two folds. Firstly, we introduce a crucial
inequality to address this problem, which is the
preservation of weight perturbation bound under
ℓp attack. Secondly, we restructure the proof by
(Neyshabur et al., 2017b) in terms of the margin
operator. This modification enables the applica-
tion of the aforementioned inequality. To further
extend the bound to more general settings, we
establish a framework that allows us to derive
a robust generalization bound from its corre-
sponding standard generalization bound. The
framework’s demonstration is presented in Figure 2, and detailed information regarding Figure 2 will
be provided in Section 6.3.

Furthermore, we extend the results to encompass general settings. Firstly, although ℓp adversarial
attacks are widely used, real-world attacks are not always bounded by the ℓp norm. Hence, we extend
the results to cover general attacks. Secondly, as the current state-of-the-art robust performance is
achieved with WideResNet (Rebuffi et al., 2021; Croce et al., 2021), we demonstrate that the results
can be extended to other DNN structures, such as ResNet.

The contributions are listed as follows:

1. Main result: We provide a PAC-Bayesian spectrally-normalized robust generalization bound
without any additional assumption. The derived bound is as tight as the standard generaliza-
tion bound and tighter than the existing robust generalization bound.

2. Our results give a different perspecitve from existing bounds. The significant disparity
between standard and robust generalization in practical scenarios is not attributed to the
mismatch terms between the standard bound and the robust bound. The implicit difference
of the spectral complexity Φ(fw) possibly contributes to the significant disparity.

3. We provide a general framework for robust generalization analysis. We show how to obtain
a robust generalization bound from a given standard generalization bound.

4. We extend the result to general adversarial attacks and other neural networks architectures.

2 Related Work

Adversarial Attack. Adversarial examples were first introduced in (Szegedy et al., 2014). Since
then, adversarial attacks have received enormous attention (Papernot et al., 2016; Moosavi-Dezfooli
et al., 2016; Carlini & Wagner, 2017). Nowadays, attack algorithms have become sophisticated and
powerful. For example, Autoattack (Croce & Hein, 2020) and Adaptive attack (Tramer et al., 2020).
Therefore, we consider theoretical analysis on robust margin loss (defined later in Eq. (4)) against
any norm-based attacks. Real-world attacks are not always norm-bounded (Kurakin et al., 2018).
Therefore, we also consider non-ℓp attacks (Lin et al., 2020; Xiao et al., 2022c) in Sec. 7.

Adversarially Robust Generalization. Even enormous algorithms were proposed to improve the
robustness of DNNs (Madry et al., 2018; Tramèr et al., 2018; Gowal et al., 2020; Rebuffi et al., 2021),
the performance was far from satisfactory. One major issue is the poor robust generalization, or robust
overfitting (Rice et al., 2020). A series of studies (Xing et al., 2021; Xiao et al., 2022b,d; Ozdaglar
et al., 2022) have delved into the concept of uniform stability within the context of adversarial training.
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However, these analyses focused on general Lipschitz functions, without specific consideration for
neural networks.

Rademacher Complexity. Rademacher complexity can provide similar spectral norm general-
ization bound as PAC-Bayesian bound (Theorem 2). Rademacher complexity was extended to
adversarial settings for linear classifier (Khim & Loh, 2018; Yin et al., 2019) and two-layers neural
networks (Awasthi et al., 2020). As for DNNs, they found that it was mathematically difficult and
provided some discussions on surrogate losses rather than the adversarial loss.

Covering Number. Rademacher complexity can be bounded in terms of the covering number of the
function class, as discussed in (Bartlett et al., 2017). Nevertheless, calculating the covering number
for an adversarial function class is also shown to be a challenging problem. Gao & Wang (2021)
considered adversarial loss against FGSM attacks, employing similar assumptions to those of (Farnia
et al., 2018), resulting in a bound similar to Theorem 3. Additionally, Xiao et al. (2022a) and Mustafa
et al. (2022) introduced two different methods, respectively, to compute the covering number for
adversarial function classes. However, the bounds obtained through these methods remain notably
larger when compared to those in standard settings. The related research on Rademacher complexity
and covering number help proves the difficulty of the problem we are addressing.

PAC-Bayes Analysis. We mainly compare our results to the previous PAC-Bayesian spectrally-
normalized bounds (Neyshabur et al., 2017b; Farnia et al., 2018), which we have already discussed in
the introduction. We will provide more details later. The workshop version of this paper is presented
in (Xiao et al., 2023). Other PAC-Bayes frameworks for tackling adversarial robustness also exist.
Viallard et al. (2021) explored a distinct adversarial attack targeting the loss of the Q-weighted
majority vote over the posterior distribution Q. Mustafa et al. (2023) introduced a non-vacuous
PAC-Bayes bound designed for stochastic neural networks.

3 Preliminaries

3.1 Notations

We mainly follow the notations of (Neyshabur et al., 2017b). Consider the classification task that
maps the input x ∈ X to the label y ∈ Rk. The output of the model is a score for each of the k
classes. The class with the maximum score will be the prediction of the label of x. A sample dataset
S = {(x1, y1), · · · , (xm, ym)} with m training samples is given. The l2 norm of each of the samples
xi is bounded by B, i.e., ∥xi∥2 ≤ B, i = 1, · · · ,m. Let ∥W∥F and ∥W∥2 denote the Frobenius
norm and the spectral norm of the weights W , respectively.

Fully-Connected Neural Networks. Let fw(x) : X → Rk be the function computed by a
d-layer feed-forward network for the classification task with parameters w = vec

(
{Wi}di=1

)
,

fw(x) = Wd ϕ(Wd−1 ϕ(....ϕ(W1x))), here ϕ is the ReLU activation function. Let f i
w(x) denote

the output of layer i before activation and h be an upper bound on the number of output units in each
layer. We can then define fully-connected feed-forward networks recursively: f1

w(x) = W1x and
f i
w(x) = Wiϕ(f

i−1
w (x)). In Section 7, we extend the results to ResNet (He et al., 2016), since the

state-of-the-art robust performance is built on WideResNet (Rebuffi et al., 2021; Croce et al., 2021).

3.2 Standard Margin Loss and Robust Margin Loss

Standard Margin Loss. For any distribution D and margin γ > 0, the expected margin loss is
defined as follows:

Lγ(fw) = P(x,y)∼D

[
fw(x)[y] ≤ γ +max

j ̸=y
fw(x)[j]

]
. (2)

Let L̂γ(fw) be the empirical estimate of the above expected margin loss. Since setting γ = 0

corresponds to the classification loss, we will use L0(fw) and L̂0(fw) to refer to the expected loss
and the training loss. The loss Lγ defined this way is bounded between 0 and 1.

Robust Margin Loss. Adversarial examples are usually crafted by an attack algorithm. Let δadvw (x)
be an algorithm output and δ∗w(x) be the maximizer of the following maximization problem

max
∥δ∥≤ϵ

ℓ(fw(x+ δ), y), (3)
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where ℓ is the loss function of the predicted label and true label. Without explicit specification, ∥ · ∥
refers to the ℓ2 norm. The robust margin loss is defined as follows:

Rγ(fw) =P(x,y)∼D

[
∃x′ ∈ Bp

x(ϵ), fw(x′)[y] ≤ γ +max
j ̸=y

fw(x′)[j]

]
=P(x,y)∼D

[
fw(x+ δ∗w(x))[y] ≤ γ +max

j ̸=y
fw(x+ δ∗w(x))[j]

]
.

(4)

Let R̂γ(fw) be the empirical estimate of the above expected robust margin loss. The robust margin
loss requires the whole norm ball around the original example x to be labelled correctly, which
is the goal of norm-based adversarial robustness. By replacing δ∗w(x) by δadvw (x) in the above
definition, we denote Radv

γ (fw) as the margin loss against attacks adv. The work of (Farnia et al.,
2018) consider three attacks: fast gradient sign method (FGSM or FGM), projected gradient method
(PGM), and wasserstein risk minimization (WRM), i.e., adv = FGSM, PGM, and WRM. They
provided three different bounds for these adversarial attacks respectively. However, methods for
generating these adversarial examples are becoming significantly more sophisticated and powerful.
For example, Autoattack (Croce & Hein, 2020) in default settings is a collection of four attacks to
find adversarial examples. Therefore, a bound of robust margin loss against a single attack provides
a limited robustness guarantee to a machine learning model. In fact, Autoattack collects different
attacks to attempt and to provide a close lower estimation of R0(fw). Therefore, this paper focuses
on the robust margin loss.

4 Robust Generalization Bound

In this section, we will first provide our main result of robust generalization.
Theorem 1 (Main Result: Robust Generalization Bound). For any B, d, h, ϵ > 0, let fw : X → Rk

be a d-layer feedforward network with ReLU activations. Then, for any δ, γ > 0, with probability
≥ 1− δ over a training set of size m, for any w, we have:

R0(fw)− R̂γ(fw) ≤ O

√
(B + ϵ)2d2h ln(dh)Φ(fw) + ln dm

δ

γ2m

 ,

where Φ(fw) = Πd
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

is the spectral complexity of fw.

Remark. Theorem 1 is presented under ℓ2 attacks to simplify the notation. For other ℓp attacks,
suppose all the samples xi have ℓp norm bounded by B and ∥δ∥p ≤ ϵ, the robust generalization
bound is to replace (B + ϵ) by max{1, n

1
2−

1
p }(B + ϵ) in Theorem 1, where n is the dimension of

the samples xi.

Theorem 1 provides the first PAC-Bayesian bound in adversarial robustness settings without introduc-
ing new assumptions. Fixing other factors, the generalization gap goes to 0 as m → ∞.
Theorem 2 (Standard Generalization Bound (Neyshabur et al., 2017b)). For any B, d, h > 0, let
fw : X → Rk be a d-layer feedforward network with ReLU activations. Then, for any δ, γ > 0, with
probability ≥ 1− δ over a training set of size m, for any w, we have:

L0(fw)− L̂γ(fw) ≤ O

√
B2d2h ln(dh)Φ(fw) + ln dm

δ

γ2m

 ,

where Φ(fw) = Πd
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

.

Comparison with Existing Standard Generalization Bounds. Comparing the robust generaliza-
tion bound in Theorem 1 with the standard generalization bound in Theorem 2, the only difference is
a factor of the attack intensity ϵ, which is unavoidable in adversarial settings. In other words. B and
B + ϵ are the magnitudes of the clean and adversarial examples, respectively. Therefore, our main
result is as tight as the standard generalization bound in Theorem 2.
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Theorem 3 (Robust Generalization Bound (Farnia et al., 2018)). For any B, d, h > 0, let fw : X →
Rk be a d-layer feedforward network with ReLU activations. Consider an FGM attack with noise
power ϵ according to Euclidean norm ∥ · ∥2. Assume that ∥∇xℓ(fw(x), y)∥ ≥ κ, ∀x ϵ-close to X .
Then, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w, we have:

Radv
0 (fw)− R̂adv

γ (fw) ≤ O

√
(B + ϵ)2d2h ln(dh)Φfgm(fw) + ln dm

δ

γ2m

 ,

Φfgm(fw) =

d∏
i=1

∥Wi∥22 (1 + Cfgm)

d∑
i=1

∥Wi∥2F
∥Wi∥22

, and Cfgm =
ϵ

κ
(

d∏
i=1

∥Wi∥2)(
d∑

i=1

i∏
j=1

∥Wj∥2).

Remark: For robust generalization bounds of PGM or WRM adversarial attacks, the bounds have
similar forms as in Theorem 3, with different constants Cpgm and Cwrm.

Comparison with Existing Robust Generalization Bounds. Comparing Theorem 1 and Theorem
3, the difference of the upper bounds is the difference of Φ and Φfgm, where Φfgm contains an
additional term Cfgm. Therefore, our bound is tighter. Moreover, the robust generalization gap is
much larger than the FGSM generalization gap based on the observation in practice. We provide a
tighter upper bound for a larger generalization gap.

Additionally, the term Cfgm could be very large. Notice that Theorem 3 requires ℓ(fw(x), y) to be
sharp w.r.t. x for all x ∈ X . It is hard to verify and κ could be small. Therefore, if we remove the
additional assumption ∥∇xℓ(fw(x), y)∥ ≥ κ, we have Cfgm → +∞ as κ → 0 and the upper bound
in Theorem 3 goes to infinity.

It is also worth noting that our bound is tighter than other norm-based robust generalization bounds
derived in Rademacher complexity and covering number approaches, since these bounds are larger
than their standard counterpart, the bound given by (Bartlett et al., 2017).

5 Analysis of Adversarially Robust Generalization

As mentioned in the introduction, the robust generalization gap is much larger than the standard
generalization gap in practical scenarios. What factors contribute to such a significant difference?
Previous norm-based bounds might lead to the following hypothesis: The significant disparity could
potentially be attributed to the additional terms or assumptions between the standard bound and
the robust bound. Our result provides a different perspective: They are solely due to mathematical
considerations. The following three factors are (implicitly) different in Theorem 1 and Theorem 2
and possibly contribute to the significant disparity.

Clean Sample and Adversarial Example (B and B+ ϵ). The only difference between the bounds
in Theorem 1 and Theorem 2 lies in the factor ϵ. In this context, B represents the magnitude of
clean samples, while B + ϵ signifies the magnitude of adversarial examples. This factor holds less
significance in improving robust generalization, as it is unlikely to be controlled during the training
of DNNs.

Standard Margin and Robust Margin (γ). The margin γ remains consistent in both of these two
bounds, but it is implicitly different in the definitions of standard margin loss and robust margin loss.
The robust margin is smaller due to the smaller distance between two adversarial examples. As it is
discussed in (Neyshabur et al., 2017a), γ is usually considered to normalize the spectral complexity
discussed below.

Standard-Trained and Adversarially-Trained Parameters (Φ(fw)). The spectral complexity
Φ(fw) is implicitly different because the weights w of the standard-trained and adversarially-trained
models are distinct. The spectral complexity Φ(fw) induced by adversarial training is significantly
larger. We conducted experiments training MNIST, CIFAR-10, and CIFAR-100 datasets on VGG
networks, see Appendix C. See also the work of (Xiao et al., 2022a) for more discussion about
the experiments of weights norm of adversarially-trained models. The margin-normalized spectral
complexity Φ(fw) likely contributes to the huge difference between standard generalization and
robust generalization.
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6 Main Challenge of Robust Generalization Bound and Proof Sketch

6.1 PAC-Bayesian Framework

The PAC-Bayesian framework (McAllester, 1999) provides generalization guarantees for randomized
predictors drawn from a learned distribution Q (as opposed to a single predictor) that depends on the
training data set. In particular, let fw be a predictor parameterized by w. We consider the distribution
Q over predictors of the form fw+u, where u is a random variable and w is considered to be fixed.
Given a prior distribution P over the set of predictors that is independent of the training data, the
PAC-Bayes theorem states that with probability at least 1 − δ, the expected loss of fw+u can be
bounded as follows

Eu[L0(fw+u)] ≤ Eu[L̂0(fw+u)] + 2

√
2
(
KL (w + u∥P ) + ln 2m

δ

)
m− 1

. (5)

To get a bound on the margin loss L0(fw) for a single predictor fw, we need to relate the expected
loss, Eu[L0(fw+u)] over a distribution Q, with the loss L0(fw) for a single model. The following
lemma provides this relation.

Lemma 4 (Neyshabur et al. (2017b)). Let fw(x) : X → Rk be any predictor (not necessarily a
neural network) with parameters w, and P be any distribution on the parameters that is independent
of the training data. Then, for any γ, δ > 0, with probability ≥ 1− δ over the training set of size m,
for any w, and any random perturbation u s.t. Pu

[
maxx∈X |fw+u(x)− fw(x)|∞ < γ

4

]
≥ 1

2 , we
have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

As it is discussed in (Neyshabur et al., 2017a), the KL-divergence is evaluated for a fixed w and u is
random. Lemma 4 is not specific to neural networks and generally holds for any functions. Providing
Lemma 4, it is left to provide a bound of ∥fw+u(x) − fw(x)∥2 to obtain the final generalization
bound.3 This framework can be directly extended to adversarially robust settings by replacing
∥fw+u(x) − fw(x)∥2 by ∥fw+u(x + δadvw+u(x)) − fw(x + δadvw (x))∥2 (Farnia et al., 2018). For
more details, see Appendix B.

6.2 Main Challenge

Based on Lemma 4, to provide an upper bound of robust margin loss is to solve the following problem:

Problem 1. How to provide a bound of

∥fw+u(x+ δadvw+u(x))− fw(x+ δadvw (x))∥2? (6)

We refer to the gap in Eq. (6) as robust weight perturbation. To the best of our knowledge, it remains
unclear how to establish a bound for robust weight perturbation. In standard settings, when we
perturb the weights from w to w+ u, the input x remains the same. The change in function values is
solely attributable to the change in weights. However, the situation becomes much more complex in
adversarial settings. If we perturb the weights from w to w+u, the adversarial attacks also vary from
δadvw (x) to δadvw+u(x). The combined changes in input x and weights w may result in a substantial
change in function values. The challenge of Problem 1 can be observed in previous studies.

Farnia et al. (2018) introduced additional assumptions to bound Eq. (6). For instance, for FGSM and
PGM attacks, they assumed |∇xℓ(fw(x), y)| ≥ κ for all x ϵ-close to X . This parameter κ appears
in the bound of Eq. (6) as well as in the final generalization bound. To the best of our knowledge,
there has been no attempt at δ∗w(x). It is not because such research is unimportant (as mentioned in
Sec. 3), but rather due to the challenge presented by Problem 1. In this case, it remains unclear what
assumptions can be made to bound Eq. (6). The related work on Rademacher complexity analysis
demonstrates the difficulty, as researchers have found it challenging to bound robust margin loss
and have instead resorted to bounding robust loss against soled attack with additional assumptions.
Further discussion on this topic can be found in Sec. 2.

3It is because ∥fw+u(x)− fw(x)∥∞ ≤ ∥fw+u(x)− fw(x)∥2.
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Our solution to this problem consists of two steps. Step 1: We recognize that a general and reasonable
bound for Eq. (6) without additional assumptions may not exist. To address this, we establish a
bound for a similar expression, namely the weight perturbation of margin operator, without requiring
any additional assumptions. To develop this bound, we introduce a generalization framework called
"Perturbation Bounds of Robustified Function", which can be further extended to analyze other neural
network structures. Step 2: We modify Lemma 4 to incorporate the weight perturbation bound that
we have introduced. By combining these two steps, we are able to address the challenges and provide
a robust generalization bound.

6.3 Perturbation Bounds of Robustified Function

In this section, we consider functions gw(x) parameterized by the weights of a neural network. We
mainly consider scalar value functions gw(x) : X → R. For example, gw(x) can be the ith output of
a neural network fw(x)[i], the margin operator fw(x)[y]−maxj ̸=y fw(x)[j], or the robust margin
operator.
Definition 1 (Local Perturbation Bounds). Given x ∈ X , we say gw(x) has a (L1, · · · , Ld)-local
perturbation bound w.r.t. w, if

|gw(x)− gw′(x)| ≤
d∑

i=1

Li∥Wi −W ′
i∥, (7)

where Li can be related to w, w′ and x.

Eq. (7) controls the change of the output of functions gw(x) given a slight perturbation on the weights
of DNNs. The following Lemma is the key Lemma to estimate perturbation bounds of the robustified
function, which is defined as inf∥x−x′∥≤ϵ gw(x′). The reason why we require gw(x) to be scalar
functions is that we can define their corresponding robustified functions.
Lemma 5 (Key Lemma). if gw(x) has a (A1|x|, · · · , Ad|x|)-local perturbation bound, i.e.,

|gw(x)− gw′(x)| ≤
d∑

i=1

Ai|x|∥Wi −W ′
i∥,

the robustified function inf∥x−x′∥≤ϵ gw(x′) has a (A1(|x|+ ϵ), · · · , Ad(|x|+ ϵ))-local perturbation
bound.

Proof: Let x(w) = arg inf∥x−x′∥≤ϵ gw(x′), x(w′) = arg inf∥x−x′∥≤ϵ gw′(x′), Then,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤ max{|gw(x(w))− gw′(x(w))|, |gw(x(w′))− gw′(x(w′))|}.

It is because gw(x(w))− gw′(x(w′)) ≤ gw(x(w′))− gw′(x(w′)) and gw′(x(w′))− gw(x(w)) ≤
gw′(x(w))− gw(x(w)). Therefore,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤
d∑

i=1

Ai|x(w)|∥Wi −W ′
i∥ ≤

d∑
i=1

Ai(|x|+ ϵ)∥Wi −W ′
i∥.

Lemma 5 shows that the local perturbation bound of the robustified function inf∥x−x′∥≤ϵ gw(x′)
can be estimated by the local perturbation bound of the function gw(x), which is the key to provide
robust generalization bounds.

6.4 Perturbation Bounds of Margin Operator

It should be noted that Lemma 5 is unable to provide a bound for Problem 1. In order to utilize
Lemma 5, we shift our focus to the margin operator, which is a scalar function.

Margin Operator. Following the notation of (Bartlett et al., 2017), we define the margin operator
of the true label y given x and of a pair of two classes (i, j) as

M(fw(x), y) = fw(x)[y]−max
j ̸=y

fw(x)[j], M(fw(x), i, j) = fw(x)[i]− fw(x)[j].

8



Robust Margin Operator. Similarly, we define the robust margin operator of the true label y and
of a pair of two classes (i, j) given x as

RM(fw(x), y) = inf
∥x−x′∥≤ϵ

(fw(x′)[y]−max
j ̸=y

fw(x′)[j]), and

RM(fw(x), i, j) = inf
∥x−x′∥≤ϵ

(fw(x′)[i]− fw(x′)[j]),

respectively. Based on Lemma 5, it is left to provide the form of Ai for the margin operator.

Lemma 6. Let fw be a d-layer neural networks with Relu activation. The following local perturbation
bounds hold.

1. Given x and i, j, the margin operator M(fw(x), i, j) has a (A1|x|, · · · , Ad|x|)-local perturba-
tion bound w.r.t. w, where Ai = 2e

∏d
l=1 ∥Wl∥2 / ∥Wi∥2 . And

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ 2eB

d∏
l=1

∥Wl∥2
d∑

i=1

∥Ui∥2
∥Wi∥2

. (8)

2. Given x and i, j, the robust margin operator RM(fw(x), i, j) has a locally (A1(|x| +
ϵ), · · · , Ad(|x|+ ϵ))-local perturbation bound w.r.t. w. And

|RM(fw+u(x), i, j)−RM(fw(x), i, j)| ≤ 2e(B + ϵ)

d∏
l=1

∥Wl∥2
d∑

i=1

∥Ui∥2
∥Wi∥2

. (9)

The proof of Lemma 6.1 is adopted from Lemma 2 in (Neyshabur et al., 2017b), and the proof of
Lemma 6.2 is a combination of Lemma 5 and Lemma 6.1. It is important to note that Eq. (9) provides
a bound for a similar but different form of robust weight perturbation compared to Eq. (6), indicating
that Problem 1 has not been fully resolved. However, we are fortunate that the subsequent lemma
demonstrates that Eq. (9) is sufficient to yield the final robust generalization bound.

Lemma 7. Let fw(x) : X → Rk be any predictor with parameters w, and P be any distribution
on the parameters that is independent of the training data. Then, for any γ, δ > 0, with probability
≥ 1− δ over the training set of size m, for any w, and any random perturbation u s.t.

1. Pu[maxi,j∈[k],x∈X |M(fw+u(x), i, j)−M(fw(x), i, j)| < γ
2 ] ≥

1
2 , we have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

2. Pu[maxi,j∈[k],x∈X |RM(fw+u(x), i, j)−RM(fw(x), i, j)| < γ
2 ] ≥

1
2 , we have:

R0(fw) ≤ R̂γ(fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

Remark: Lemma 7 shows that we can replace the robust weight perturbation (Eq. (6)) by the
weight perturbation of the robust margin operator. The proof is deferred to the Appendix.

Now that we have established the complete framework of the perturbation bound of robustified
function to derive the robust generalization bound, we are ready to prove Theorem 1. By following the
proof of (Neyshabur et al., 2017b), we can replicate the standard generalization bound by combining
Lemma 6.1 and 7.1. Similarly, we can obtain the robust generalization bound by combining Lemma
6.2 and 7.2. The flowchart illustrating this process is presented in Figure 2. Additionally, Lemma 5
serves as a crucial link between the robust margin operator and the margin operator, thus establishing
the connection between the robust generalization bound and the standard generalization bound.
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7 Extension of the Main Result

The provided framework allows us to extend the result to 1) general non-ℓp adversarial attacks and 2)
other neural network structures.

Extension to Non-ℓp Adversarial Attacks. Even though most of the adversarial robustness studies
focused on norm-bounded attacks, real-world attacks are not restricted in the ℓp-ball. We consider
the following general adversarial attack problem:

max
x′∈C(x)

ℓ(fw(x′), y),

where C(x) can be any reasonable constraint given the original example x. Assume that
maxx∈S maxx′∈C(x) |x′| = D. In words, the norm of the adversarial examples is bounded by
D.
Theorem 8 (Robust Generalization Bound for non-ℓp attack.). For any D, d, h, let fw : X → Rk

be a d-layer feedforward network with ReLU activations. Then, for any δ, γ > 0, with probability
≥ 1− δ over a training set of size m, for any w, we have:

Rnl
0 (fw)− R̂nl

γ (fw) ≤O

√
D2d2h ln(dh)Φ(fw) + ln dm

δ

γ2m

 ,

where Φ(fw) = Πd
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

and nl stands for non-ℓp adversarial attacks.

The proof is based on a slight modification of Lemma 5.

Extension to Other Neural Networks Structure. The framework we have established enables us
to extend the PAC-Bayesian generalization bound from standard settings to robust settings, provided
that the standard generalization bound is also obtained using this framework. Importantly, this
extension is independent of the structure of the neural networks.

ResNet. Consider a neural network: f1
w(x) = W1x and f i

w(x) = Wiϕ(f
i−1
w (x)) + f i−1

w (x).
ResNet in practice could be complicated. We use this structure for illustration.
Theorem 9 (Robust Generalization Bound for ResNet). For any D, d, h, let fw : X → Rk be a
d-layer ResNet with ReLU activations. Then, for any δ, γ > 0, with probability ≥ 1 − δ over a
training set of size m, for any w, we have:

R0(fRN)− R̂γ(fRN) ≤ O

√
(B + ϵ)2d2h ln(dh)Φ(fRN) + ln dm

δ

γ2m

 ,

where Φ(fRN) = Πd
i=1(∥Wi∥2 + 1)2

∑d
i=1

∥Wi∥2
F

(∥Wi∥2+1)2 .

8 Conclusion

Limitation. The primary limitation lies in the fact that norm-based bounds tend to be excessively
large in practical scenarios. As illustrated in Table 1, the bounds for VGG networks surpass 109 in
the experiments on CIFAR-10 dataset. The challenge at hand is how to achieve smaller norm-based
bounds in practical contexts, not only in adversarial settings but also in standard settings. This
remains an open problem.

In this paper, we introduce a PAC-Bayesian spectrally-normalized robust generalization bound. The
proof is constructed based on the framework of the perturbation bound of the robustified function.
This established framework enables us to extend the generalization bound from standard settings
to robust settings, as well as to generalize the results to encompass various adversarial attacks and
DNN architectures. The simplicity of this framework makes it a valuable tool for analyzing robust
generalization in machine learning.
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A Proof of Theorems

The proof of the key lemma (Lemma 5), which establishes a connection between the margin operator
and the robust margin operator, is presented in the main content.

We still need to demonstrate that the properties in PAC-Bayes analysis hold for both the margin
operator and the robust margin operator. The following proofs are adapted from the work of
(Neyshabur et al., 2017b), with the steps being kept independent of the (robust) margin operator. We
will begin by finishing the proofs of Lemma 6 and Lemma 7. Afterward, we will proceed to complete
the proof of Theorem 1, which is our primary result.

A.1 Proof of Lemma 6

Proof of Lemma 6.1:

For any i ∈ [k],

|fw+u(x)[i]− fw(x)[i]| ≤ ∥fw+u(x)− fw(x)∥2.

For any i, j ∈ [k],

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ 2|fw+u(x)[i]− fw(x)[i]| ≤ 2∥fw+u(x)− fw(x)∥2.

Therefore, it is left to bound ∥fw+u(x)− fw(x)∥. It is provided in (Neyshabur et al., 2017b), we
provide the proof here for reference. Let ∆i =

∣∣f i
w+u(x)− f i

w(x)
∣∣
2
. We will prove using induction

that for any i ≥ 0:

∆i ≤
(
1 +

1

d

)i
(

i∏
j=1

∥Wj∥2

)
|x|2

i∑
j=1

∥Uj∥2
∥Wj∥2

.

The above inequality together with
(
1 + 1

d

)d ≤ e proves the lemma statement. The induction base
clearly holds since ∆0 = |x− x|2 = 0. For any i ≥ 1, we have the following:

∆i+1 =
∣∣(Wi+1 + Ui+1)ϕi(f

i
w+u(x))−Wi+1ϕi(f

i
w(x))

∣∣
2

=
∣∣(Wi+1 + Ui+1)

(
ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

)
+ Ui+1ϕi(f

i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

∣∣
2
+ ∥Ui+1∥2

∣∣ϕi(f
i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣f i

w+u(x)− f i
w(x)

∣∣
2
+ ∥Ui+1∥2

∣∣f i
w(x)

∣∣
2

= ∆i (∥Wi+1∥2 + ∥Ui+1∥2) + ∥Ui+1∥2
∣∣f i

w(x)
∣∣
2
,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0.
The ℓ2 norm of outputs of layer i is bounded by |x|2 Πi

j=1 ∥Wj∥2 and by the lemma assumption we
have ∥Ui+1∥2 ≤ 1

d ∥Wi+1∥2. Therefore, using the induction step, we get the following bound:

∆i+1 ≤ ∆i

(
1 +

1

d

)
∥Wi+1∥2 + ∥Ui+1∥2 |x|2

i∏
j=1

∥Wj∥2

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

∥Wj∥2

)
|x|2

i∑
j=1

∥Uj∥2
∥Wj∥2

+
∥Ui+1∥2
∥Wi+1∥2

|x|2
i+1∏
j=1

∥Wi∥2

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

∥Wj∥2

)
|x|2

i+1∑
j=1

∥Uj∥2
∥Wj∥2

.

Then we complete the proof of Lemma 6.1. By combining Lemma 6.1 and Lemma 5, we directly
obtain Lemma 6.2.

14



A.2 Proof of Lemma 7

The proof of Lemma 7.1 and 7.2 is similar. We provide the proof of Lemma 7.2 below. The proof of
Lemma 7.1 follows the proof of Lemma 7.2 by replacing the robust margin operator by the margin
operator.

Let w′ = w + u. Let Sw be the set of perturbations with the following property:

Sw ⊆
{
w′

∣∣∣∣ max
i,j∈[k],x∈X

|RM(fw′(x), i, j)−RM(fw(x), i, j)| < γ

2

}
.

Let q be the probability density function over the parameters w′. We construct a new distribution Q̃
over predictors fw̃ where w̃ is restricted to Sw with the probability density function:

q̃(w̃) =
1

Z

{
q(w̃) w̃ ∈ Sw

0 otherwise.

Here Z is a normalizing constant and by the lemma assumption Z = P [w′ ∈ Sw] ≥ 1
2 . By the

definition of Q̃, we have:

max
i,j∈[k],x∈X

|RM(fw̃(x), i, j)−RM(fw(x), i, j)| < γ

2
.

Since the above bound holds for any x in the domain X , we can get the following a.s.:

R0(fw) ≤ R γ
2
(fw̃)

R̂ γ
2
(fw̃) ≤ R̂γ(fw)

Now using the above inequalities together with the equation (5), with probability 1 − δ over the
training set we have:

R0(fw) ≤ Ew̃

[
R γ

2
(fw̃)

]
≤ Ew̃

[
R̂ γ

2
(fw̃)

]
+ 2

√
2(KL (w̃∥P ) + ln 2m

δ )

m− 1

≤ R̂γ(fw) + 2

√
2(KL (w̃∥P ) + ln 2m

δ )

m− 1

≤ R̂γ(fw) + 4

√
KL (w′∥P ) + ln 6m

δ

m− 1
,

The last inequality follows from the following calculation.

Let Sc
w denote the complement set of Sw and q̃c denote the density function q restricted to Sc

w and
normalized. Then,

KL(q||p) = ZKL(q̃||p) + (1− Z)KL(q̃c||p)−H(Z),

where H(Z) = −Z lnZ− (1−Z) ln(1−Z) ≤ 1 is the binary entropy function. Since KL is always
positive, we get,

KL(q̃||p) = 1

Z
[KL(q||p) +H(Z))− (1− Z)KL(q̃c||p)] ≤ 2(KL(q||p) + 1).

A.3 Proof of Theorem 1

Given the local perturbation bound of the robust margin operator and Lemma 5, the proof of Theorem
1 follows the procedure of the proof of Theorem 2.

Let β =
(∏d

i=1 ∥Wi∥2
)1/d

and consider a network with the normalized weights W̃i =
β

∥Wi∥2
Wi.

Due to the homogeneity of the ReLU, we have that for feedforward networks with ReLU activations
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fw̃ = fw, and so the (empirical and expected) loss (including margin loss) is the same for w and w̃.

We can also verify that
(∏d

i=1 ∥Wi∥2
)
=

(∏d
i=1

∥∥∥W̃i

∥∥∥
2

)
and ∥Wi∥F

∥Wi∥2
=

∥W̃i∥
F

∥W̃i∥
2

, and so the excess

error in the Theorem statement is also invariant to this transformation. It is therefore sufficient to
prove the Theorem only for the normalized weights w̃, and hence we assume w.l.o.g. that the spectral
norm is equal across layers, i.e. for any layer i, ∥Wi∥2 = β.

Choose the distribution of the prior P to be N (0, σ2I), and consider the random perturbation
u ∼ N (0, σ2I), with the same σ, which we will set later according to β. More precisely, since the
prior cannot depend on the learned predictor w or its norm, we will set σ based on an approximation
β̃. For each value of β̃ on a pre-determined grid, we will compute the PAC-Bayes bound, establishing
the generalization guarantee for all w for which |β − β̃| ≤ 1

dβ, and ensuring that each relevant value
of β is covered by some β̃ on the grid. We will then take a union bound over all β̃ on the grid. For now,
we will consider a fixed β̃ and the w for which |β − β̃| ≤ 1

dβ, and hence 1
eβ

d−1 ≤ β̃d−1 ≤ eβd−1.

Since u ∼ N (0, σ2I), we get the following bound for the spectral norm of Ui (Tropp, 2012):

PUi∼N(0,σ2I) [∥Ui∥2 > t] ≤ 2he−t2/2hσ2

.

Taking a union bond over the layers, we get that, with probability ≥ 1
2 , the spectral norm of the

perturbation Ui in each layer is bounded by σ
√
2h ln(4dh). Plugging this spectral norm bound into

the Lipschitz of robust margin operator we have that with probability at least 1
2 ,

max
i,j∈[k],x∈X

|RM(fw′(x), i, j)−RM(fw(x), i, j)| (10)

≤2e(B + ϵ)βd
∑
i

∥Ui∥2
β

=e(B + ϵ)βd−1
∑
i

∥Ui∥2 ≤ e2d(B + ϵ)β̃d−1σ
√
2h ln(4dh) ≤ γ

2
, (11)

where we choose σ = γ

42d(B+ϵ)β̃d−1
√

h ln(4hd)
to get the last inequality, the first inequality is Lemma

6.2. The second inequality is the tail bound above. Hence, the perturbation u with the above value of
σ satisfies the assumptions of the Lemma 4.

We now calculate the KL-term in Lemma 4 with the chosen distributions for P and u, for the above
value of σ.

KL(w + u||P )

≤|w|2

2σ2
=

422d2(B + ϵ)2β̃2d−2h ln(4hd)

2γ2

d∑
i=1

∥Wi∥2F

≤O

(
(B + ϵ)2d2h ln(dh)

β2d

γ2

d∑
i=1

∥Wi∥2F
β2

)

≤O

(
(B + ϵ)2d2h ln(dh)

Πd
i=1 ∥Wi∥22

γ2

d∑
i=1

∥Wi∥2F
∥Wi∥22

)
.

Hence, for any β̃, with probability ≥ 1− δ and for all w such that, |β − β̃| ≤ 1
dβ, we have:

R0(fw) ≤ R̂γ(fw) +O


√√√√ (B + ϵ)2d2h ln(dh)Πd

i=1 ∥Wi∥22
∑d

i=1

∥Wi∥2F
∥Wi∥22

+ ln m
δ

γ2m

 . (12)

For other ℓp attacks, the results are directly obtained by Lemma 4 of (Xiao et al., 2022a).

A.4 Proof of Theorem 8

It is based on a slight modification of the key lemma. if gw(x) has a (A1|x|, · · · , Ad|x|)-local
perturbation bound, i.e.,

|gw(x)− gw′(x)| ≤
d∑

i=1

Ai|x|∥Wi −W ′
i∥,
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the robustified function infx′∈C(x) gw(x′) has a (A1D, · · · , AdD)-local perturbation bound.

Proof: Let
x(w) = arg inf

x′∈C(x)
gw(x′),

x(w′) = arg inf
x′∈C(x)

gw′(x′),

Then,
| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤

max{|gw(x(w))− gw′(x(w))|, |gw(x(w′))− gw′(x(w′))|}.
It is because gw(x(w))− gw′(x(w′)) ≤ gw(x(w′))− gw′(x(w′)) and gw′(x(w′))− gw(x(w)) ≤
gw′(x(w))− gw(x(w)). Therefore,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)|

≤
d∑

i=1

Ai|x(w)|∥Wi −W ′
i∥

≤
d∑

i=1

AiD∥Wi −W ′
i∥.

Therefore, combining the local perturbation bound and Lemma 7.2, we complete the proof.

A.5 Proof of Theorem 9

As shown in the proof of Lemma 6, it is left to bound ∥fw+u(x) − fw(x)∥. Let ∆i =∣∣f i
w+u(x)− f i

w(x)
∣∣
2
. We will prove using induction that for any i ≥ 0:

∆i ≤
(
1 +

1

d

)i
(

i∏
j=1

(∥Wj∥2 + 1)

)
|x|2

i∑
j=1

∥Uj∥2
(∥Wj∥2 + 1)

.

The above inequality together with
(
1 + 1

d

)d ≤ e proves the lemma statement. The induction base
clearly holds since ∆0 = |x− x|2 = 0. For any i ≥ 1, we have the following:

∆i+1 =
∣∣(Wi+1 + Ui+1)ϕi(f

i
w+u(x))−Wi+1ϕi(f

i
w(x)) + (f i

w+u(x)− f i
w(x))

∣∣
2

=
∣∣(Wi+1 + Ui+1)

(
ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

)
+ Ui+1ϕi(f

i
w(x)) + (f i

w+u(x)− f i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

∣∣
2
+ ∥Ui+1∥2

∣∣ϕi(f
i
w(x))

∣∣
2
+∆i

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣f i

w+u(x)− f i
w(x)

∣∣
2
+ ∥Ui+1∥2

∣∣f i
w(x)

∣∣
2
+∆i

= ∆i (∥Wi+1∥2 + ∥Ui+1∥2 + 1) + ∥Ui+1∥2
∣∣f i

w(x)
∣∣
2
,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0.
The ℓ2 norm of outputs of layer i is bounded by |x|2 Πi

j=1(∥Wj∥2+1) and by the lemma assumption
we have ∥Ui+1∥2 ≤ 1

d ∥Wi+1∥2. Therefore, using the induction step, we get the following bound:

∆i+1 ≤ ∆i

(
1 +

1

d

)
(∥Wi+1∥2 + 1) + ∥Ui+1∥2 |x|2

i∏
j=1

(∥Wj∥2 + 1)

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

(∥Wj∥2 + 1)

)
|x|2

i∑
j=1

∥Uj∥2
(∥Wj∥2 + 1)

+
∥Ui+1∥2

(∥Wi+1∥2 + 1)
|x|2

i+1∏
j=1

(∥Wi∥2 + 1)

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

(∥Wj∥2 + 1)

)
|x|2

i+1∑
j=1

∥Uj∥2
(∥Wj∥2 + 1)

.

Therefore, the margin operator of ResNet is locally (A1|x|, · · · , Ad|x|)-Lipschitz w.r.t. w, where

Ai = 2e

d∏
l=1

(∥Wl∥2 + 1)/(∥Wi∥2 + 1).
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For any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w, we have:

L0(fRN)− L̂γ(fRN)

≤O

√
B2d2h ln(dh)Φ(fRN) + ln dm

δ

γ2m

 ;

By a combination of Lemma 5 and Lemma 7, for any δ, γ > 0, with probability ≥ 1 − δ over a
training set of size m, for any w, we have:

R0(fRN)− R̂γ(fRN)

≤O

√
(B + ϵ)2d2h ln(dh)Φ(fRN) + ln dm

δ

γ2m

 ,

where Φ(fRN) = Πd
i=1(∥Wi∥2 + 1)2

∑d
i=1

∥Wi∥2
F

(∥Wi∥2+1)2 .

B PAC-Bayesian Framework for Robust Generalization

PAC-Bayes analysis (McAllester, 1999) is a framework to provide generalization guarantees for
randomized predictors drawn from a learned distribution Q (as opposed to a single predictor) that
depends on the training data set. The expected generalization gap over the posterior distribution Q
can be bounded in terms of the Kullback-Leibler divergence between the prior distribution P and the
posterior distribution Q, KL(P∥Q).

A direct corollary of Eq. (5) is that, the expected robust error of fw+u can be bounded as follows

Eu[R
adv
0 (fw+u)]

≤ Eu[R̂
adv
0 (fw+u)] + 2

√
2
(
KL (w + u∥P ) + ln 2m

δ

)
m− 1

.
(13)

By a slight modification of Lemma 4, the following lemma given in the work of (Farnia et al., 2018)
shows how to obtain an robust generalization bound.
Lemma 10 (Farnia et al. (2018)). Let fw(x) : X → Rk be any predictor (not necessarily a neural
network) with parameters w, and P be any distribution on the parameters that is independent of the
training data. Then, for any γ, δ > 0, with probability ≥ 1− δ over the training set of size m, for any
w, and any random perturbation u s.t. Pu[maxx∈X

∣∣fw+u(x+ δadvw+u(x))− fw(x+ δadvw (x))
∣∣
∞

< γ
4 ] ≥

1
2 , we have:

Radv
0 (fw) ≤ R̂adv

γ (fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

Table 1: Comparison of the empirical results of the standard generalization bound and robust
generalization in the experiment of training MNIST, CIFAR-10 and CIFAR-100 on VGG networks.

MNIST CIFAR-10 CIFAR-100
Standard Generalization Gap 1.13% 9.21% 23.61%
Bound in Theorem 2 (Neyshabur et al., 2017b) 1.33× 104 1.34× 109 3.41× 1011

Robust Generalization Gap 9.67% 51.41% 78.82%
Bound in Theorem 3 (Farnia et al., 2018) NA NA NA
Bound in Theorem 1 (Ours) 3.23× 104 5.97× 1010 1.66× 1013

C Empirical Study of the Generalization Bounds

The spectral complexity Φ(fw) induced by adversarial training is significantly larger. We conducted
experiments training MNIST, CIFAR-10, and CIFAR-100 datasets using VGG-19 networks, following
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the training parameters described in (Neyshabur et al., 2017a).4 The results are presented in Table
1. It is evident that adversarial training can induce a larger spectral complexity, resulting in a larger
generalization bound.5 We refer the readers to our previous work (Xiao et al., 2022a) for more
experiments results about norm-based complexity of adversarially-trained models. These experiments
align with the findings presented by (Bartlett et al., 2017), indicating: 1) spectral complexity scales
with the difficulty of the learning task, and 2) the generalization bound is sensitive to this complexity.

4The settings of standard training follows the experiments in https://github.com/bneyshabur/
generalization-bounds.

5The settings of adversarial training follows the experiments in https://github.com/JiancongXiao/
Adversarial-Rademacher-Complexity.
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