
Efficient Symbolic Policy Learning with Differentiable
Symbolic Expression

Jiaming Guo1 Rui Zhang1 Shaohui Peng2 Qi Yi1,3,4 Xing Hu1,5

Ruizhi Chen2 Zidong Du1,5 Xishan Zhang1,4 Ling Li2,6 Qi Guo1 Yunji Chen1,6 ∗
1 SKL of Processors, Institute of Computing Technology, CAS, Beijing, China

2 Intelligent Software Research Center, Institute of Software, CAS, Beijing, China
3 University of Science and Technology of China, USTC, Hefei, China

4 Cambricon Technologies
5 Shanghai Innovation Center for Processor Technologies, SHIC, Shanghai, China

6 University of Chinese Academy of Sciences, UCAS, Beijing, China
{guojiaming, zhangrui}@ict.ac.cn, pengshaohui@iscas.ac.cn, yiqi@mail.ustc.edu.cn

huxing@ict.ac.cn, ruizhi@iscas.ac.cn {duzidong,zhangxishan}@ict.ac.cn
liling@iscas.ac.cn, {guoqi,cyj}@ict.ac.cn

Abstract

Deep reinforcement learning (DRL) has led to a wide range of advances in sequen-
tial decision-making tasks. However, the complexity of neural network policies
makes it difficult to understand and deploy with limited computational resources.
Currently, employing compact symbolic expressions as symbolic policies is a
promising strategy to obtain simple and interpretable policies. Previous symbolic
policy methods usually involve complex training processes and pre-trained neural
network policies, which are inefficient and limit the application of symbolic poli-
cies. In this paper, we propose an efficient gradient-based learning method named
Efficient Symbolic Policy Learning (ESPL) that learns the symbolic policy from
scratch in an end-to-end way. We introduce a symbolic network as the search space
and employ a path selector to find the compact symbolic policy. By doing so we
represent the policy with a differentiable symbolic expression and train it in an
off-policy manner which further improves the efficiency. In addition, in contrast
with previous symbolic policies which only work in single-task RL because of
complexity, we expand ESPL on meta-RL to generate symbolic policies for unseen
tasks. Experimentally, we show that our approach generates symbolic policies
with higher performance and greatly improves data efficiency for single-task RL.
In meta-RL, we demonstrate that compared with neural network policies the pro-
posed symbolic policy achieves higher performance and efficiency and shows the
potential to be interpretable.

1 Introduction

With the development of deep neural networks as general-purpose function approximators, deep
reinforcement learning (DRL) has achieved impressive results in solving sequential decision-making
tasks [1, 2]. In DRL, the policies are commonly implemented as deep neural networks which
involve tremendous parameters and thousands of nested non-linear operators. Despite the excellent
representation ability, the neural network (NN) is very complex, making it difficult to understand,
predict the behavior and deploy with limited computational resources.

∗Corresponding Author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

With the high academic and industrial interest in interpretable and simple RL policy, some works
[3, 4, 5] propose to learn the symbolic policy which is a symbolic expression composing variables,
constants, and various mathematical operators. The symbolic policy has a succinct form and low
complexity which is considered to be more interpretable and easily deployable in real-world settings.
[3] and [4] approximate a symbolic policy with genetic programming but are limited to simple tasks
with provided or learned world model and suffered from performance decrease compared with NN
policies. DSP [5], the state-of-the-art symbolic policy learning method, removes some limitations by
employing a recurrent neural network(RNN) as an agent to generate the symbolic policy and trains
the RNN with reinforcement learning. However, this method has low data efficiency and requires
hundreds of times of environment interactions compared with traditional reinforcement learning
algorithms. For environments with multidimensional action spaces, they need a pre-trained NN policy
as the anchor model, which brings additional complexity and may limit the final performance. In
addition, the complexity of these algorithms makes it difficult to apply them to complex reinforcement
learning tasks, e.g. meta-reinforcement learning.

In this paper, we propose an efficient gradient-based learning method called ESPL (Efficient Symbolic
Policy Learning) for learning the symbolic policy from scratch in an end-to-end differentiable way.
To express the policy in a symbolic form, the proposed ESPL consists of a symbolic network and a
path selector. The symbolic network can be considered as a full set of candidate symbolic policies.
In the symbolic network, the activation functions are composed of various symbolic operators and
the parameters can be regarded as the constants in the symbolic expression. The path selector
chooses the proper compact symbolic form from the symbolic network by adaptively masking out
irrelevant connections. We design all these modules to be differentiable and represent the policy with
a differentiable symbolic expression. Then we can efficiently train the symbolic policy in an off-policy
manner and the symbolic policy is directly updated via gradient descent without an additional agent.
Experimentally, on several benchmark control tasks, our algorithm is able to produce well-performing
symbolic policy while requiring thousands of times fewer environmental interactions than DSP.

Meta-reinforcement learning (meta-RL) is one of the most important techniques for RL applications,
which improves the generalization ability on unseen tasks by learning the shared internal structure
across several tasks. We raise the question: is it possible to exploit the benefit of the symbolic policy
and meta-RL to generate symbolic policies for unseen tasks? While previous symbolic policy methods
are too complex to be combined with meta-RL, we combine the proposed ESPL with context-based
meta-RL and develop the contextual symbolic policy (CSP). Context-based meta-RL [6, 7, 8, 9] is
the most promising meta-RL method which forces the policy to be conditional on context variables
that are formed by aggregating experiences. In the CSP framework, the path selector decides the
symbolic form based on the context variables. We also involve a parameter generator to generate the
constants of the symbolic policy based on the context variables. We build the training process on
top of the context-based meta-RL method PEARL [7]. The proposed CSP can generate symbolic
policies for unseen tasks given a few trajectories. We find that compared with neural network policies,
contextual policies produced by CSP achieve higher generalization performance, efficiency, and show
the potential to be interpretable.

The contributions of this paper are three-fold. First, we introduce a novel gradient-based symbolic
policy learning algorithm named ESPL that learns the symbolic policy efficiently from scratch. Next,
with ESPL we develop the contextual symbolic policy for meta-RL, which can produce symbolic
policies for unseen tasks. Finally, we summarize our empirical results which demonstrate the gain of
ESPL both in single-task RL and meta-RL. Importantly, we find empirically that contextual symbolic
policy improves the generalization performance in PEARL.

2 Related Works

2.1 Symbolic Policy

The emergence of symbolic policy is partly credited to the development of symbolic regression
which is applicable in wide fields, e.g. discovering physics lows [10] and automated CPU design
[11]. Symbolic regression aims to find symbolic expressions to best fit the dataset from an unknown
fixed function. A series of methods [12, 13, 14] employ genetic programming (GP) to evolve the
symbolic expressions. With the development of neural network and gradient descent, some methods
[15, 16, 17] involve deep learning for symbolic regression. Some works employ symbolic regression

2

sin cos log idexpexp

Fully Connected Layer

mul div

sin cos log idexpexp

Fully Connected Layer

mul divsin cos log idexp

Fully Connected Layer

mul div

sin cos log idexpexp

Fully Connected Layer

mul divsin cos log idexp

Fully Connected Layer

mul div

Fully Connected Layer

Fully Connected Layer

mulmul mul

Fully Connected Layer

divdiv div

cos

Fully Connected Layer

sinsin sinsin cos expexp expexp log log

Fully Connected Layer

div mul expexp log

Fully Connected Layer

. . .

...
...

...

Plain Densely connected Arranged Densely connected

sin cos log expexp

Fully Connected Layer

mul div

sin cos log expexp

Fully Connected Layer

mul divsin cos log exp

Fully Connected Layer

mul div

sin cos log expexp

Fully Connected Layer

mul divsin cos log exp

Fully Connected Layer

mul div

Fully Connected Layer

. . .

sin cos log exp

Fully Connected Layer

mul div

sin cos log exp

Fully Connected Layer

mul div

sin cos log exp

Fully Connected Layer

mul div

Fully Connected Layer

. . .

Figure 1: Example network structures for the symbolic network. Left: the plain structure. Middle: a symbolic
work with dense connections. Right: a symbolic network with dense connections and arranged operators.

methods to obtain symbolic policies for efficiency and interpretability. [3] and [4] aim to approximate
a symbolic policy with genetic programming but require a given dynamics equations or a learned
world model. DSP [5], following the symbolic regression method DSR [16], employs a recurrent
neural network to generate the symbolic policy. They use the average returns of the symbolic policies
as the reward signal and train the neural network with risk-seeking policy gradients. However, for
environments with multidimensional action spaces, they need a pre-trained neural network policy as
the anchor model. Besides, in this framework, a single reward for reinforcement learning involves
many environmental interactions, which is inefficient and makes it hard to combine the symbolic
policy with meta-RL. Recently, some works [18, 19] attempt to distill an interpretable policy from a
pre-trained neural network policy but have a problem of objective mismatch [5]. Different from the
above-mentioned methods, we propose an efficient gradient-based framework to obtain the symbolic
policy without any pre-trained model.

2.2 Meta-Reinforcement Learning

Meta-RL extends the notion of meta-learning [20, 21, 22] to the context of reinforcement learning.
Some works [23, 24, 25] aim to meta-learn the update rule for reinforcement learning. We here
consider another research line of works that meta-train a policy that can be adapted efficiently to a new
task. Several works [26, 27, 28] learn an initialization and adapt the parameters with policy gradient
methods. However, these methods are inefficient because of the on-policy learning process and the
gradient-based updating during adaptation. Recently, context-based meta-RL [6, 7, 29] achieve higher
efficiency and performance. For example, PEARL [7] proposes an off-policy meta-RL method that
infers probabilistic context variables with experiences from new environments. Hyper [29] proposes
a hypernetwork where the primary network determines the weights of a conditional network and
achieves higher performance. Most of the subsequent context-based meta-RL methods [30, 31, 32]
attempt to achieve higher performance by improving the context encoder or the exploration strategy.
In this paper, we combine the symbolic policy with meta-RL to form the CSP and consequently
improve the efficiency, interpretability and performance of meta-RL. As far as we know, we are the
first to learn the symbolic policy for meta-RL.

Our method is also related to some neural architecture search methods and programmatic RL methods.
We provide an extended literature review in Appendix E.

3 Gradient-based Symbolic Policy Learning

This section introduces the structure of the proposed ESPL, an end-to-end differentiable system. The
proposed ESPL consists of two main components: 1) the Symbolic Network, which expresses the
policy in a symbolic form, and 2) the Path Selector, which selects paths from the symbolic network
to form compact symbolic expressions.

3

3.1 Densely Connected Symbolic Network

To construct a symbolic policy in an end-to-end differentiable form, we propose the densely connected
symbolic network SN as the search space for symbolic policies. Inspired by previous differentiable
symbolic regression methods [17, 33], we employ a neural network with specifically designed units,
which is named symbolic network. We now introduce the basic symbolic network named plain
structure which is illustrated in Figure 1. The symbolic network is a feed-forward network with L
layers. Different from traditional neural networks, the activation functions of the symbolic network
are replaced by symbolic operators, e.g. trigonometric and exponential functions. For the lth layer
of the symbolic network, we denote the input as xl−1 and the parameters as weights wl and biases
bl. These parameters serve as the constants in a symbolic expression. We assume that the lth layer
contains m unary functions {g11 , · · · , g1m} and n binary functions {g21 , · · · , g2n}. Firstly, the input of
the lth layer will be linearly transformed by a fully-connected layer:

yl = Fl(xl−1) = wlxl−1 + bl. (1)

The fully-connected layer realizes the addition and subtraction in symbolic expressions and produces
m + 2n outputs. Then the outputs will go through the symbolic operators and be concatenated to
form the layer output:

Gl(yl) = [g11(y
1
l), · · · , g1m(yml), g21(y

m+1
l , ym+2

l), · · · , g2n(ym+2n−1
l , ym+2n

l)] (2)

Then the lth layer of the symbolic network can be formulated as SN l : xl = Gl(Fl(xl−1)).
Following the last layer, a fully-connected layer will produce a single output. For multiple action
dimensions, we construct a symbolic network for each dimension of action.

Symbolic operator. The symbolic operators are selected from a library, e.g.
{sin, cos, exp, log,×,÷} for continuous control tasks. For the plain structure, we include
an identical operator which retains the output of the previous layer to the next layer in the library.
To find the symbolic policy via gradient descent, it is critical to ensure the numerical stability of
the system. However, this is not natural in a symbolic network. For example, the division operator
and the logarithmic operator will create a pole when the input goes to zero and the exponential
function may produce a large output. Thus, we regularize the operators and employ a penalty term
to keep the input from the "forbidden" area. For example, the logarithmic operator y = log(x)
returns log(x) for x > boundlog and log(boundlog) otherwise and the penalty term is defined as
Llog = max(boundlog − x, 0). The division operator c = a/b returns a/b for b > bounddiv and
0 otherwise. The penalty term is defined as Ldiv = max(bounddiv − b, 0). The details of all
regularized operators can be found in the Appendix. To ensure the numerical stability, we involve a
penalty loss function Lpenalty which is the sum of the penalty terms of all N regularized operators in
symbolic networks:

Lpenalty =

i=N∑
i=1

Lgi(xi). (3)

Dense connectivity. We introduce dense connections [34] in the symbolic network, where inputs
of each layer are connected to all subsequent layers. Consequently, the lth layer of the symbolic
network will receive the environment state s and the output of all preceding layers x1, · · · , xl−1:
xl = Gl(Fl([s, x1, · · · , xl−1])). The dense connections improve the information flow between layers
and benefit the training procedure. Besides, with these dense skip connections across layers, the
combination of symbolic operators becomes more flexible, making the symbolic network more likely
to contain good symbolic policies. In addition, we can flexibly arrange the position of operators. For
example, if we only arrange the sin operator in the last layer but the oracle expression contains terms
like sin(s0), the input of the sin operator can still be from the original state because of the dense
connections. We give an example of arranged operators in Figure 1 which we use for all tasks in the
experiments. In this symbolic network, we heuristically involve more multiplication and division
operators at shallow layers to provide more choice of input processed by simple operators for complex
operations such as sines and cosines.

3.2 The Path Selector

The symbolic network serves as a full set of the search space of symbolic expressions. To select
the proper paths from the symbolic network to produce a compact symbolic policy, we reduce the

4

number of paths involved in the final symbolic policy then proper paths remain and redundant paths
are removed. This can be naturally realized by minimizing the L0 norm of the symbolic network
weights. As the L0 norm is not differentiable, some methods [17, 33] employ L1 norm instead
of L0 norm. However, L1 will penalize the magnitude of the weights and result in performance
degradation. Inspired by the probability-based sparsification method [35, 36, 37], we propose a
probabilistic path selector which selects paths from the network by multiplying a binary mask on the
weights of the symbolic network w. The binary mask mi is sampled from the Bernoulli distribution:
mi ∼ Bern(pi), where pi ∈ [0, 1] serves as the probability. Then the final weights of the symbolic
network are wm = w

⊗
m, where

⊗
is the element-wise multiply operation. Consequently, to

get a compact symbolic expression, we only need to minimize the expectation of the L0 norm of
the binary mask Em∼Bern(m|p) ∥m∥0 =

∑
pi, without penalizing the magnitude of the weights.

During the process of collecting data or testing, we can directly sample the binary mask from the
Bernoulli distribution. Then we can obtain the symbolic policy πsym by removing paths with zero
weight and simplifying the symbolic expression.

However, the sampling process does not have a well-defined gradient. Thus, for the training process
we build up our sampling function with the gumbel-softmax trick [38]. As the mask m is binary
categorical variables, we replace the softmax with sigmoid and named the sampling function as
gumbel sigmoid. The gumbel sigmoid function can be formulated as:

mgs = sigmoid(
log(p

1−p) + g1 − g0

τ
), (4)

where g1 and g0 are i.i.d samples drawn from Gumbel(0, 1). τ is the temperature annealing
parameter. Note that mgs is still not a binary mask. To obtain a binary mask but maintain the
gradient, we employ the Straight-Through (ST) trick: m = 1≥0.5(mgs) + mgs − mgs, where
1≥0.5(x) ∈ {0, 1}n is the indicator function and the overline means stopping the gradient. During
training, we do not remove paths with zero weight and directly use symbolic network SN (wm) as
the policy.

We also involve a loss function Lselect to regularize the sum of probabilities p which is the expectation
of the L0 norm of the binary mask m. To limit the minimum complexity of symbolic policies, we
involve the minimum L0 norm defined as lmin. Then the loss function can be defined as:

Lselect = max(
∑

pi − lmin, 0). (5)

3.3 Implementation

In practice, we build our off-policy learning framework on top of the soft actor-critic algorithm (SAC)
[39]. We employ the neural network Q(s, a) parameterized by θQ as the critic (state-action-value
function). To construct a stochastic policy, we also employ a small neural network F (s) parameterized
by θF to output the standard deviation. Note that Q(s, a) and F (s) are only used during training. We
optimize the weights w, the biases b of the symbolic network, the probabilities p in the path selector,
and θF with the combination of actor loss from SAC, Lpenalty and Lselect. We update θQ with the
critic loss from SAC. During training, we decrease the temperature parameter τ of gumbel sigmoid
linearly and decrease the lmin from the count of the original parameters w to a target value with a
parabolic function. We summarize the training procedure and give the pseudo-code in Appendix C.

4 Contextual Symbolic Policy for Meta-RL

4.1 Background

In the field of meta-reinforcement learning (meta-RL), we consider a distribution of tasks p(κ) with
each task κ ∼ p(κ) modeled as a Markov Decision Process(MDP). In common meta-RL settings,
tasks share similar structures but differ in the transition and/or reward function. Thus, we can describe
a task κ with the 6-tuple (S,A,Pκ, ρ0, rκ, γ). In this setting, S ⊆ Rn is a set of n-dimensional
states, A ⊆ Rm is a set of m-dimensional actions, Pκ : S × A × S → [0, 1] is the state transition
probability distribution, ρ0 : S → [0, 1] is the distribution over initial states, rκ : S ×A → R is the
reward function, and γ ∈ (0, 1) is the per timestep discount factor. Following the setting of prior
works [7, 8], we assume there are M meta-training tasks {κm}m=1,··· ,M sampled from the training

5

Table 1: Symbolic policies produced by ESPL.

Environment ESPL
CartPole a1 = 17.17s3 + 1.2s4

MountainCar a1 = 8.06sin(9.73s2 − 0.18) + 1.26

Pendulum a1 = −(4.27s1 + 0.62)(1.9s2 + 0.42s3)

InvDoublePend a1 = 12.39s5 − 4.48sin(0.35s2 + 4.51s5 + 1.23s6 + 7.97s8 + 1.23s9 + 0.08) + 0.34

InvPendSwingup a1 = 4.33sin(0.17 ∗ s1 + 0.14s2 + 0.49s3 + 1.76s4 + 0.33s4 − 0.29)− 0.65

LunarLander a1 = (0.14− 2.57s4)(0.48− 0.68log(0.5s2))− 1.44

a2 = −5.72s3 + 4.42sin(2.54s5 + 0.03)− 0.4− −6.5s6−2.13cos(0.78sin(4.15s1−0.05)+1.98)−0.98
4.71∗s7+0.77

Hopper
a1 = −0.32s12 − 1.46s8 − 0.83s10 − 0.11sin(0.26s11 − 5s13 − 2.57s6 + 0.38)− 0.92

a2 = −0.52s12 − 3.63s4 − 4.58s8 + 0.68exp(−7.31s11 − 2.5s13) + 0.58 + −1.62s6+3.89s9−4.7
1.33−0.44s13

a3 = 0.83 + 1.12s1−0.47−0.1exp((10.05s1−1.76s6+1.65)(0.22s13−1.88s14+1.32))(5.59∗s1−0.08)
0.23+0.21exp((10.05s1−1.76s6+1.48)(0.22s13−1.88s14+1.32))

BipedalWalker

a1 = 1.45− 2.94cos(−0.73s5 + (0.06− 1.06s3)(−1.33s12 − 0.28s6 + 0.41) + 1.32)
a2 = 7.53exp(0.4s1 − 0.13s6 − 0.52sin(1.5s7 − 0.24))− 11.1
a3 = − 1.07s6+0.41

4.56s9+(0.2−3.01s21)(−1.8s1−0.03s7−0.96)−0.54 + 0.55

a4 = −0.28 + −3.32s12+5.64s3+0.29s22−2.46
3.26s23−1.45

Table 2: Performance comparison of symbolic policies and neural policies for seven different DRL
algorithms.

Environment DDPG TRPO A2C PPO ACKTR SAC TD3 Regression DSP ESPL
Cartpole 1000 1000 1000 1000 1000 1000 1000 211.82 1000 1000
Mountaincat 95.36 93.6 93.97 93.76 93.79 94.68 93.87 95.16 99.11 94.02
Pendulum -155.6 -145.49 -157.59 -160.14 -201.57 -154.82 -155.06 -1206.9 -155.4 -151.72
InvDoublePend 9347.1 9188.43 9359.81 9356.59 9359.06 9359.92 9359.25 637.2 9149.9 9359.9
InvPendSwingup 891.48 892.9 254.71 890.1 890.11 891.32 892.25 -19.21 891.9 890.36
LunarLander 266.05 265.26 238.51 269.65 271.53 276.92 272.13 56.08 261.36 283.56
Hopper 1678.84 2593.56 2104.98 2586.56 2583.88 2613.16 2743.9 47.35 2122.4 2442.48
BipedalWalker 209.42 312.14 291.79 287.43 309.57 308.31 314.24 -110.77 311.78 309.43

Worst Rank 9 10 9 9 9 6 7 10 9 6
Average Rank 5.5 4.125 6.25 6.125 5.375 3 2.875 9.125 4.625 3.5

tasks distribution ptrain(κ). For meta-testing, the tasks are sampled from the test tasks distribution
ptest(κ). The two distributions are usually the same in most settings but can be different in out-
of-distribution(OOD) settings. We denote context cT = {(s1, a1, s′1, r1), · · · , (sT , aT , s′T , rT)}
as the collected experiences. For context-based meta-RL, the agent encodes the context into a
latent context variable z with a context encoder q(z|c) and the policy π is conditioned on the
current state and the context variable z. During adaptation, the agent first collects experiences
for a few episodes and then updates the context variables. Then the contextual policy is able to
adapt to new tasks according to the context variables. The meta-RL objective can be formulated
as max

π
Eκ∼p(κ)[EcT∼π[R(κ, π, q(z|cT))]], where R(κ, π, q(z|cT)) denotes the expected episode

return.

4.2 Incorporating the Context Variables

To quickly adapt to new tasks, we need to incorporate the context variables z ∼ q(z|cκ) to the
symbolic network and produce different symbolic policies for different tasks κ sampled from the task
distribution p(κ). To condition the parameters of the symbolic expression on the context variable, we
propose a parameter generator: w, b = Φ(z) which is a neural network to produce the parameters of
symbolic networks for all action dimensions based on the context variables. We also involve a neural
network to generate the probabilities of the path selector: p = Ψ(z). Then the contextual symbolic
network can generate different symbolic expression forms according to the context variables.

6

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn

Hopper-params

PEARL
Hyper
CSP

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps

100

200

300

400

500

600

700

800

re
tu

rn

Walker2d-params

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
−600

−500

−400

−300

−200

−100

0

re
tu

rn

Cheetah-vel-ood

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
−300

−200

−100

0

100

200

300

re
tu

rn

Lunarlander-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

250

500

750

1000

1250

1500

1750

2000

re
tu

rn

InvDoublePend-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

50

100

150

200

re
tu

rn

Cartpole-fl-ood

Figure 2: Comparison for different kinds of contextual policies on meta-RL tasks. We show the mean
and standard deviation of returns on test tasks averaged over five runs.

4.3 Training Schedule

We train the CSP in an off-policy manner. For meta-training epoch t, the agent first collects
experiences of different training tasks into the corresponding buffer Bκi

for several iterations. At
the beginning of each data collection iteration, we sample context cT from buffer Bκi

and sample
context variables z ∼ q(z|cT) as PEARL [7] does. The difference is that we also sample the symbolic
policy with Φ(z) and Ψ(z) and use the sampled policy for the following steps of the iteration. For
training, we sample RL batch and context from the buffer and optimize the context encoder q(z|cT) to
recover the state-action value function. For each training step, we sample a new symbolic policy. We
employ the soft actor-critic to optimize the state-action value function. For the parameter generator
and the path selector, we employ Lselect and Lpenalty in addition to the SAC loss. During training,
we decrease the temperature parameter τ and lmin just like single-task RL. More details and the
pseudo-code can be found in Appendix C.

5 Experiment

5.1 Experimental Settings

Environment. For single-task RL, we evaluated our method on benchmark control tasks which
are presented in DSP: (1) CartPole; (2) MountainCar; (3) Pendulum; (4) InvertedDoublePendulum;
(5) InvertedPendulumSwingup; (6) LunarLander; (7) Hopper; (8) BipedalWalker. For meta-RL,
we evaluate the CSP on several continuous control environments which are modified from the
environments of OpenAI Gym [40] to be meta-RL tasks similar to [7, 9, 30]. These environments
require the agent to adapt across dynamics (random system parameters for Hopper-params, Walker2d-
params, Lunarlander-params, InvDoublePend-params, different force magnitude and pole length for
Cartpole-fl-ood) or reward functions (target velocity for Cheetah-vel-ood).

Methods. In the single-task RL experiments, for the neural network policies, we compare our method
with seven state-of-the-art DRL algorithms: DDPG, TRPO, A2C, PPO, ACKTR, SAC, and TD3
[41, 42, 43, 44, 45, 39, 46]. The results are obtained with the tuned pretrained policies from an
open-source repository Zoo [47]. For symbolic policies, we include the Regression method and DSP.
The Regression policies are produced with two steps: 1) generate a dataset of observation action
trajectories from the best pre-trained policy from Zoo; 2) perform deep symbolic regression [16] on
the dataset and select the expression with the lowest error for each action. DSP first trains a recurrent
neural network with reinforcement learning to produce symbolic policies and then optimizes the
constant with several methods such as Bayesian Optimization [48].

7

Table 3: The number of environment episodes used for learning symbolic policies.

Environment Regression DSP ESPL

CartPole 1000 2M 500
MountainCar 1000 2M 500
Pendulum 1000 2M 500
InvDoublePend 1000 2M 500
InvPendSwingup 1000 2M 500
LunarLander 1000 0.4M 1000
Hopper 1000 0.4M 3000
BipedalWalker 1000 0.4M 2000

Evaluation. Following DSP, we evaluate the proposed ESPL by averaging the episodic rewards
across 1,000 episodes with different environment seeds. The evaluation for all the baselines is also in
accordance with this protocol. For the DSP and regression method, we use the results from the DSP
paper. DSP performs 3n independent training runs for environments with n-dimension action and
select the best symbolic policy. For a fair comparison, we perform three independent runs and select
the best policy for ESPL and DRL methods. For meta-RL, we run all environments based on the
off-policy meta-learning framework proposed by PEARL [7] and use the same evaluation settings.
We compare CSP with PEARL which concatenates the observation and context variables as the input
of policy and Hyper [29] which generate the parameters of policy with a ResNet model based on the
context variables. Note that the original Hyper also modifies the critic, but we build all the critics
with the same network structure for consistency. More details of the experimental settings can be
found in Appendix D.

5.2 Comparisons for Single-task RL

Performance. In Table 2, we report the average episode rewards of different algorithms. Among
symbolic policies, the proposed ESPL achieves higher or comparable performance compared with
DSP while the regression method performs poorly in most environments. To directly compare ESPL
with other algorithms across different environments, we rank the algorithms and calculate the average
rank and worst-case rank. We find that TD3 and SAC outperform other algorithms. For symbolic
policy methods, the proposed ESPL achieves superior performance compared to DSP. ESPL is also
comparable with the better-performing algorithms of DRL.

Data efficiency. In Table 3, we report the number of environment episodes required for learning
the symbolic policy in different algorithms. The proposed ESPL requires fewer environmental
interactions to learn the symbolic policies in most environments. Compared with DSP, the proposed
ESPL uses thousands of times fewer environment episodes.2 Although the regression method requires
a similar number of environment episodes as ESPL, it fails to find meaningful policies in most
environments according to Table 2. Besides, the proposed ESPL is trained from scratch while the
regression method and DSP need pretrained neural network policies. In conclusion, the proposed
ESPL greatly improves the data efficiency of symbolic policy learning.

5.3 Comparisons for Meta-RL

Performance. For meta-RL tasks, we report the learning curves of undiscounted returns on the test
tasks in Figure 2. We find that CSP achieves better or comparable performance in all the environments
compared with previous methods. In Hopper-params, Walker2d-params and InvDoublePend-params,
CSP outperforms PEARL and Hyper during the whole training process. In Lunarlander-params,
CSP achieves better final results. In Cartpole-fl-ood, CSP adapts to the optimal more quickly. In the
out-of-distribution task Cheetah-vel-ood, we find the performance of PEARL and Hyper decrease
during training because of over-fitting. But our CSP is less affected. Thus, expressing the policy in
the symbolic form helps improve the generalization performance.

Deploying efficiency. We also evaluate the deploying efficiency of contextual policies. We first
calculate the flops of each kind of policy per inference step. Then we consider an application scenario

2For DSP, we only record the environment episodes required for reinforcement learning as the exact number
of iterations for constant optimization is not provided in DSP.

8

Table 4: FLOPs (k)/Inference time (ms) of different contextual policies.

Environment CSP PEARL Hyper

Walker2d-params 3.11/20.9 189.3/27.0 5.64/22.6
Hopper-params 0.51/4.13 186.9/26.6 4.1/17.2
InvDoublePend-params 0.039/0.37 186.0/25.1 3.59/12.3
Cartpole-fl-ood 0.004/0.042 183.9/23.9 1.79/9.08
Lunarlander-g 0.015/0.l4 185.4/23.4 3.08/12.3
Cheetah-vel-ood 0.53/4.9 190.2/28.4 7.18/24.2

that the algorithm control five thousand simulated robots with the Intel(R) Xeon(R) Gold 5218R
@ 2.10GHz CPU and record the elapsed time per inference step. We report the results in Table 4.
Compared to PEARL, CSP reduces the FLOPs by 60-45000x and reduces the inference time by up to
600x. Compared to Hyper, CSP reduces the flops by 2-450x and reduces the inference time by up to
200x. Thus, compared with pure NN policies, the CSP has a significant advantage in computational
efficiency.

5.4 Analysis of symbolic policies

Interpretability. For single-RL tasks, we report the symbolic policies found by ESPL for each
environment in Table 1. The policies in the symbolic form are simple and we can directly glean
insight from the policies by inspection, or in other words, interpretability. For example, the goal of
LunarLander is to land a spacecraft on a landing pad without crashing. The action a1 controls the
main engine and a2 controls the orientation engines. In our symbolic policy, a1 is a function of s1 (the
height) and s4 (the vertical velocity). The main engine turns on to counteract downward motion when
the height is low. Action a2 is a combination of a term about s3(the horizontal velocity), a term about
s5(the angle), and a highly nonlinear term about s6 (the angular velocity), s1 (the horizontal position)
and s7 (whether the leg has landed). Thus, the policy adjusts the orientation engines based on the
incline and horizontal motion to move the spacecraft to the center of the landing pad. In meta-RL,
the CSP also shows the potential to be interpretable. We take the Cartpole-fl-ood environment as an
example and illustrate the Cartpole system in Figure 3. The form of the symbolic policies produced
by CSP is action = c1 ∗ θ + c2 ∗ θ̇ + b, where c1 and c2 are the positive coefficients and b is a
small constant which can be ignored. Then the policy can be interpreted as pushing the cart in the
direction that the pole is deflected or will be deflected. To analyze the difference between policies for
different tasks, we uniformly set the force magnitude and the length of the pole. Then we generate the
symbolic policy with CSP and record the coefficients. As Figure 4 shows, c1 and c2 tend to increase
when the force magnitude decrease and the length increase, which is in accord with our intuition. We
also provide the human study results of the interpretability in Appendix F.3.

Complexity. we compare the length of the symbolic policies and define length =
∑i=n

i=1 Ni
o+Ni

c+Ni
v

n ,
where n is the dimension of the action, i is the index of the action dimension, N i

o is the number
of operators, N i

c is the number of constant terms, N i
v is the number of variable terms. We give a

comparison of the length of the symbolic policies in Table 5.

Table 5: Comparison of the length of the symbolic policies.

Average CartPole MountainCar Pendulum InvDoublePend InvPendSwingup LunarLander Hopper BipedalWalker
ESPL 12.91 3 6 7 15 13 16.5 24.6 17
DSP 8.25 3 4 8 1 19 6.5 12 12.5

In the benchmark environments used in the literature, in some environments ESPL produces longer
symbolic policies than DSP, in others ESPL produces similar or shorter symbolic policies than DSP.
In general, symbolic policies produced by ESPL are only slightly longer than the symbolic policies
produced by DSP.

5.5 Ablation

Finally, we carry out experiments by ablating the features of the proposed ESPL. We change the
structure of the symbolic network and replaced the path selector with the L1 norm minimization. We

9

𝒍

𝜽， ሶ𝜽

𝑭 = 𝒇 ∗ 𝒂𝒄𝒕𝒊𝒐𝒏

Figure 3: The Cartpole system to be
controlled.

f

8 9
10

11
12

l

0.3
0.4

0.5
0.6

0.7

c1

20

22

24

26

f

8 9
10

11
12

l

0.3
0.4

0.5
0.6

0.7

c2

1.4
1.5
1.6
1.7
1.8

Figure 4: The coefficients of symbolic policies for Cartpole environ-
ments with different force magnitude and pole length.

Table 6: Ablation results for single-task RL. ESPLp and ESPLd means replacing the symbolic network
with a plain structure and a densely connected structure respectively. ESPLl1 means replacing the
path selector with the L1 norm minimization.

Environment ESPL ESPLp ESPLd ESPLl1
CartPole 1000 1000 1000 1000
MountainCar 94.02 93.69 93.83 94.17
Pendulum -151.72 -183.16 -144.08 -163.54
InvDoublePend 9359.9 9357.6 9197.44 8771.18
InvPendSwingup 890.36 844.84 890.01 865.38
LunarLander 283.56 263.95 277.36 271.69
Hopper 2442.48 2003.24 2316.54 1546.35
BipedalWalker 309.43 -11.63 298.50 6.81

report the average episode rewards for single-task RL in Table 6. As the experiment results show,
without the path selector or the dense connections, the performance degrades, especially in Hopper
and BipedalWalker. With the path selector or the dense connections, ESPLd is able to perform well
for all the environments while we observe that the arranged symbolic operators can further improve
the performance. We also provide the ablation study results for meta-RL in Appendix F.2.

6 Conclusions

In this paper, we introduce ESPL, an efficient gradient-based symbolic policy learning method. The
proposed ESPL is able to learn the symbolic policy from scratch in an end-to-end way. The experiment
results on eight continuous control tasks demonstrate that the approach achieves comparable or higher
performance than both NN-based policies and previous symbolic policies while greatly improving the
data efficiency compared with the previous symbolic policy method. We also combine our method
with meta-RL to generate symbolic policies for unseen tasks. Empirically, compared with neural
network policies, the proposed symbolic policy achieves higher performance and efficiency and
shows the potential to be interpretable. We hope ESPL can inspire future works of symbolic policy
for reinforcement learning or meta-reinforcement learning. Besides, as the symbolic policy is a white
box and more dependable, the proposed ESPL may promote applications of reinforcement learning
in industrial control and automatic chip design.

Limitations and future work. In this paper, we focus on continuous control tasks with low-
dimensional state space. The proposed ESPL and CSP can not directly generate a symbolic policy
for tasks with high-dimensional observation like images. A possible method is to employ a neural
network to extract the environmental variables and generate symbolic policy based on these en-
vironmental variables. We leave this in the future work. Symbolic policies generally have good
interpretability. However, when the task is too complex, the symbolic policy is also more complex,
making the interpretability decrease. Solving this problem is also an important direction for future
work. For application, we will further learn a symbolic policy for automated CPU design based on
this framework to optimize the performance/power/area (PPA) of the CPU.

10

7 Acknowledgement

This work is partially supported by the National Key R&D Program of China (under Grant
2021ZD0110102), the NSF of China (under Grants 61925208, 62102399, 62222214, 62002338,
U22A2028, U19B2019), CAS Project for Young Scientists in Basic Research (YSBR-029), Youth
Innovation Promotion Association CAS and Xplore Prize.

References
[1] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P.
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree search. Nat., 529(7587):484–489,
2016.

[2] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. J. Mach. Learn. Res., 17:39:1–39:40, 2016.

[3] Jiří Kubalík, Eduard Alibekov, and Robert Babuška. Optimal control via reinforcement learning
with symbolic policy approximation. IFAC-PapersOnLine, 50(1):4162–4167, 2017. 20th IFAC
World Congress.

[4] Daniel Hein, Steffen Udluft, and Thomas A. Runkler. Interpretable policies for reinforcement
learning by genetic programming. Eng. Appl. Artif. Intell., 76:158–169, 2018.

[5] Mikel Landajuela Larma, Brenden K. Petersen, Sookyung Kim, Cláudio P. Santiago, Ruben
Glatt, T. Nathan Mundhenk, Jacob F. Pettit, and Daniel Faissol. Discovering symbolic policies
with deep reinforcement learning. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 5979–5989. PMLR,
2021.

[6] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[7] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient
off-policy meta-reinforcement learning via probabilistic context variables. In International
conference on machine learning, pages 5331–5340. PMLR, 2019.

[8] Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J Smola. Meta-q-learning.
arXiv preprint arXiv:1910.00125, 2019.

[9] Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where,
and how to adapt in transfer reinforcement learning. arXiv preprint arXiv:2107.02729, 2021.

[10] Miles D. Cranmer, Alvaro Sanchez-Gonzalez, Peter W. Battaglia, Rui Xu, Kyle Cranmer,
David N. Spergel, and Shirley Ho. Discovering symbolic models from deep learning with
inductive biases. CoRR, abs/2006.11287, 2020.

[11] Shuyao Cheng, Pengwei Jin, Qi Guo, Zidong Du, Rui Zhang, Yunhao Tian, Xing Hu, Yongwei
Zhao, Yifan Hao, Xiangtao Guan, Husheng Han, Zhengyue Zhao, Ximing Liu, Ling Li, Xishan
Zhang, Yuejie Chu, Weilong Mao, Tianshi Chen, and Yunji Chen. Pushing the limits of machine
design: Automated cpu design with ai, 2023.

[12] John R. Koza. Genetic programming - on the programming of computers by means of natural
selection. Complex adaptive systems. MIT Press, 1993.

[13] Michael D. Schmidt and Hod Lipson. Age-fitness pareto optimization. In Martin Pelikan and
Jürgen Branke, editors, Genetic and Evolutionary Computation Conference, GECCO 2010,
Proceedings, Portland, Oregon, USA, July 7-11, 2010, pages 543–544. ACM, 2010.

11

[14] William G. La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H. Moore. Learn-
ing concise representations for regression by evolving networks of trees. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[15] Silviu-Marian Udrescu and Max Tegmark. AI feynman: a physics-inspired method for symbolic
regression. CoRR, abs/1905.11481, 2019.

[16] Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Cláudio Prata Santiago,
Sookyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

[17] Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

[18] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via
policy extraction. Advances in neural information processing systems, 31, 2018.

[19] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pages 5045–5054. PMLR, 2018.

[20] Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to
learn: The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany,
14 May 1987.

[21] Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. In IJCNN-91-Seattle
International Joint Conference on Neural Networks, volume ii, pages 969 vol.2–, 1991.

[22] Sebastian Thrun and Lorien Pratt. Learning to learn. 1998.

[23] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[24] Kenny Young, Baoxiang Wang, and Matthew E Taylor. Metatrace actor-critic: Online step-
size tuning by meta-gradient descent for reinforcement learning control. arXiv preprint
arXiv:1805.04514, 2018.

[25] Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

[26] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[27] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

[28] Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel,
and Ilya Sutskever. The importance of sampling inmeta-reinforcement learning. Advances in
Neural Information Processing Systems, 31, 2018.

[29] Elad Sarafian, Shai Keynan, and Sarit Kraus. Recomposing the reinforcement learning building
blocks with hypernetworks. In International Conference on Machine Learning, pages 9301–
9312. PMLR, 2021.

[30] Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu.
Towards effective context for meta-reinforcement learning: an approach based on contrastive
learning. arXiv preprint arXiv:2009.13891, 2020.

[31] Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie
Zhang. Metacure: Meta reinforcement learning with empowerment-driven exploration. In
International Conference on Machine Learning, pages 12600–12610. PMLR, 2021.

12

[32] Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja
Hofmann, and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep RL
via meta-learning. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[33] Subham S. Sahoo, Christoph H. Lampert, and Georg Martius. Learning equations for extrap-
olation and control. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
4439–4447. PMLR, 2018.

[34] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[35] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 138–145, 2017.

[36] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks
through l_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

[37] Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural
networks with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3599–3608, 2021.

[38] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[39] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[40] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[41] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[42] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis R. Bach and David M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 1889–1897. JMLR.org,
2015.

[43] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages
1928–1937. JMLR.org, 2016.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[45] Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, and Jimmy Ba. Scalable trust-
region method for deep reinforcement learning using kronecker-factored approximation. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5279–5288, 2017.

13

[46] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582–1591. PMLR, 2018.

[47] Antonin Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo,
2018.

[48] F. Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python. URL https://github. com/fmfn/BayesianOptimization, 2014.

[49] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. 2016.

[50] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[52] Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-
shot bayesian imitation learning with logical program policies. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
10251–10258. AAAI Press, 2020.

[53] Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected
programmatic reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 15726–15737,
2019.

[54] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J. Lim. Learning to synthesize programs
as interpretable and generalizable policies. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 25146–25163, 2021.

[55] Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and
Martin C. Rinard. Program synthesis guided reinforcement learning for partially observed
environments. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 29669–29683, 2021.

[56] Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

[57] Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

14

https://github.com/araffin/rl-baselines-zoo

[58] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo Chen, Weijun
Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Search-
ing for mobilenetv3. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 1314–1324. IEEE, 2019.

[59] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

[60] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
CoRR, abs/1806.09055, 2018.

[61] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[62] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille,
and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 82–92. Computer Vision Foundation / IEEE,
2019.

[63] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli,
Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program
induction. CoRR, abs/1608.04428, 2016.

[64] Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with
a differentiable forth interpreter. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 547–556.
PMLR, 2017.

[65] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis, Rémi Coulom,
and Andrew Sumner. Torcs, the open racing car simulator. Software available at http://torcs.
sourceforge. net, 4(6):2, 2000.

15

A Symbolic Operators

To ensure the numerical stability of the proposed symbolic learning framework, we regularize the
operators and employ a penalty term to keep the input from the "forbidden" area. We show the
operators and the corresponding penalty terms as follows:

• Multiplying operator:

y = min(max(x1,−100), 100) ∗min(max(x2,−100), 100),

the penalty term can be formulated as:

Lmul = max(x1−100, 0)+max(−100−x1, 0)+max(x2−100, 0)+max(−100−x2, 0)

• Division operator:

y =

 0, x2 < 0.01,
x1

x2
, x2 ≥ 0.01.

the penalty term can be formulated as:

Ldiv = max(0.01− x2, 0)

• Sine operator: y = sin(x), the penalty term is set as zero: Lsin = 0.

• Cosine operator: y = cos(x), the penalty term is set as zero: Lcos = 0.

• Exponential operator:
y = exp(min(max(x,−10), 4)),

the penalty term can be formulated as:

Lexp = max(x− 4, 0) +max(−10− x, 0)

• Log operator:
y = log(max(x, 0.001)),

the penalty term can be formulated as:

Llog = max(0.001− x, 0)

• Identity operators: y = x, the penalty term is set as zero: Lidentity = 0.

• Condition operator: y = sigmoid(x1) ∗ x2 + (1 − sigmoid(x1)) ∗ x3, the penalty ter is
set as zero: Lcondition = 0.

In practice, the identity operator is only used in the plain structure. For all the environments in single-
task RL and meta-RL, we use the symbolic network structure described in Section 3.1. Especially,
for the meta-RL environment Cheetah-vel-ood, we add one Condition operator in each layer. We
think the Condition operator will be useful for environments where the reward function changes.
During training, we involve a penalty loss function Lpenalty which is the sum of the penalty terms of
regularized operators in symbolic networks:

Lpenalty =

i=N∑
i=1

Lgi(xi). (6)

We show the learning curves of the penalty loss function for single-task RL in Figure 5 and for
meta-RL in Figure 6. During the training process, for all environments in both single-task RL and
meta-RL, the penalty loss function remains on a very small order of magnitude, which indicates that
most of the operators in the symbolic network work the same as the original unregularized operators.

16

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

CartPole

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

MountainCar

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
10−6

10−5

10−4

10−3

10−2

10−1

100

101

pe
na

lty
 lo

ss

Pendulum

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

InvDoublePend

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps

10−6

10−5

10−4

10−3

10−2

10−1

100

101

pe
na

lty
 lo

ss

InvPendSwingup

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

10−4

10−3

10−2

10−1

100

101

pe
na

lty
 lo

ss

LunarLander

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Hopper

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

pe
na

lty
 lo

ss

BipedalWalker

Figure 5: Learning curves of the penalty loss function in single-task RL. The shaded area spans one
standard deviation.

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Hopper-params

CSP
0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps
10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Walker2d-params

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Cheetah-vel-ood

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

10−3

10−1

101

103

pe
na

lty
 lo

ss

Lunarlander-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

InvDoublePend-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss
Cartpole-fl-ood

Figure 6: Learning curves of the penalty loss function in meta-RL.

B Environment details.

B.1 Single-task RL

For single-task RL, we use the same benchmark control tasks as DSP [5]. We describe these
environments as follows:

• CartPole: In the environment, there is a cart that can move linearly with a pole fixed on it.
The goal is to balance the pole by applying forces in the left and right direction on the cart.
The max horizon length is set as 1000. We use a continuous version from an open-source
implementation https://gist.github.com/iandanforth.

• MountainCar: In the environment, there is a car placed stochastically at the bottom of a
sinusoidal valley. The action is the accelerating the car in either direction. The goal of the
environment is to accelerate the car to reach the goal state on top of the right hill. We use
MountainCarContinuous-v0 from OpenAI Gym[40].

• Pendulum: In this environment, there is a pendulum attached to a fixed point at one end.
The pendulum starts in a random position and the goal is to apply torque on the free end to
swing it into an upright position. We use Pendulum-v0, from OpenAI Gym.

17

https://gist.github.com/iandanforth

Algorithm 1 The training process of ESPL.
Input: The number of iterations for temperature and L0 norm schedule ts. The target temperature
τt and target minimum L0 norm lt. The symbolic network SN and the parameters w, b. The
probabilities p of the path selector.

1: Initialize replay buffers B.
2: for training iteration t = 0 to T − 1 do
3: τ = (1− τt) ∗ (1− min(t,ts)

ts
) + τt

4: Generate symbolic policy πsym with the symbolic network and the path selector.
5: for environment step k = 0 to K − 1 do
6: Collect data with a ∼ N (πsym(s), F (s)) and add to buffer B
7: end for
8: lmin = lt + (1− lt) ∗

(
1− min(t,ts)

ts

)2

9: for steps in training step do
10: Sample RL Batch from the buffer B
11: Sample m with gumbel sigmoid and ST trick.
12: Obtain the policy: SN (wm)
13: Calculate loss for the Critic: Lcritic = Lsac

critic
14: Calculate loss for the Actor:

Lactor = Lsac
actor + α1Lpenalty + α2Lselect

15: end for
16: Update the θQ with Lcritic

17: Update w, b,p, θF with Lactor

18: end for

• InvertedDoublePendulum: In this environment, there is a cart that can move linearly, with a
pole fixed on it and a second pole fixed on the other end of the first one. The cart can be
pushed left or right, and the goal is to balance the second pole on top of the first pole by
applying continuous forces on the cart. We use InvertedDoublePendulumBulletEnv-v0 from
PyBullet [49].

• InvertedPendulumSwingup: This environment is a combination of CartPole and Pendulum.
The goal of the environment is to swing-up the pendulum from its natural pendent position
to its inverted position. We use InvertedPendulumSwingupBulletEnv-v0 from PyBullet.

• LunarLander: In this environment, there is a spacecraft with a main engine and two orienta-
tion engines. The goal of the environment is to land a spacecraft on a landing pad without
crashing by controlling the engines. We use LunarLanderContinuous-v2 from OpenAI Gym.

• Hopper: In this environment, there is a two-dimensional one-legged robot that should move
forward. We use HopperBulletEnv-v0 from PyBullet.

• BipedalWalker: This is a simple 4-joint walker robot environment. The goal is to control the
walker to move forward. We use BipedalWalker-v2 from OpenAI Gym.

B.2 Meta-RL

We introduce the details of the environments used in the meta-RL experiments. We build all the
meta-RL environments by modifying the origin environments of OpenAI Gym3. We describe these
environments as follows:

• Walker2d-params: This environment is built by modifying the OpenAI gym Walker2d,
in which a two-dimensional two-legged robot should move forward. For each task, the
dynamics parameters of the environment are randomly initialized. The horizon length is set
as 200. For the experiment, we sample 40 training tasks and 10 test tasks.

• Cheetah-vel-ood: This environment is built by modifying the OpenAI gym Half Cheetah.
In the modified environment, a 2-dimensional robot with nine links should achieve a target

3We build our meta-RL environments based on the random-param-env
https://github.com/dennisl88/rand_param_envs.

18

Algorithm 2 The training process of CSP.
Input: Batch of training tasks {κi}i=1,...m. The number of iterations of temperature and target L0

norm schedule ts. Target temperature τt. The target L0 norm of the mask at the end of training lt.
The scale of the penalty loss α1. The scale of the loss to regularize the sum of probabilities α2. The
scale of the loss for the KL divergence β.

1: Initialize replay buffers Bi for each training tasks.
2: for training iteration t = 0 to T − 1 do
3: τ = (1− τt) ∗ (1− min(t,ts)

ts
) + τt

4: for each task κi do
5: Initialize context ci = {}
6: for k = 0 to K − 1 do
7: Sample z ∼ qθq (z|ci)
8: Generate symbolic policy πsym with Φ(z) and Ψ(z, τ)
9: Collect data with a ∼ N (πsym(s), F (s, z)) and add to buffer Bi.

10: Update ci = {(sj , aj , s′j , rj)}j=1,··· ,N ∼ Bi

11: end for
12: end for
13: for steps in training step do
14: Sample a batch of tasks.
15: for each κi in the batch do
16: Sample context ci and RL Batch bi from the buffer Bi

17: Sample context variables z ∼ qθq (z|ci)
18: Obtain parameters w, b with Φ(z)
19: Obtain probabilities p with Ψ(z)
20: Sample m with gumbel sigmoid and ST trick.
21: Obtain the policy: SN (wm)

22: ltarget = lt + (1− lt) ∗
(
1− min(t,ts)

ts

)2

23: Calculate loss for the critic: Li
critic = Lsac

critic
24: Calculate loss for the Actor:

Li
actor = Lsac

actor + α1Lpenalty + α2Lselect

25: Calculate the KL divergence Li
KL = DKL(qθq (z|ci)|N (0, 1))

26: end for
27: Update the Critic with

∑i=m
i=1 Li

critic

28: Update the context encoder with
∑i=m

i=1 (Li
critic + βLi

KL)

29: Update the path collector and the parameter generator with
∑i=m

i=1 Li
actor

30: end for
31: end for

velocity running forward. For a training task, the target velocity is sampled uniformly from
[0, 2.5]. For a test task, the target velocity is sampled uniformly from [2.5, 3.0]. The horizon
length is set as 200. For the experiment, we sample 50 training tasks and 15 test tasks.

• Hopper-params: This environment is built by modifying the OpenAI gym Hopper, in which
a two-dimensional one-legged robot should move forward. For each task, the dynamics
parameters of the environment are randomly initialized. The horizon length is set as 200.
For the experiment, we sample 40 training tasks and 10 test tasks.

• LunarLander-params: This environment is built by modifying the OpenAI gym Lunar
Lander, in which a rocket should land on the landing pad. For each task, we randomly
initialize the gravity. The horizon length is set as 1000. For the experiment, we sample 40
training tasks and 10 test tasks.

• InvDoublePend-params: This environment is built by modifying the OpenAI gym Inverted
Double Pendulum. In this environment, there is a cart that can move linearly. A pole is
fixed on it, and a second pole is fixed on the other end of the first pole. For each task, the
dynamics parameters of the environment are randomly initialized. The horizon length is set
as 200. For the experiment, we sample 40 training tasks and 10 test tasks.

19

Table 7: Measure of uncertainty for ESPL.

Environment Measure of uncertainty

CartPole 0.4998
MountainCar 0.4998
Pendulum 0.4997
InvDoublePend 0.4995
InvPendSwingup 0.4999
LunarLander 0.4997
Hopper 0.4999
BipedalWalker 0.4998

• Cartpole-fl-ood: This environment is built by modifying the OpenAI gym Cart Pole4. In
the environment, there is a cart that can move linearly with a pole fixed on it. For each
task, we randomly initialize the force magnitude and the length of the pole. For a training
task, the force magnitude and the length of the pole are sampled uniformly from [7.5, 12.5]
and [0.3, 0.7]. For a test task, the force magnitude and the length of the pole is sampled
uniformly from [5, 7.5] ∪ [12.5, 15] and [0.2, 0.3] ∪ [0.7, 0.8]. The horizon length is set as
200. For the experiment, we sample 40 training tasks and 10 test tasks.

For all the environments of single-task RL and meta-RL, we wrap the action interface with the tanh
function to limit the range of the action.

C Implementation Details

C.1 Single-task RL

During training, we employ two neural networks to approximate the Q function as the original SAC.
The neural networks have two hidden layers with 256 hidden units. Besides, to limit the probabilities
p in the range of [0, 1], we clip the probabilities after each update. After training, even if the mask is
sampled from the Bernoulli distribution with probabilities p, the process of obtaining the symbolic
policy is almost deterministic, because empirical observations show that almost all probabilities
converge to 0 or 1 after training. We use a measure of uncertainty which is the average difference
between probability p and 0.5. When the measure approaches 0.5, the process of obtaining the
symbolic policy is almost deterministic. We report the measure in Table 7. For the details of the
training process, we give the pseudo-code in Algorithm 1.

C.2 Meta-RL

In practice, we build up our off-policy learning framework on top of the soft actor-critic algorithm
(SAC)[39] following PEARL. To construct a stochastic policy, we also employ a small neural network
F to output the standard deviation just like single-task RL. The neural network has two hidden layers
with 64 hidden units. Note that this neural network is only used during training. During the evaluation,
we only use the produced symbolic policy to infer the action. Besides, to limit the probabilities p
produced by Ψ(z) in the range of (0, 1), we employ the sigmoid function. We initialize the bias
of the last layer in Ψ(z) as 3.0. As sigmoid(3.0) = 0.9526, we will have most of the paths of
the symbolic network active at the beginning of training and ensure that the input of the sigmoid
function is not too large to prevent the gradient from disappearing during training. For the details of
the training process, we give the pseudo-code in Algorithm 2.

4We use the same continuous version as single-task CartPole.

20

Table 8: Hyperparameters for the ESPL.

Parameter Value

optimizer Adam[50]
number of samples per minibatch 256
scale of the reward 1
learning rate 3 · 10−4

discount 0.99
sac target smoothing coefficient 0.005
target temperature 0.2
training steps per iteration 1000
scale of the penalty loss 1

Table 9: Environment Specific Hyperparameters for ESPL.

Environment Scale of Lselect Target l0 norm ratio Schedule iterations

CartPole 0.08 0.002 400
MountainCar 0.64 0.002 200
Pendulum 0.08 0.002 300
InvDoublePend 0.08 0.005 400
InvPendSwingup 0.1 0.005 400
LunarLander 0.08 0.005 600
Hopper 0.08 0.01 2000
BipedalWalker 0.64 0.01 1400

D Experiment details

D.1 Single-task RL

In this section, we give the main hyperparameters of ESPL for single-task RL. We show the common
hyperparameters of ESPL in Table 8. We also list the environment specific hyperparameters in Table
9. For the scale of Lselect, we choose the best one from {0.04, 0.08, 0.1, 0.16, 0.32, 0.64}. The target
l0 norm ratio is the ratio of the target L0 norm of the mask at the end of training le to the number of
parameters of the symbolic network. We set the value according to the complexity of the task and do
not tune the value. We show the learning curves of the average L0 norm ratio of the mask for the
sampled tasks in Figure 8. The L0 norm ratio at the end of training is always higher than the target l0
norm ratio. Thus, the L0 norm ratio at the end of training is more affected by the scale of Lselect. The
schedule iterations mean the number of iterations of temperature and target L0 norm schedule. Then
we illustrate the evaluation details about symbolic policies. DSP performs 3 independent training
runs with different random seeds for each dimension of the action, selecting the best symbolic policy
at the end of training. Thus, for environments with n-dimension action, they perform 3n training

Table 10: Hyperparameters for the CSP.

Parameter Value

optimizer Adam[50]
number of samples per minibatch 256
scale of the reward 5
learning rate 3 · 10−4

scale of the kl divergence loss 1
discount 0.99
sac target smoothing coefficient 0.005
target temperature 0.2
training steps per iteration 2000
scale of the penalty loss 1

21

Table 11: Environment Specific Hyperparameters for CSP.

Environment Meta batchsize Scale of Lselect Target l0 norm ratio Schedule iterations

Walker2d-params 10 0.25 0.01 450
Hopper-params 10 0.25 0.01 300
InvDoublePend-params 10 2.0 0.01 150
Cartpole-fl-ood 10 0.25 0.002 25
Lunarlander-g 10 0.25 0.01 60
Cheetah-vel-ood 16 2.0 0.01 300

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.004

CartPole

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
0.0

0.2

0.4

0.6

0.8

l0
 re

tio

0.003

MountainCar

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.016

Pendulum

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.016

InvDoublePend

0.00M 0.10M 0.20M 0.30M 0.40M 0.50M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.011

InvPendSwingup

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.008

LunarLander

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.010

Hopper

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.005

BipedalWalker

Figure 7: Learning curves of the average L0 norm ratio of the mask for single-task RL.

runs and select the single best policy. The symbolic regression method repeats each experiment for
a single dimension of action 10 times using different random seeds and selects the expression with
the lowest mean-square error. For all the environments, the proposed ESPL performs 3 independent
training runs and selects the single best policy.

D.2 Meta-RL

In this section, we give the main hyperparameters of CSP for meta-RL. We show the common
hyperparameters of CSP in Table 10. We also list the environment specific hyperparameters in
Table 11. The meta batchsize is the number of sampled tasks per training step. We set it ac-
cording to the number of training tasks. For the scale of Lselect, we choose the best one from
{0.1, 0.15, 0.2, 0.25, 0.5, 1.0, 2.0}. The target l0 norm ratio is the ratio of the target L0 norm of the
mask at the end of training le to the number of parameters of the symbolic network. We set the value
according to the complexity of the task and do not tune the value. We show the learning curves of
the average L0 norm ratio of the mask for the sampled tasks in Figure 8. The L0 norm ratio at the
end of training is always higher than the target l0 norm ratio. Thus, the L0 norm ratio at the end
of training is more affected by the scale of Lselect. The schedule iterations mean the number of
iterations of temperature and target L0 norm schedule. We end the schedule near the end of training
but for Cartpole-fl-ood in which the policy converges quickly, we reduce the number of schedule

Table 12: Average count of all selected paths and paths selected by at least ninety percent policies.

Environment Selected paths Mostly selected paths

Walker2d-params 76.42 70.3
Hopper-params 21.5 20.33
InvDoublePend-params 23.2 21.0
Cartpole-fl-ood 3.06 3.0
Lunarlander-g 5.2 5.0
Cheetah-vel-ood 27.04 18.5

22

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio
0.038

Hopper-params

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.081

Walker2d-params

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.023

Cheetah-vel-ood

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

l0
 re

tio

0.017

Lunarlander-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.028

InvDoublePend-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0.0

0.2

0.4

0.6

0.8

l0
 re

tio

0.009

Cartpole-fl-ood

Figure 8: Learning curves of the average L0 norm ratio of the mask for the sampled tasks in Meta-RL.

iterations. We run all the experiments with five random seeds and average the results to plot the
learning curve.

D.3 Platform and Device

The implementation of our ESPL and CSP is based on the pytorch[51]. Besides, we train the proposed
CSP and ESPL with Nvidia V100 GPU. When evaluating the inference time, we use Intel(R) Xeon(R)
Gold 5218R @ 2.10GHz CPU.

E Extended Related Work

In this section, we provide an extended review of related work.

E.1 Programmatic RL and program-guided RL

Programmatic RL represents policies as short programs to improve the interpretability of the policies.
A series of works[18, 52, 19, 53, 54] obtain the programmatic policies by distilling them from neural
network policies. VIPER[18] extracts neural network policies into a decision tree by imitation
learning algorithm Q-DAGGER to get verifiable policies. LPP[52] also employ imitation learning but
exploit the logical structure and use domain-specific language to avoid engineering each individual
feature. NDPS[19] optimize the program by imitation learning from a neural network policy and
employ an instance-specific syntactic model called sketches as guidance. PROPEL[53] views the
unconstrained policy space as mixing neural and programmatic representations and uses mirror
descent to optimize the policy. They evaluate their method in continuous control domains and
show better results. LEAPS[54] learns the program embedding from given programs and uses
CEM to search latent programs. MPPS[55] uses conditional variational auto-encoder and program
synthesis to solve the partially observed problem and obtain the policy with MaxSAT. PRL[56] learns
the programmatic policies by introducing a differentiable program derivation tree and searching
the structure of the tree with gradient. Although programmatic RL methods also aim to obtain
simple and interpretable policies, the ESPL proposed in this paper represents policies as symbolic or
algebraic expressions which are different from programmatic RL. The different forms of symbolic
expressions and programs lead to different difficulties in obtaining policies. This paper proposes
a solution to the low data efficiency of the existing symbolic policy methods and extends it to
meta-reinforcement learning. The scope of the application is also different. Some programmatic
reinforcement learning[54, 55] interacts with the environment through DSL and is not applicable
to continuous control tasks. In contrast, symbolic policy works often evaluate their methods in
continuous control tasks, e.g. DSP. In addition, to further verify our method, we compared the
proposed ESPL with some programmatic RL methods. Program-guided RL[57] trains the agent to

23

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn
CSP_P
CSP_D
CSP

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn

CSP_L1
CSP

Figure 9: Ablation results of the symbolic network structure (left), the path selector(right). CSP_P means the
plain structure and CSP_D means the densely connected structure. CSP_L1 means replacing the path selector
with the L1 norm minimization.

accomplish the tasks specified by a program and use a multitask policy to accomplish subtasks of
the overall task. This approach is also interpretable but dependent on a given program, rather than
learning an interpretable policy.

E.2 Neural Architecture Search

Neural Architecture Search (NAS)[58, 59, 60] aims at automatically designing a neural network for a
certain task and dataset and has been a promising approach to automate deep learning applications.
DARTs[60] is one of the representative works of gradient-based neural architecture search [60, 61, 62].
These works formulate a super-network based on the continuous relaxation of the architecture
representation, which allows efficient search of the architecture using gradient descent. Although we
share the similar motivation to efficiently search by gradient descent and both have the process of
selecting the appropriate substructure from a large structure, the algorithms are still quite different.
These works use the softmax function to select one proper neural network operation from a set of
candidate operations for each connection. In contrast, we learn to mask out redundant connections
with the proposed path selector and only very small percentage of connections are selected (See
Figure 7). In addition, they usually divide the computer vision dataset and alternate training structures
and parameters, whereas we use a completely different training approach. Besides, these works aim
to search for a good neural network structure for computer vision while we aim to find compact
symbolic policies for reinforcement learning. We also involve meta-RL and develop contextual
symbolic policies which can adapt to new tasks, while they usually need finetune or re-training for
new tasks.

Building differentiable frameworks and using gradient-based methods to obtain solutions have
indeed found applications in many fields, e.g. neural architecture search, and program induction
[63, 64]. However, compared to ESPL, these works differ significantly in terms of (1) the constructed
differentiable frameworks, (2) the process of obtaining solutions through gradients, and (3) the
specific problem domains they target.

F More Experiment Results

F.1 Comparison with Programmatical RL

In the main body of this paper, we considered that the form of the policies will affect the final
performance. Thus, except for neural network policies, we selected Regression and DSP, which
also represent policies with symbolic expressions for comparison in order to ensure the fairness of
comparison. We would like to compare the proposed ESPL with some programmatical RL methods
to further verify our method in this section. We carry out experiments on The Open Racing Car
Simulator (TORCS)[65] which provides a rich environment with input from up to 89 sensors.

We first follow the experiment settings in NDPS[19], where the controller tasks the input from 29
sensors and decides values for the acceleration, and steering. We show the lap time in seconds (lower
is better) in Table 13.

24

Table 13: Comparison results in TORCS following experiment settings in NDPS.

CG-SPEEDWAY-1 AALBORG

ESPL 50.23 107.3
NDPS 61.56 158.87

The results demonstrate that the symbolic policies produced by ESPL achieve higher performance.
NDPS learns the programmatical policies from a neural network policy and the object mismatch
problem may hurt the performance. We also provide the example video in https://anonymous.
4open.science/r/ESPL-8F5B.

We then follow the experiment settings in PROPEL[53], where the controller tasks the input from
29 sensors and decides values for the acceleration, steering, and brake. We carry out experiments in
three maps and show the lap time in seconds (lower is better) in Table 14. In this table, VIPER[18]
is a method that extracts neural network policies into a decision tree by imitation learning. The
PROIR means the PID controller that is also used as the initial policy in PROPEL. PROPELTREE
means PROPEL using regression trees. PROPELPROG means PROPEL using a high-level language
similar to NDPS. In these three maps, the symbolic policies produced by ESPL outperform other
programmatical polcies and is comparable with PROPELTREE. The proposed ESPL train the
symbolic policies from scratch without initial policies which are used in PROPEL. We also compare

Table 14: Comparison results in TORCS following experiment settings in PROPEL.

G-Track E-ROAD AALBORG

ESPL 77.31 79.67 107.94
VIPER[18] 83.60 87.53 110.57
PRIOR 312.92 322.59 244.19
NDPS[19] 108.25 126.80 163.25
PROPELPROG[53] 93.67 119.17 147.28
PROPELTREE[53] 78.33 79.39 109.83

the proposed ESPL with PRL[56] on continuous control benchmarks presented in DSP in Table
15. PRL represents the policy with program derivation tree. They use affine policy which is the
linear transformation as a domain-specific programming language (DSL) for Gym environments. The
proposed ESPL achieve higher performance in most environments.

Table 15: Comparison with PRL on continuous control benchmarks presented in DSP.

CartPole MountainCar Pendulum InvDoublePend InvPendSwingup LunarLander Hopper BipedalWalker

ESPL 1000 94.02 -151.72 9359.9 890.36 283.56 2442.48 309.43
PRL[56] 1000 95.07 -173.56 9357.93 889.47 265.17 2226.49 270.33

F.2 Ablation Study for Meta-RL

In this section, we carry out experiments by ablating the features of CSP. We change the structure of
the symbolic network and replaced the path selector with the L1 norm minimization. we compare
the learning curves of the test task rewards in Figure 9. The results show that the dense connections
effectively improve the performance and we can facilitate the search for the proper symbolic form by
arranging the operators to further improve the performance. Besides, the path selector is better at
selecting the symbolic policy from the symbolic network than L1 norm minimization.

F.3 Human Study for Interpretability

We also carry out a human study to evaluate the interpretability of the symbolic policies generated
by ESPL. The assessment of policy interpretability actually requires some understanding of the
environments and what each state variable means. We invited ten researchers to rate the interpretability
of policies, with a maximum of 20 minutes for each policy. On a five-point scale, we told them that

25

https://anonymous.4open.science/r/ESPL-8F5B
https://anonymous.4open.science/r/ESPL-8F5B

the interpretability could be judged based on whether they could see from the policy expression what
the policies was based on to make decisions and the possible corresponding relationships between
actions and states. A score of five indicated that the strategy was highly interpretable and could be
designed by humans, while a score of zero indicated that it was completely uninterpretable, just like
the neural network policies. We measured the average score of the interpretability of the policies. We
give the interpretability scores for ESPL and DSP in Table 16.

Table 16: Comparasion of interpretability scores of ESPL and DSP.

CartPole MountainCar Pendulum InvDoublePend InvPendSwingup LunarLander Hopper BipedalWalker
ESPL 5 5 4.5 4.1 4.3 3.9 2.6 3.1
DSP 5 5 4.5 5.0 4.2 4.0 3.1 3.2

Based on the results of the human study, we found that when the symbolic expressions were relatively
short, there was a consensus that the expressions were highly interpretable. When the expression
length became longer, the interpretability score decreased. It may be relatively difficult to understand
symbolic expressions in a short time, but it is generally believed that interpretability is much higher
than a black box, at least they can understand the action will be affected by which state, and the
partial correlation. Besides, the symbolic policies produced by ESPL and DSP have comparable
interpretability.

F.4 Analysis of symbolic policies for Meta-RL

We then analyze the symbolic policies for different tasks produced by CSP. For each environment, we
sample 10 tasks from the environment task distribution and obtain the corresponding symbolic policies
with CSP. Then we analyze the selected paths of these policies which determine the forms of the
symbolic expressions. Table 12 shows the results. We calculate the average count of selected paths per
action dimension among the policies5. We find that this number varies across different environments.
The symbolic expression can be extremely short for simple environments like Cartpole or relatively
long for complex environments like Walker2D. We also calculate the average count of paths that
are selected by more than ninety percent of the symbolic policies. In almost all environments, the
mostly selected paths account for a high percentage of the selected paths, which indicates that the
expressions of symbolic policies for different tasks of the same environment share similar forms.

F.5 Theoretical Analysis for Cartpole

The theoretical analysis is as follows: The dynamic of cartpole system can be defined as:

ẍ =
8fa+ 2m sin θ(4Lθ̇2 − 3g cos θ)

8M − 3m cos 2θ + 5m
.

θ̈ =
g sin θ − cos θ(fa+Lmθ̇2 sin θ)

m+M

L(43 − m cos2 θ
m+M)

.

Where f is the coefficient of force, a represents the action, m is the weight of the pole, M is the
weight of the cart, L is the half-pole length, θ is the angle between the pole and the vertical direction,
and x denotes the horizontal coordinate of the cart.

Define X =

xẋθ
θ̇

, then Ẋ =

ẋ

8fa+2m sin θ(4Lθ̇2−3g cos θ)
8M−3m cos 2θ+5m

θ̇
g sin θ− cos θ(fa+Lmθ̇2 sin θ)

m+M

L(4
3−

m cos2 θ
m+M)

 .

5We only consider paths that contribute to the final expression. Besides, the count of the remaining paths
may not equal to the count of operators in the final symbolic policy because some operators can be merged after
simplifying symbolic expressions.

26

According to the Hartman-Grobman theorem, the local stability of this nonlinear system near its
equilibrium point is equivalent to the linearized system near the equilibrium point. For cartpole
system, the equilibrium point is [x, ẋ, θ, θ̇] = [0, 0, 0, 0]

If a = 0, the system can be linearized as:

Ẋ =

0 1 0 0
0 0 −6gm

8M+2m 0
0 0 0 1
0 0 g

L(4
3−

M
m+M)

0

xẋθ
θ̇

 .

Calculate its eigenvalues:
[0, 0, 3.97114593,−3.97114593].

Due to the presence of positive eigenvalues, according to the Hartman-Grobman theorem, the system
is unstable.

If a = 17.17θ + 1.2θ̇, linearize the system near the equilibrium point:

Ẋ =

0 1 0 0

0 0 137.36f−6gm
8M+2m

9.6f
8M+2m

0 0 0 1

0 0
g− 17.17f

m+M

L(4
3−

M
m+M)

−1.2f
L(m+M)(4

3−
M

m+M)

xẋθ
θ̇

Calculate its eigenvalues:

[0 + 0.j, 0 + 0.j,−26.34 + 6.65014286j,−26.34− 6.65014286j]

Since all the real parts of the eigenvalues are non-positive, according to the Hartman-Grobman
theorem, the system is stable. Therefore, for the CartPole environment, the policies learned through
ESPL can maintain the stability of the CartPole system.

27

	Introduction
	Related Works
	Symbolic Policy
	Meta-Reinforcement Learning

	Gradient-based Symbolic Policy Learning
	Densely Connected Symbolic Network
	The Path Selector
	Implementation

	Contextual Symbolic Policy for Meta-RL
	Background
	Incorporating the Context Variables
	Training Schedule

	Experiment
	Experimental Settings
	Comparisons for Single-task RL
	Comparisons for Meta-RL
	Analysis of symbolic policies
	Ablation

	Conclusions
	Acknowledgement
	Symbolic Operators
	Environment details.
	Single-task RL
	Meta-RL

	Implementation Details
	Single-task RL
	Meta-RL

	Experiment details
	Single-task RL
	Meta-RL
	Platform and Device

	Extended Related Work
	Programmatic RL and program-guided RL
	Neural Architecture Search

	More Experiment Results
	Comparison with Programmatical RL
	Ablation Study for Meta-RL
	Human Study for Interpretability
	Analysis of symbolic policies for Meta-RL
	Theoretical Analysis for Cartpole

