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Abstract

As black-box machine learning models grow in complexity and find applications
in high-stakes scenarios, it is imperative to provide explanations for their predic-
tions. Although Local Interpretable Model-agnostic Explanations (LIME) [22] is
a widely adpoted method for understanding model behaviors, it is unstable with
respect to random seeds [35, 24, 3] and exhibits low local fidelity (i.e., how well
the explanation approximates the model’s local behaviors) [21, 16]. Our study
shows that this instability problem stems from small sample weights, leading to the
dominance of regularization and slow convergence. Additionally, LIME’s sampling
neighborhood is non-local and biased towards the reference, resulting in poor local
fidelity and sensitivity to reference choice. To tackle these challenges, we introduce
GLIME, an enhanced framework extending LIME and unifying several prior meth-
ods. Within the GLIME framework, we derive an equivalent formulation of LIME
that achieves significantly faster convergence and improved stability. By employing
a local and unbiased sampling distribution, GLIME generates explanations with
higher local fidelity compared to LIME. GLIME explanations are independent of
reference choice. Moreover, GLIME offers users the flexibility to choose a sampling
distribution based on their specific scenarios.

1 Introduction

Why a patient is predicted to have a brain tumor [10]? Why a credit application is rejected [11]? Why
a picture is identified as an electric guitar [22]? As black-box machine learning models continue to
evolve in complexity and are employed in critical applications, it is imperative to provide explanations
for their predictions, making interpretability a central concern [1]. In response to this imperative,
various explanation methods have been proposed [39, 26, 4, 19, 22, 28, 30], aiming to provide insights
into the internal mechanisms of deep learning models.

Among the various explanation methods, Local Interpretable Model-agnostic Explanations (LIME)
[22] has attracted significant attention, particularly in image classification tasks. LIME explains
predictions by assigning each region within an image a weight indicating the influence of this region
to the output. This methodology entails segmenting the image into super-pixels, as illustrated in the
lower-left portion of Figure 1a, introducing perturbations, and subsequently approximating the local
model prediction using a linear model. The approximation is achieved by solving a weighted Ridge
regression problem, which estimates the impact (i.e., weight) of each super-pixel on the classifier’s
output.

Nevertheless, LIME has encountered significant instability due to its random sampling procedure
[35, 24, 3]. In LIME, a set of samples perturbing the original image is taken. As illustrated in
Figure 1a, LIME explanations generated with two different random seeds display notable disparities,
despite using a large sample size (16384). The Jaccard index, measuring similarity between two
explanations on a scale from 0 to 1 (with higher values indicating better similarity), is below 0.4.
While many prior studies aim to enhance LIME’s stability, some sacrifice computational time for
stability [24, 40], and others may entail the risk of overfitting [35]. The evident drawback of unstable
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(a) LIME and GLIME explanations for an Ima-
geNet image on the tiny Swin-Transformer with
two random seeds. σ = 0.25 and a sample size of
16384 are employed. The numerical value presented
below the second row represents the Jaccard Index
between the two explanation maps.
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(b) Distribution of LIME and GLIME-GAUSS in 2D
example (left) and 1D example explanations (right).
LIME samples are constrained to one side of r and are
more distant from x. Additionally, LIME explanations
exhibit variability with distinct reference points.

Figure 1: GLIME enhances stability and local fidelity compared to LIME. (a) LIME demonstrates
instability with the default parameter σ, while GLIME consistently provides meaningful explanations.
(b) LIME samples from a biased and non-local neighborhood, a limitation overcome by GLIME.

explanations lies in their potential to mislead end-users and hinder the identification of model bugs
and biases, given that LIME explanations lack consistency across different random seeds.

In addition to its inherent instability, LIME has been found to have poor local fidelity [16, 21]. As
depicted in Figure 1a, the R2 value for LIME on the sample image approaches zero (refer also to
Figure 4b). This problem arises from the non-local and skewed sampling space of LIME, which is
biased towards the reference. More precisely, the sampling space of LIME consists of the corner
points of the hypercube defined by the explained instance and the selected reference. For instance, in
the left section of Figure 1b, only four red points fall within LIME’s sampling space, yet these points
are distant from x. As illustrated in Figure 3, the L2 distance between LIME samples of the input x
and x is approximately 0.7∥x∥2 on ImageNet. Although LIME incorporates a weighting function to
enforce locality, an explanation cannot be considered as local if the samples themselves are non-local,
leading to a lack of local fidelity in the explanation. Moreover, the hypercube exhibits bias towards
the reference, resulting in explanations designed to explain only a portion of the local neighborhood.
This bias causes LIME to generate different explanations for different references, as illustrated in
Figure 1b (refer to Appendix A.4 for more analysis and results).

To tackle these challenges, we present GLIME—a local explanation framework that generalizes
LIME and five other methods: KernelSHAP [19], SmoothGrad [28], Gradient [36], DLIME [35],
and ALIME [24]. Through a flexible sample distribution design, GLIME produces explanations
that are more stable and faithful. Addressing LIME’s instability issue, within GLIME, we derive
an equivalent form of LIME, denoted as GLIME-BINOMIAL, by integrating the weighting function
into the sampling distribution. GLIME-BINOMIAL ensures exponential convergence acceleration
compared to LIME when the regularization term is presented. Consequently, GLIME-BINOMIAL
demonstrates improved stability compared to LIME while preserving superior local fidelity (see
Figure 4). Furthermore, GLIME enhances both local fidelity and stability by sampling from a local
distribution independent of any specific reference point.

In summary, our contributions can be outlined as follows:

• We conduct an in-depth analysis to find the source of LIME’s instability, revealing the
interplay between the weighting function and the regularization term as the primary cause.
Additionally, we attribute LIME’s suboptimal local fidelity to its non-local and biased
sampling space.

• We introduce GLIME as a more general local explanation framework, offering a flexible
design for the sampling distribution. With varying sampling distributions and weights,
GLIME serves as a generalization of LIME and five other preceding local explanation
methods.
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• By integrating weights into the sampling distribution, we present a specialized instance
of GLIME with a binomial sampling distribution, denoted as GLIME-BINOMIAL. We
demonstrate that GLIME-BINOMIAL, while maintaining equivalence to LIME, achieves
faster convergence with significantly fewer samples. This indicates that enforcing locality in
the sampling distribution is better than using a weighting function.

• With regard to local fidelity, GLIME empowers users to devise explanation methods that
exhibit greater local fidelity. This is achieved by selecting a local and unbiased sampling
distribution tailored to the specific scenario in which GLIME is applied.

2 Preliminary

2.1 Notations

Let X and Y denote the input and output spaces, respectively, where X ⊂ RD and Y ⊂ R. We
specifically consider the scenario in which X represents the space of images, and f : X → Y serves
as a machine learning model accepting an input x ∈ X . This study focuses on the classification
problem, wherein f produces the probability that the image belongs to a certain class, resulting in
Y = [0, 1].

Before proceeding with explanation computations, a set of features {si}di=1 is derived by applying
a transformation to x. For instance, {si}di=1 could represent image segments (also referred to as
super-pixels in LIME) or feature maps obtained from a convolutional neural network. Alternatively,
{si}di=1 may correspond to raw features, i.e., x itself. In this context, ∥ · ∥0, ∥ · ∥1, and ∥ · ∥2 denote
the ℓ0, ℓ1, and ℓ2 norms, respectively, with ⊙ representing the element-wise product. Boldface letters
are employed to denote vectors and matrices, while non-boldface letters represent scalars or features.
Bx(ϵ) denotes the ball centered at x with radius ϵ.

2.2 A brief introduction to LIME

In this section, we present the original definition and implementation of LIME [22] in the context of
image classification. LIME, as a local explanation method, constructs a linear model when provided
with an input x that requires an explanation. The coefficients of this linear model serve as the feature
importance explanation for x.

Features. For an input x, LIME computes a feature importance vector for the set of features. In the
image classification setting, for an image x, LIME initially segments x into super-pixels s1, . . . , sd
using a segmentation algorithm such as Quickshift [32]. Each super-pixel is regarded as a feature for
the input x.

Sample generation. Subsequently, LIME generates samples within the local vicinity of x as follows.
First, random samples are generated uniformly from {0, 1}d. The j-th coordinate z′j for each sample
z′ is either 1 or 0, indicating the presence or absence of the super-pixel sj . When sj is absent, it is
replaced by a reference value rj . Common choices for the reference value include a black image, a
blurred version of the super-pixel, or the average value of the super-pixel [29, 22, 8]. Then, these
z′ samples are transformed into samples in the original input space RD by combining them with
x = (s1, . . . , sd) using the element-wise product as follows: z = x⊙ z′ + r⊙ (1− z′), where r is
the vector of reference values for each super-pixel, and ⊙ represents the element-wise product. In
other words, z ∈ X is an image that is the same as x, except that those super-pixels sj with z′j = 0
are replaced by reference values.

Feature attributions. For each sample z′ and the corresponding image z, we compute the prediction
f(z). Finally, LIME solves the following regression problem to obtain a feature importance vector
(also known as feature attributions) for the super-pixels:

wLIME = argmin
v

Ez′∼Uni({0,1}d)[π(z
′)(f(z)− v⊤z′)2] + λ∥v∥22, (1)

where z = x⊙z′+r⊙ (1−z′), π(z′) = exp{−∥1− z′∥22/σ2}, and σ is the kernel width parameter.

Remark 2.1. In practice, we draw samples {z′i}ni=1 from the uniform distribution Uni({0, 1}d) to
estimate the expectation in Equation 1. In the original LIME implementation [22], λ = α/n for a
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constant α > 0. This choice has been widely adopted in prior studies [40, 8, 19, 9, 5, 20, 34]. We
use ŵLIME to represent the empirical estimation of wLIME.

2.3 LIME is unstable and has poor local fidelity

Instability. To capture the local characteristics of the neighborhood around the input x, LIME
utilizes the sample weighting function π(·) to assign low weights to samples that exclude numerous
super-pixels and, consequently, are located far from x. The parameter σ controls the level of locality,
with a small σ assigning high weights exclusively to samples very close to x and a large σ permitting
notable weights for samples farther from x as well. The default value for σ in LIME is 0.25 for image
data. However, as depicted in Figure 1a, LIME demonstrates instability, a phenomenon also noted in
prior studies [35, 24, 34]. As showed in Section 4, this instability arises from small σ values, leading
to very small sample weights and, consequently, slow convergence.

Poor local fidelity. LIME also suffers from poor local fidelity [16, 21]. The sampling space of
LIME is depicted in Figure 1b. Generally, the samples in LIME exhibit considerable distance
from the instance being explained, as illustrated in Figure 3, rendering them non-local. Despite
LIME’s incorporation of weights to promote locality, it fails to provide accurate explanations for local
behaviors when the samples themselves lack local proximity. Moreover, the sampling space of LIME
is influenced by the reference, resulting in a biased sampling space and a consequent degradation of
local fidelity.

3 A general local explanation framework: GLIME

3.1 The definition of GLIME

We first present the definition of GLIME and show how it computes the explanation vector wGLIME.
Analogous to LIME, GLIME functions by constructing a model within the neighborhood of the input
x, utilizing sampled data from this neighborhood. The coefficients obtained from this model are
subsequently employed as the feature importance explanation for x.

Feature space. For the provided input x ∈ X ⊂ RD, the feature importance explanation is computed
for a set of features s = (s1, . . . , sd) derived from applying a transformation to x. These features s
can represent image segments (referred to as super-pixels in LIME) or feature maps obtained from a
convolutional neural network. Alternatively, the features s can correspond to raw features, i.e., the
individual pixels of x. In the context of LIME, the method specifically operates on super-pixels.

Sample generation. Given features s, a sample z′ can be generated from the distribution P defined
on the feature space (e.g., s are super-pixels segmented by a segmentation algorithm such Quickshift
[32] and P = Uni({0, 1}d) in LIME). It’s important to note that z′ may not belong to X and cannot
be directly input into the model f . Consequently, we reconstruct z ∈ RD in the original input space
for each z′ and obtain f(z) (in LIME, a reference r is first chosen and then z = x⊙z′+r⊙ (1−z′)).
Both z and z′ are then utilized to compute feature attributions.

Feature attributions. For each sample z′ and its corresponding z, we compute the prediction f(z).
Our aim is to approximate the local behaviors of f around x using a function g that operates on the
feature space. g can take various forms such as a linear model, a decision tree, or any Boolean function
operating on Fourier bases [37]. The loss function ℓ(f(z), g(z′)) quantifies the approximation gap
for the given sample z′. In the case of LIME, g(z′) = v⊤z′, and ℓ(f(z), g(z′)) = (f(z)− g(z′))2.
To derive feature attributions, the following optimization problem is solved:

wGLIME = argmin
v

Ez′∼P [π(z
′)ℓ(f(z), g(z′))] + λR(v), (2)

where π(·) is a weighting function and R(·) serves as a regularization function, e.g., ∥ · ∥1 or ∥ · ∥22
(which is used by LIME). We use ŵGLIME to represent the empirical estimation of wGLIME.

Connection with Existing Frameworks. Our formulation exhibits similarities with previous frame-
works [22, 12]. The generality of GLIME stems from two key aspects: (1) GLIME operates within
a broader feature space Rd, in contrast to [22], which is constrained to {0, 1}d, and [12], which is
confined to raw features in RD. (2) GLIME can accommodate a more extensive range of distribution
choices tailored to specific use cases.
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3.2 An alternative formulation of GLIME without the weighting function

Indeed, we can readily transform Equation 2 into an equivalent formulation without the weighting
function. While this adjustment simplifies the formulation, it also accelerates convergence by
sampling from the transformed distribution (see Section 4.1 and Figure 4a). Specifically, we define the
transformed sampling distribution as P̃(z′) = π(z′)P(z′)∫

π(t)P(t)dt
. Utilizing P̃ as the sampling distribution,

Equation 2 can be equivalently expressed as

wGLIME = argmin
v

Ez′∼P̃ [ℓ(f(z), g(z
′))] +

λ

Z
R(v), Z = Et∼P [π(t)P(t)] (3)

It is noteworthy that the feature attributions obtained by solving Equation 3 are equivalent to those
obtained by solving Equation 2 (see Appendix B.1 for a formal proof). Therefore, the use of π(·) in
the formulation is not necessary and can be omitted. Hence, unless otherwise specified, GLIME refers
to the framework without the weighting function.

3.3 GLIME unifies several previous explanation methods

This section shows how GLIME unifies previous methods. For a comprehensive understanding of the
background regarding these methods, kindly refer to Appendix A.6.

LIME [22] and GLIME-BINOMIAL. In the case of LIME, it initiates the explanation process
by segmenting pixels x1, · · · , xD into super-pixels s1, · · · , sd. The binary vector z′ ∼ P =
Uni({0, 1}d) signifies the absence or presence of corresponding super-pixels. Subsequently, z =
x⊙ z′ + r⊙ (1− z′). The linear model g(z′) = v⊤z′ is defined on {0, 1}d. For image explanations,
ℓ(f(z), g(z′)) = (f(z)− g(z′))2, and the default setting is π(z′) = exp(−∥1− z′∥20/σ2), R(v) =
∥v∥22 [22]. Remarkably, LIME is equivalent to the special case GLIME-BINOMIAL without the
weighting function (see Appendix B.2 for the formal proof). The sampling distribution of GLIME-
BINOMIAL is defined as P(z′, ∥z′∥0 = k) = ek/σ

2

/(1 + e1/σ
2

)d, where k = 0, 1, . . . , d. This
distribution is essentially a Binomial distribution. To generate a sample z′ ∈ {0, 1}d, one can
independently draw z′i ∈ {0, 1} with P(zi = 1) = 1/(1 + e−1/σ2

) for i = 1, . . . , d. The feature
importance vector obtained by solving Equation 3 under GLIME-BINOMIAL is denoted as wBinomial.

KernelSHAP [19]. In our framework, the formulation of KernelSHAP aligns with that of LIME,
with the only difference being R(v) = 0 and π(z′) = (d− 1)/(

(
d

∥z′∥0

)
∥z′∥0(d− ∥z′∥0)).

SmoothGrad [28]. SmoothGrad functions on raw features, specifically pixels in the case of an image.
Here, z = z′ + x, where z′ ∼ N (0, σ2I). The loss function ℓ(f(z), g(z′)) is represented by the
squared loss, while π(z′) = 1 and R(v) = 0, as established in Appendix B.6.

Gradient [36]. The Gradient explanation is essentially the limit of SmoothGrad as σ approaches 0.

DLIME [35]. DLIME functions on raw features, where P is defined over the training data that have
the same label with the nearest neighbor of x. The linear model g(z′) = v⊤z′ is employed with the
square loss function ℓ and the regularization term R(v) = 0.

ALIME [24]. ALIME employs an auto-encoder trained on the training data, with its feature space
defined as the output space of the auto-encoder. The sample generation process involves introducing
Gaussian noise to x. The weighting function in ALIME is denoted as π(z′) = exp(−∥AE(x) −
AE(z′)∥1), where AE(·) represents the auto-encoder. The squared loss function is chosen as the loss
function and no regularization function is applied.

4 Stable and locally faithful explanations in GLIME

4.1 GLIME-BINOMIAL converges exponentially faster than LIME

To understand the instability of LIME, we demonstrate that the sample weights in LIME are very
small, resulting in the domination of the regularization term. Consequently, LIME tends to produce
explanations that are close to zero. Additionally, the small weights in LIME lead to a considerably
slower convergence compared to GLIME-BINOMIAL, despite both methods converging to the same
limit.
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Figure 2: The distribution and the weight of ∥z′∥0. In LIME, the distribution of ∥z′∥0 follows
a binomial distribution, and it is independent of σ. In GLIME-BINOMIAL, when σ is small, ∥z′∥0
concentrates around d, while in LIME, most samples exhibit negligible weights except for the all-one
vector 1. As σ increases, the distributions in GLIME-BINOMIAL converge to those in LIME, and all
LIME samples attain non-negligible weights.

Small sample weights in LIME. The distribution of the ratio of non-zero elements to the total
number of super-pixels, along with the corresponding weights for LIME and GLIME-BINOMIAL, is
depicted in Figure 2. Notably, most samples exhibit approximately d/2 non-zero elements. However,
when σ takes values such as 0.25 or 0.5, a significant portion of samples attains weights that are
nearly zero. For instance, when σ = 0.25 and ∥z′∥0 = d/2, π(z′) reduces to exp(−8d), which
is approximately 10−70 for d = 20. Even with ∥z′∥0 = d − 1, π(z′) equals e−16, approximating
10−7. Since LIME samples from Uni({0, 1}d), the probability that a sample z′ has ∥z′∥0 = d− 1
or d is approximately 2 × 10−5 when d = 20. Therefore, most samples have very small weights.
Consequently, the sample estimation of the expectation in Equation 1 tends to be much smaller
than the true expectation with high probability and is thus inaccurate (see Appendix B.3 for more
details). Given the default regularization strength λ = 1, this imbalance implies the domination of
the regularization term in the objective function of Equation 1. As a result, LIME tends to yield
explanations close to zero in such cases, diminishing their meaningfulness and leading to instability.

GLIME converges exponentially faster than LIME in the presence of regularization. Through
the integration of the weighting function into the sampling process, every sample uniformly carries a
weight of 1, contributing equally to Equation 3. Our analysis reveals that GLIME requires substantially
fewer samples than LIME to transition beyond the regime where the regularization term dominates.
Consequently, GLIME-BINOMIAL converges exponentially faster than LIME. Recall that ŵLIME

and ŵGLIME represent the empirical solutions of Equation 1 and Equation 3, respectively, obtained
by replacing the expectations with the sample average. ŵBINOMIAL is the empirical solution of
Equation 3 with the transformed sampling distribution P̃(z′, ∥z′∥0 = k) = ek/σ

2

/(1 + e1/σ
2

)d,
where k = 0, 1, · · · , d. In the subsequent theorem, we present the sample complexity bound for
LIME (refer to Appendix B.4 for proof).

Theorem 4.1. Suppose samples {z′i}ni=1 ∼ Uni({0, 1}d) are used to compute the LIME explanation.
For any ϵ > 0, δ ∈ (0, 1), if n = Ω(ϵ−2d928de8/σ

2

log(4d/δ)), λ ≤ n, we have P(∥ŵLIME −
wLIME∥2 < ϵ) ≥ 1− δ. wLIME = limn→∞ ŵLIME.

Next, we present the sample complexity bound for GLIME (refer to Appendix B.5 for proof).

Theorem 4.2. Suppose z′∼P such that the largest eigenvalue of z′(z′)⊤ is bounded by R and
E[z′(z′)⊤] = (α1 − α2)I + α211

⊤, ∥Var(z′(z′)⊤)∥2 ≤ ν2, |(z′f(z))i| ≤ M for some M > 0.
{z′i}ni=1 are i.i.d. samples from P and are used to compute GLIME explanation ŵGLIME. For any
ϵ > 0, δ ∈ (0, 1), if n = Ω(ϵ−2M2ν2d3γ4 log(4d/δ)) where γ is a function of λ, d, α1, α2, we have
P(∥ŵGLIME −wGLIME∥2 < ϵ) ≥ 1− δ. wGLIME = limn→∞ ŵGLIME.

Since GLIME-BINOMIAL samples from a binomial distribution, which is sub-Gaussian with param-
eters M =

√
d, ν = 2, α1 = 1/(1 + e−1/σ2

), α2 = 1/(1 + e−1/σ2

)2, and γ(α1, α2, d) = de2/σ
2

(refer to Appendix B.5 for proof), we derive the following corollary:

Corollary 4.3. Suppose {z′i}ni=1 are i.i.d. samples from P̃(z′, ∥z′∥0 = k) = ek/σ
2

/(1+e1/σ
2

)d, k =
1, . . . , d and are used to compute GLIME-BINOMIAL explanation. For any ϵ > 0, δ ∈ (0, 1), if
n = Ω(ϵ−2d5e4/σ

2

log(4d/δ)), we have P(∥ŵBinomial − wBinomial∥2 < ϵ) ≥ 1 − δ. wBinomial =
limn→∞ ŵBinomial.
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Figure 3: The distribution of sample distances to the original input. The samples produced by
LIME display a considerable distance from the original input x, whereas the samples generated by
GLIME demonstrate a more localized distribution. LIME has a tendency to overlook sampling points
that are in close proximity to x.

Comparing the sample complexities outlined in Theorem 4.1 and Corollary 4.3, it becomes evident
that LIME necessitates an exponential increase of exp(d, σ−2) more samples than GLIME-BINOMIAL
for convergence. Despite both LIME and GLIME-BINOMIAL samples being defined on the binary
set {0, 1}, the weight π(z′) associated with a sample z′ in LIME is notably small. Consequently,
the square loss term in LIME is significantly diminished compared to that in GLIME-BINOMIAL.
This situation results in the domination of the regularization term over the square loss term, leading
to solutions that are close to zero. For stable solutions, it is crucial that the square loss term is
comparable to the regularization term. Consequently, GLIME-BINOMIAL requires significantly fewer
samples than LIME to achieve stability.

4.2 Designing locally faithful explanation methods within GLIME

Non-local and biased sampling in LIME. LIME employs uniform sampling from {0, 1}d and
subsequently maps the samples to the original input space X with the inclusion of a reference.
Despite the integration of a weighting function to enhance locality, the samples {zi}ni=1 generated by
LIME often exhibit non-local characteristics, limiting their efficacy in capturing the local behaviors
of the model f (as depicted in Figure 3). This observation aligns with findings in [16, 21], which
demonstrate that LIME frequently approximates the global behaviors instead of the local behaviors
of f . As illustrated earlier, the weighting function contributes to LIME’s instability, emphasizing the
need for explicit enforcement of locality in the sampling process.

Local and unbiased sampling in GLIME. In response to these challenges, GLIME introduces a
sampling procedure that systematically enforces locality without reliance on a reference point. One
approach involves sampling z′ ∼ P = N (0, σ2I) and subsequently obtaining z = x + z′. This
method, referred to as GLIME-GAUSS, utilizes a weighting function π(·) ≡ 1, with other components
chosen to mirror those of LIME. The feature attributions derived from this approach successfully
mitigate the aforementioned issues. Similarly, alternative distributions, such as P = Laplace(0, σ) or
P = Uni([−σ, σ]d), can be employed, resulting in explanation methods known as GLIME-LAPLACE
and GLIME-UNIFORM, respectively.

4.3 Sampling distribution selection for user-specific objectives

Users may possess specific objectives they wish the explanation method to fulfill. For instance, if a
user seeks to enhance local fidelity within a neighborhood of radius ϵ, they can choose a distribution
and corresponding parameters aligned with this objective (as depicted in Figure 5). The flexible
design of the sample distribution in GLIME empowers users to opt for a distribution that aligns with
their particular use cases. Furthermore, within the GLIME framework, it is feasible to integrate feature
correlation into the sampling distribution, providing enhanced flexibility. In summary, GLIME affords
users the capability to make more tailored choices based on their individual needs and objectives.
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5 Experiments

Dataset and models. Our experiments are conducted on the ImageNet dataset1. Specifically, we
randomly choose 100 classes and select an image at random from each class. The models chosen for
explanation are ResNet18 [13] and the tiny Swin-Transformer [18] (refer to Appendix A.7 for results).
Our implementation is derived from the official implementation of LIME2. The default segmentation
algorithm in LIME, Quickshift [32], is employed. Implementation details of our experiments are
provided in Appendix A.1. For experiment results on text data, please refer to Appendix A.9. For
experiment results on ALIME, please refer to Appendix A.8.

Metrics. (1) Stability: To gauge the stability of an explanation method, we calculate the average
top-K Jaccard Index (JI) for explanations generated by 10 different random seeds. Let w1, . . . ,w10

denote the explanations obtained from 10 random seeds. The indices corresponding to the top-K
largest values in wi are denoted as Ri,:K . The average Jaccard Index between pairs of Ri,:K and
Rj,:K is then computed, where JI(A,B) = |A ∩B|/|A ∪B|.
(2) Local Fidelity: To evaluate the local fidelity of explanations, reflecting how well they capture
the local behaviors of the model, we employ two approaches. For LIME, which uses a non-local
sampling neighborhood, we use the R2 score returned by the LIME implementation for local fidelity
assessment [33]. Within GLIME, we generate samples {zi}mi=1 and {z′i}mi=1 from the neighborhood
Bx(ϵ). The squared difference between the model’s output and the explanation’s output on these
samples is computed. Specifically, for a sample z, we calculate (f(z)− ŵ⊤z′)2 for the explanation
ŵ. The local fidelity of an explanation ŵ at the input x is defined as 1/(1+ 1

m

∑
i(f(zi)− ŵ⊤z′i)

2),
following the definition in [16]. To ensure a fair comparison between different distributions in
GLIME, we set the variance parameter of each distribution to match that of the Gaussian distribution.
For instance, when sampling from the Laplace distribution, we use Laplace(0, σ/

√
2), and when

sampling from the uniform distribution, we use Uni([−
√
3σ,

√
3σ]d).

5.1 Stability of LIME and GLIME

LIME’s instability and the influence of regularization/weighting. In Figure 4a, it is evident that
LIME without the weighting function (LIME + π = 1) demonstrates greater stability compared to its
weighted counterpart, especially when σ is small (e.g., σ = 0.25, 0.5). This implies that the weighting
function contributes to instability in LIME. Additionally, we observe that LIME without regularization
(LIME + λ = 0) exhibits higher stability than the regularized LIME, although the improvement is
not substantial. This is because, when σ is small, the sample weights approach zero, causing the
Ridge regression problem to become low-rank, leading to unstable solutions. Conversely, when σ is
large, significant weights are assigned to all samples, reducing the effectiveness of regularization.
For instance, when σ = 5 and d = 40, most samples carry weights around 0.45, and even samples
with only one non-zero element left possess weights of approximately 0.2. In such scenarios, the
regularization term does not dominate, even with limited samples. This observation is substantiated
by the comparable performance of LIME, LIME+π = 1, and LIME+λ = 0 when σ = 1 and 5.
Further results are presented in Appendix A.2.

Enhancing stability in LIME with GLIME. In Figure 4a, it is evident that LIME achieves a Jaccard
Index of approximately 0.4 even with over 2000 samples when using the default σ = 0.25. In contrast,
both GLIME-BINOMIAL and GLIME-GAUSS provide stable explanations with only 200-400 samples.
Moreover, with an increase in the value of σ, the convergence speed of LIME also improves. However,
GLIME-BINOMIAL consistently outperforms LIME, requiring fewer samples for comparable stability.
The logarithmic scale of the horizontal axis in Figure 4a highlights the exponential faster convergence
of GLIME compared to LIME.

Convergence of LIME and GLIME-BINOMIAL to a common limit. In Figure 8 of Appendix A.3,
we explore the difference and correlation between explanations generated by LIME and GLIME-
BINOMIAL. Mean Squared Error (MSE) and Mean Absolute Error (MAE) are employed as metrics
to quantify the dissimilarity between the explanations, while Pearson correlation and Spearman rank
correlation assess their degree of correlation. As the sample size increases, both LIME and GLIME-

1Code is available at https://github.com/thutzr/GLIME-General-Stable-and-Local-LIME-Explanation
2https://github.com/marcotcr/lime
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(a) Stability of various methods. The reported met-
ric is the Top-20 Jaccard index. Instances of LIME
with no regularization and no weighting are denoted
as LIME+λ = 0 and LIME+π = 1, respectively.
LIME exhibits instability when σ is small, whereas
GLIME demonstrates enhanced stability across differ-
ent σ values. Notably, LIME achieves greater stability
without weighting or regularization when σ is small.
Conversely, regularization and weighting have mini-
mal impact on the stability of LIME when σ is large.
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(b) R2 comparison between LIME and various
GLIME methods with different sampling distribu-
tions. We utilize 2048 samples to compute explana-
tions and the corresponding R2 for each image and
each method. LIME exhibits nearly zero R2 when
σ = 0.25 and 0.5, suggesting minimal explanatory
power. In general, the R2 of LIME is consistently
lower than that of GLIME, underscoring GLIME’s en-
hancement in local fidelity.

Figure 4: GLIME consistently enhances stability and local fidelity compared to LIME across various
values of σ.
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Figure 5: Local fidelity of GLIME across different neighborhood radii. Explanations produced
under a distribution with a standard deviation of σ demonstrate the ability to capture behaviors within
local neighborhoods with radii exceeding σ.

BINOMIAL exhibit greater similarity and higher correlation. The dissimilarity in their explanations
diminishes rapidly, approaching zero when σ is significantly large (e.g., σ = 5).

5.2 Local fidelity of LIME and GLIME

Enhancing local fidelity with GLIME. A comparison of the local fidelity between LIME and the
explanation methods generated by GLIME is presented in Figure 4b. Utilizing 2048 samples for each
image to compute the R2 score, GLIME consistently demonstrates superior local fidelity compared
to LIME. Particularly, when σ = 0.25 and 0.5, LIME exhibits local fidelity that is close to zero,
signifying that the linear approximation model (ŵLIME)⊤z′ is nearly constant. Through the explicit
integration of locality into the sampling process, GLIME significantly improves the local fidelity of
the explanations.

Local fidelity analysis of GLIME under various sampling distributions. In Figure 5, we assess the
local fidelity of GLIME employing diverse sampling distributions: N (0, σ2I), Laplace(0, σ/

√
2),
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(a) Human-interpretability results for accurate pre-
dictions. Participants consistently rated GLIME sig-
nificantly higher than LIME, indicating that GLIME
serves as a more effective tool for explaining model
predictions.

(b) Human-interpretability results for incorrect
predictions. Participants consistently rated GLIME
significantly higher than LIME, indicating that GLIME
excels in identifying the model’s errors more effec-
tively than LIME.

Figure 6: GLIME helpes explaining model predictions better than LIME.

and Uni([−
√
3σ,

√
3σ]d). The title of each sub-figure corresponds to the standard deviation of these

distributions. Notably, we observe that the value of σ does not precisely align with the radius ϵ of the
intended local neighborhood for explanation. Instead, local fidelity tends to peak at larger ϵ values
than the corresponding σ. Moreover, different sampling distributions achieve optimal local fidelity
for distinct ϵ values. This underscores the significance of selecting an appropriate distribution and
parameter values based on the specific radius ϵ of the local neighborhood requiring an explanation.
Unlike LIME, GLIME provides the flexibility to accommodate such choices. For additional results
and analysis, please refer to Appendix A.5.

5.3 Human experiments

In addition to numerical experiments, we conducted human-interpretability experiments to evaluate
whether GLIME provides more meaningful explanations to end-users. The experiments consist of two
parts, with 10 participants involved in each. The details of the procedures employed in conducting
the experiments is presented in the following.

1. Can GLIME improve the comprehension of the model’s predictions? To assess this, we choose
images for which the model’s predictions are accurate. Participants are presented with the original
images, accompanied by explanations generated by both LIME and GLIME. They are then asked
to evaluate the degree of alignment between the explanations from these algorithms and their
intuitive understanding. Using a 1-5 scale, where 1 indicates a significant mismatch and 5 signifies
a strong correspondence, participants rate the level of agreement.

2. Can GLIME assist in identifying the model’s errors? To explore this, we select images for
which the model’s predictions are incorrect. Participants receive the original images along with
explanations generated by both LIME and GLIME. They are then asked to assess the degree to
which these explanations aid in understanding the model’s behaviors and uncovering the reasons
behind the inaccurate predictions. Using a 1-5 scale, where 1 indicates no assistance and 5
signifies substantial aid, participants rate the level of support provided by the explanations.

Figure 6 presents the experimental results. When participants examined images with accurate model
predictions, along with explanations from LIME and GLIME, they assigned an average score of 2.96
to LIME and 3.37 to GLIME. On average, GLIME received a score 0.41 higher than LIME. Notably,
in seven out of the ten instances, GLIME achieved a higher average score than LIME.

In contrast, when participants examined images with incorrect model predictions, accompanied by
explanations from LIME and GLIME, they assigned an average score of 2.33 to LIME and 3.42 to
GLIME. Notably, GLIME outperformed LIME with an average score 1.09 higher across all ten images.
These results strongly indicate that GLIME excels in explaining the model’s behaviors.
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6 Related work

Post-hoc local explanation methods. In contrast to inherently interpretable models, black-box
models can be explained through post-hoc explanation methods, which are broadly categorized as
model-agnostic or model-specific. Model-specific approaches, such as Gradient [2, 27], SmoothGrad
[28], and Integrated Gradient [30], assume that the explained model is differentiable and that gradient
access is available. For instance, SmoothGrad generates samples from a Gaussian distribution
centered at the given input and computes their average gradient to mitigate noise. On the other
hand, model-agnostic methods, including LIME [22] and Anchor [23], aim to approximate the local
model behaviors using interpretable models, such as linear models or rule lists. Another widely-used
model-agnostic method, SHAP [19], provides a unified framework that computes feature attributions
based on the Shapley value and adheres to several axioms.

Instability of LIME. Despite being widely employed, LIME is known to be unstable, evidenced by
divergent explanations under different random seeds [35, 34, 38]. Many efforts have been devoted
to stabilize LIME explanations. Zafar et al. [35] introduced a deterministic algorithm that utilizes
hierarchical clustering for grouping training data and k-nearest neighbors for selecting relevant data
samples. However, the resulting explanations may not be a good local approximation. Addressing
this concern, Shankaranarayana et al. [24] trained an auto-encoder to function as a more suitable
weighting function in LIME. Shi et al. [25] incorporated feature correlation into the sampling step
and considered a more restricted sampling distribution, thereby enhancing stability. Zhou et al. [40]
employed a hypothesis testing framework to determine the necessary number of samples for ensuring
stable explanations. However, this improvement came at the expense of a substantial increase in
computation time.

Impact of references. LIME, along with various other explanation methods, relies on references
(also known as baseline inputs) to generate samples. References serve as uninformative inputs
meant to represent the absence of features [4, 30, 26]. Choosing an inappropriate reference can lead
to misleading explanations. For instance, if a black image is selected as the reference, important
black pixels may not be highlighted [15, 6]. The challenge lies in determining the appropriate
reference, as different types of references may yield different explanations [14, 6, 15]. In [15],
both black and white references are utilized, while [7] employs constant, noisy, and Gaussian blur
references simultaneously. To address the reference specification issue, [6] proposes Expected
Gradient, considering each instance in the data distribution as a reference and averaging explanations
computed across all references.

7 Conclusion

In this paper, we introduce GLIME, a novel framework that extends the LIME method for local
feature importance explanations. By explicitly incorporating locality into the sampling procedure
and enabling more flexible distribution choices, GLIME mitigates the limitations of LIME, such as
instability and low local fidelity. Experimental results on ImageNet data demonstrate that GLIME
significantly enhances stability and local fidelity compared to LIME. While our experiments primarily
focus on image data, the applicability of our approach readily extends to text and tabular data.
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A More discussions

A.1 Implementation details

Dataset selection. The experiments use images from the validation set of the ImageNet-1k dataset. To
ensure consistency, a fixed random seed (2022) is employed. Specifically, 100 classes are uniformly
chosen at random, and for each class, an image is randomly selected.

Models. The pretrained models used are sourced from torchvision.models, with the weights
parameter set to IMAGENET1K_V1.

Feature transformation. The initial step involves cropping each image to dimensions of (224,
224, 3). The quickshift method from scikit-image is then employed to segment images into
super-pixels, with specific parameters set as follows: kernel_size=4, max_dist=200, ratio=0.2,
and random_seed=2023. This approach aligns with the default setting in LIME, except for the
modified fixed random seed. Consistency in the random seed ensures that identical images result in
the same super-pixels, thereby isolating the source of instability to the calculation of explanations.
However, for different images, they are still segmented in different ways.

Computing explanations. The implemented procedure follows the original setup in LIME. The
hide_color parameter is configured as None, causing the average value of each super-pixel to act
as its reference when the super-pixel is removed. The distance_metric is explicitly set to l2, as
recommended for image data in LIME [22]. The default value for alpha in Ridge regression is 1,
unless otherwise specified. For each image, the model f infers the most probable label, and the
explanation pertaining to that label is computed. Ten different random seeds are utilized to compute
explanations for each image. The random_seed parameter in both the LimeImageExplainer and
the explain_instance function is set to these specific random seeds.

A.2 Stability of LIME and GLIME

Figure 7 illustrates the top-1, top-5, top-10, and average Jaccard indices. Importantly, the results
presented in Figure 7 closely align with those in Figure 4a. In summary, it is evident that GLIME
consistently provides more stable explanations compared to LIME.

A.3 LIME and GLIME-BINOMIAL converge to the same limit

In Figure 8, the difference and correlation between explanations generated by LIME and GLIME-
BINOMIAL are presented. With an increasing sample size, the explanations from LIME and GLIME-
BINOMIAL become more similar and correlated. The difference between their explanations rapidly
converges to zero, particularly when σ is large, such as in the case of σ = 5. While LIME exhibits
a slower convergence, especially with small σ, it is impractical to continue sampling until their
difference fully converges. Nevertheless, the correlation between LIME and GLIME-BINOMIAL
strengthens with an increasing number of samples, indicating their convergence to the same limit as
the sample size grows.

A.4 LIME explanations are different for different references.

The earlier work by Jain et al. [14] has underscored the instability of LIME regarding references.
As shown in Section 4.2, this instability originates from LIME’s sampling distribution, which relies
on the chosen reference r. Additional empirical evidence is presented in Figure 9. Six distinct
references—black, white, red, blue, yellow image, and the average value of the removed super-pixel
(the default setting for LIME)—are selected. The average Jaccard indices for explanations computed
using these various references are detailed in Figure 9. The results underscore the sensitivity of LIME
to different references.

Different references result in LIME identifying distinct features as the most influential, even with a
sample size surpassing 2000. Particularly noteworthy is that, with a sample size exceeding 2000, the
top-1 Jaccard index consistently remains below 0.7, underscoring LIME’s sensitivity to reference
variations.
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(a) Top-1 Jaccard indices for various methods.
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(b) Top-5 Jaccard indices for various methods.
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(c) Top-10 Jaccard indices for various methods.
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(d) Average Jaccard indices for various methods.

Figure 7: Top-1, 5, 10, and average Jaccard indices are computed for various methods. The average
Jaccard index is obtained by averaging the top-1 to top-d Jaccard indices.
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Figure 8: Difference and correlation between LIME and GLIME-BINOMIAL explanations. Mean
Squared Error (MSE) and Mean Absolute Error (MAE) serve as metrics to evaluate the dissimilarity
between explanations provided by LIME and GLIME-BINOMIAL. Pearson and Spearman correlation
coefficients are employed to quantify the correlation between these explanations. With an increasing
number of samples, the explanations from LIME and GLIME-BINOMIAL tend to show greater
similarity. Notably, the dissimilarity and correlation of explanations between LIME and GLIME-
BINOMIAL converge more rapidly when σ is higher.
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Figure 9: The Top-K Jaccard index of explanations, computed with different references, consistently
stays below 0.7, even when the sample size exceeds 2000.
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Figure 10: The local fidelity of GLIME in the ℓ1 neighborhood

A.5 The local fidelity of GLIME

Figure 5 presents the local fidelity of GLIME, showcasing samples from the ℓ2 neighborhood
{z|∥z − x∥2 ≤ ϵ} around x. Additionally, Figure 10 and Figure 11 illustrate the local fidelity of
GLIME within the ℓ1 neighborhood {z|∥z− x∥1 ≤ ϵ} and the ℓ∞ neighborhood {z|∥z− x∥∞ ≤ ϵ},
respectively.

A comparison between Figure 5 and Figure 10 reveals that, for the same σ, GLIME can explain the
local behaviors of f within a larger radius in the ℓ1 neighborhood compared to the ℓ2 neighborhood.
This difference arises from the fact that {z|∥z− x∥2 ≤ ϵ} defines a larger neighborhood compared
to {z|∥z− x∥1 ≤ ϵ} with the same radius ϵ.

Likewise, the set {z|∥z − x∥∞ ≤ ϵ} denotes a larger neighborhood than {z|∥z − x∥2 ≤ ϵ},
causing the local fidelity to peak at a smaller radius ϵ for the ℓ∞ neighborhood compared to the ℓ2
neighborhood under the same σ.

Remarkably, GLIME-LAPLACE consistently demonstrates superior local fidelity compared to GLIME-
GAUSS and GLIME-UNIFORM. Nevertheless, in cases with larger ϵ, GLIME-GAUSS sometimes
surpasses the others. This observation implies that the choice of sampling distribution should be
contingent on the particular radius of the local neighborhood intended for explanation by the user.
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Figure 11: The local fidelity of GLIME in the ℓ∞ neighborhood
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A.6 GLIME unifies several previous methods

KernelSHAP [19]. KernelSHAP integrates the principles of LIME and Shapley values. While LIME
employs a linear explanation model to locally approximate f , KernelSHAP seeks a linear explanation
model that adheres to the axioms of Shapley values, including local accuracy, missingness, and
consistency [19]. Achieving this involves careful selection of the loss function ℓ(·, ·), the weighting
function π(·), and the regularization term R. The choices for these parameters in LIME often violate
local accuracy and/or consistency, unlike the selections made in KernelSHAP, which are proven to
adhere to these axioms (refer to Theorem 2 in [19]).

Gradient [2, 27]. This method computes the gradient ∇f to assess the impact of each feature under
infinitesimal perturbation [2, 27].

SmoothGrad [28]. Acknowledging that standard gradient explanations may contain noise, Smooth-
Grad introduces a method to alleviate noise by averaging gradients within the local neighbor-
hood of the explained input [28]. Consequently, the feature importance scores are computed as
Eϵ∼N (0,σ2I)[∇f(x+ ϵ)].

DLIME [35]. Diverging from random sampling, DLIME seeks a deterministic approach to sample
acquisition. In its process, DLIME employs agglomerative Hierarchical Clustering to group the
training data, and subsequently utilizes k-Nearest Neighbour to select the cluster corresponding to
the explained instance. The DLIME explanation is then derived by constructing a linear model based
on the data points within the identified cluster.

ALIME [24]: ALIME leverages an auto-encoder to assign weights to samples. Initially, an auto-
encoder, denoted as AE(·), is trained on the training data. Subsequently, the method involves
sampling n nearest points to x from the training dataset. The distances between these samples and
the explained instance x are assessed using the ℓ1 distance between their embeddings, obtained
through the application of the auto-encoder AE(·). For a sample z, its distance from x is measured as
∥AE(z)−AE(x)∥1, and its weight is computed as exp(−∥AE(z)−AE(x)∥1). The final explanation
is derived by solving a weighted Ridge regression problem.

A.7 Results on tiny Swin-Transformer [18]

The findings on the tiny Swin-Transformer align with those on ResNet18, providing additional
confirmation that GLIME enhances stability and local fidelity compared to LIME. Please refer to
Figure 12, Figure 13 and Figure 14 for results.

A.8 Comparing GLIME with ALIME

While ALIME [24] improves upon the stability and local fidelity of LIME, GLIME consistently
surpasses ALIME. A key difference between ALIME and LIME lies in their methodologies: ALIME
employs an encoder to transform samples into an embedding space, calculating their distance from
the input to be explained as ∥AE(z)−AE(x)∥1, whereas LIME utilizes a binary vector z ∈ {0, 1}d
to represent a sample, measuring the distance from the explained input as ∥1− z∥2.

Because ALIME relies on distance in the embedding space to assign weights to samples, there is
a risk of generating very small sample weights if the produced samples are far from x, potentially
resulting in instability issues.

In our ImageNet experiments comparing GLIME and ALIME, we utilize the VGG16 model from the
repository imagenet-autoencoder3 as the encoder in ALIME. The outcomes of these experiments
are detailed in Table 1. The findings demonstrate that, although ALIME demonstrates enhanced
stability compared to LIME, this improvement is not as substantial as the improvement achieved by
GLIME, particularly under conditions of small σ or sample size.

A.9 Experiment results on IMDb

The DistilBERT model is employed in experimental evaluations on the IMDb dataset, where 100
data points are selected for explanation. The comparison between GLIME-BINOMIAL and LIME

3https://github.com/Horizon2333/imagenet-autoencoder
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(a) Stability across various methods (tiny Swin-
Transformer). The reported metric is the Top-20
Jaccard index. LIME+λ = 0 and LIME+π = 1
represent LIME without regularization and without
weighting, respectively. LIME exhibits instability, par-
ticularly when σ is small, whereas GLIME demon-
strates enhanced stability across varying σ values.
Notably, in the absence of weighting or regulariza-
tion, LIME’s stability significantly improves when σ
is small. Conversely, the impact of regularization and
weighting on LIME’s stability is marginal when σ is
large.
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(b) R2 comparison among LIME and GLIME vari-
ants with different sampling distributions (tiny
Swin-Transformer). For each image and method,
2048 samples are utilized to compute the explana-
tion and the corresponding R2. Notably, LIME yields
nearly zero R2 when σ = 0.25 and 0.5, indicating
an almost negligible explanation produced by LIME.
In contrast, the R2 values of LIME are consistently
lower than those of GLIME, underscoring that GLIME
enhances the local fidelity of LIME.

Figure 12: GLIME markedly enhances both stability and local fidelity compared to LIME across
various values of σ.

Table 1: Top-20 Jaccard Index of GLIME-BINOMIAL, GLIME-GAUSS, and ALIME. GLIME-
BINOMIAL and GLIME-GAUSS exhibit significantly higher stability than ALIME, particularly in
scenarios with small σ or limited samples.

# samples 128 256 512 1024

σ = 0.25
GLIME-BINOMIAL 0.952 0.981 0.993 0.998
GLIME-GAUSS 0.872 0.885 0.898 0.911
ALIME 0.618 0.691 0.750 0.803

σ = 0.5
GLIME-BINOMIAL 0.596 0.688 0.739 0.772
GLIME-GAUSS 0.875 0.891 0.904 0.912
ALIME 0.525 0.588 0.641 0.688

σ = 1
GLIME-BINOMIAL 0.533 0.602 0.676 0.725
GLIME-GAUSS 0.883 0.894 0.908 0.915
ALIME 0.519 0.567 0.615 0.660

σ = 5
GLIME-BINOMIAL 0.493 0.545 0.605 0.661
GLIME-GAUSS 0.865 0.883 0.898 0.910
ALIME 0.489 0.539 0.589 0.640

is depicted in Figure 15 using the Jaccard Index. Our findings indicate that GLIME-BINOMIAL
consistently exhibits higher stability than LIME across a range of σ values and sample sizes. Notably,
at smaller σ values, GLIME-BINOMIAL demonstrates a substantial improvement in stability compared
to LIME.
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(a) Top-1 Jaccard index of different methods (tiny
Swin-Transformer).
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(b) Top-5 Jaccard index of different methods (tiny
Swin-Transformer).

10
2

10
3

# samples (log scale)

0.2

0.4

0.6

0.8

1.0

To
p-

10
 J

ac
ca

rd
 In

de
x

σ=0.25
GLIME--Binomial
GLIME--Gauss
LIME
LIME+λ=0
LIME+π=1

10
2

10
3

# samples (log scale)

0.2

0.4

0.6

0.8

To
p-

10
 J

ac
ca

rd
 In

de
x

σ=0.50

10
2

10
3

# samples (log scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

10
 J

ac
ca

rd
 In

de
x

σ=1.00

10
2

10
3

# samples (log scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

10
 J

ac
ca

rd
 In

de
x

σ=5.00

(c) Top-10 Jaccard index of different methods (tiny
Swin-Transformer).
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(d) Average Jaccard index of different methods (tiny
Swin-Transformer).

Figure 13: Top-1, 5, 10, and average Jaccard indices are calculated for various methods, and the
average Jaccard index represents the mean of top-1, · · · , d indices for the tiny Swin-Transformer.
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Figure 14: Difference and correlation in LIME and GLIME-BINOMIAL explanations (tiny
Swin-Transformer). Mean Squared Error (MSE) and Mean Absolute Error (MAE) quantify the
divergence between LIME and GLIME-BINOMIAL explanations. Pearson and Spearman correlation
coefficients gauge the correlation. With an increasing sample size, the explanations tend to align
more closely. Notably, the difference and correlation converge more rapidly with larger values of σ.
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(a) Stability comparison between GLIME-
BINOMIAL and LIME. The top-20 Jaccard index is
reported, illustrating that GLIME displays superior
stability compared to LIME across diverse values of
σ. Notably, GLIME’s stability remains consistently
robust, showing limited sensitivity to changes in σ.
In contrast, LIME exhibits increased stability as σ
values grow larger.

(b) Comparison of R2 between LIME and GLIME-
BINOMIAL under various sampling distributions.
Using 2048 samples for explanation computation, R2

values are computed for each image and method. It
is noteworthy that when σ = 0.25, LIME exhibits
nearly negligible R2 values.

Figure 15: GLIME significantly enhances both stability and local fidelity compared to LIME across
various σ values.

B Proofs

B.1 Equivalent GLIME formulation without π(·)

By integrating the weighting function into the sampling distribution, the problem to be solved is

wGLIME =argmin
v

Ez′∼P [π(z
′)ℓ(f(z), g(z′))] + λR(v)

= argmin
v

∫
Rd

π(z′)ℓ(f(z), g(z′))P(z)dz+ λR(v)

=
argminv

∫
Rd ℓ(f(z), g(z

′))π(z′)P(z)dz+ λR(v)∫
Rd π(u′)P(u)du

=argmin
v

∫
Rd ℓ(f(z), g(z

′))π(z′)P(z)dz∫
Rd π(u′)P(u)du

+
λR(v)∫

Rd π(u′)P(u)du

=argmin
v

∫
Rd

ℓ(f(z), g(z′))P̃(z)dz+
λ

Z
R(v) P̃(z) =

π(z′)P(z)

Z
,Z =

∫
Rd

π(u′)P(u)du

=argmin
v

Ez′∼P̃ [ℓ(f(z), g(z
′))] +

λ

Z
R(v)

B.2 Equivalence between LIME and GLIME-BINOMIAL

For LIME, P = Uni({0, 1}d) and thus P(z′, ∥z′∥0 = k) = 1
2d
, k = 0, 1, · · · , d, so that

Z =

∫
Rd

π(u′)P(u)du =

d∑
k=0

e(k−d)/σ2

(
d
k

)
2d

=
e−d/σ2

2d
(1 + e1/σ

2

)d

Thus, we have

P̃(z) =
π(z′)P(z)

Z
=

e(k−d)/σ2

2−d

Z
=

ek/σ
2

(1 + e1/σ2)d

Therefore, GLIME-BINOMIAL is equivalent to LIME.
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B.3 LIME requires many samples to accurately estimate the expectation term in Equation 1.

In Figure 2, it is evident that a lot of samples generated by LIME possess considerably small weights.
Consequently, the sample estimation of the expectation in Equation 1 tends to be much smaller than
the true expectation with high probability. In such instances, the regularization term would have a
dominant influence on the overall objective.

Consider specific parameters, such as σ = 0.25, n = 1000, d = 20 (where σ and n are the
default values in the original implementation of LIME). The probability of obtaining a sample
z′ with ∥z′∥0 = d − 1 or d is approximately d

2d
+ 1

2d
= d+1

2d
≈ 2 × 10−5. Let’s consider a

typical scenario where |f(z)| ∈ [0, 1], and (f(z) − v⊤z′)2 is approximately 0.1 for most z, z′. In

this case, Ez′∼Uni({0,1}d)[π(z
′)(f(z) − v⊤z′)2] ≈ 0.1 ·

∑d
k=0

e(k−d)/σ2

2d
≈ 10−7. However, if we

lack samples z′ with ∥z′∥0 = d − 1 or d, then all samples z′i with ∥z′i∥0 ≤ d − 2 have weights
π(z′i) ≤ exp(− 2

σ2 ) ≈ 1.26 × 10−14. This leads to the sample average 1
n

∑n
i=1 π(z

′
i)(f(zi) −

v⊤z′i)
2 ≤ 1.26 × 10−15 ≪ 10−7. The huge difference between the magnitude of the expectation

term in Equation 1 and the sample average of this expectation indicates that the sample average is not
an accurate estimation of Ez′∼Uni({0,1}d)[π(z

′)(f(z)− v⊤z′)2] (if we do not get enough samples).
Additionally, under these circumstances, the regularization term is likely to dominate the sample
average term, leading to an underestimation of the intended value of v. In conclusion, the original
sampling method for LIME, even with extensively used default parameters, is not anticipated to yield
meaningful explanations.

B.4 Proof of Theorem 4.1

Theorem B.1. Suppose samples {z′i}ni=1 ∼ Uni({0, 1}d) are used to compute LIME explanation. For
any ϵ > 0, δ ∈ (0, 1), if n = Ω(ϵ−2d524de4/σ

2

log(4d/δ)), λ ≤ n, we have P(∥ŵLIME −wLIME∥2 <
ϵ) ≥ 1− δ. wLIME = limn→∞ ŵLIME.

Proof. To compute the LIME explanation with n samples, the following optimization problem is
solved:

ŵLIME = argmin
v

1

n

n∑
i=1

π(z′i)(f(zi)− v⊤z′i)
2 +

λ

n
∥v∥22.

Let L = 1
n

∑n
i=1 π(z

′
i)(f(zi) − v⊤z′i)

2 + λ
n∥v∥

2
2. Setting the gradient of L with respect to v to

zero, we obtain:

−2
1

n
π(z′i)(f(zi)− v⊤z′i)z

′
i +

2

n
λv = 0,

which leads to:

ŵLIME =

(
1

n

n∑
i=1

π(z′i)z
′
i(z

′
i)

⊤ +
λ

n

)−1(
1

n

n∑
i=1

π(z′i)z
′
if(zi)

)
.

Denote Σn = 1
n

∑n
i=1 π(z

′
i)z

′
i(z

′
i)

⊤ + λ
n , Γn = 1

n

∑n
i=1 π(z

′
i)z

′
if(zi), Σ = limn→∞ Σn, and

Γ = limn→∞ Γn. Then, we have:
ŵLIME = Σ−1

n Γn, wLIME = Σ−1Γ.

To prove the concentration of ŵLIME, we follow the proofs in [8]: (1) First, we prove the concentration
of Σn; (2) Then, we bound ∥Σ−1∥2F ; (3) Next, we prove the concentration of Γn; (4) Finally, we use
the following inequality:

∥Σ−1
n Γn −Σ−1Γ∥ ≤ 2∥Σ−1∥F ∥Γn − Γ∥2 + 2∥Σ−1∥2F ∥Γ∥∥Σn −Σ∥,

when ∥Σ−1(Σn −Σ)∥ ≤ 0.32 [8].

Before establishing concentration results, we first derive the expression for Σ.

Expression of Σ.

Σn =


1
n

∑
i π(z

′
i)(z

′
i1)

2 + λ
n

1
n

∑
i π(z

′
i)z

′
i1z

′
i2 · · · 1

n

∑
i π(z

′
i)z

′
i,1z

′
id

1
n

∑
i π(z

′
i)z

′
i1z

′
i2

1
n

∑
i π(z

′
i)(z

′
i2)

2 + λ
n · · · 1

n

∑
i π(z

′
i)z

′
i2z

′
id

...
...

. . .
...

1
n

∑
i π(z

′
i)z

′
i1z

′
id

1
n

∑
i π(z

′
i)z

′
i2z

′
id · · · 1

n

∑
i π(z

′
i)(z

′
id)

2 + λ
n
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By taking n → ∞, we have

Σn → Σ = (α1 − α2)I+ α211
⊤

where

α1 =Ez′∼Uni({0,1}d)[π(z
′)z′i] = Ez′∼Uni({0,1}d)[π(z

′)(z′i)
2]

=

d∑
k=0

e(k−d)/σ2

P(z′i = 1|∥z′∥0 = k)P(∥z′∥0 = k)

=

d∑
k=0

e(k−d)/σ2 k

d

(
d
k

)
2d

=

d∑
k=0

e(k−d)/σ2

(
d−1
k−1

)
2d

=

d∑
k=0

e(k−1)/σ2

e(1−d)/σ2

(
d−1
k−1

)
2d

=e(1−d)/σ2 (1 + e
1
σ2 )d−1

2d
=

(1 + e−
1
σ2 )d−1

2d

α2 =Ez′∼Uni({0,1}d)[π(z
′)z′iz

′
j ]

=
1

Z

d∑
k=0

e(k−d)/σ2

P(z′i = 1, z′j = 1|∥z′∥0 = k)P(∥z′∥0 = k)

=

d∑
k=0

e(k−d)/σ2 k(k − 1)

d(d− 1)

(
d
k

)
2d

=

d∑
k=0

e(k−d)/σ2

(
d−2
k−2

)
2d

=

d∑
k=0

e(k−2)/σ2

e(2−d)/σ2

(
d−2
k−2

)
2d

=e(2−d)/σ2 (1 + e
1
σ2 )d−2

2d
=

(1 + e−
1
σ2 )d−2

2d

By Sherman-Morrison formula, we have

Σ−1 = ((α1 − α2)I+ α211
⊤)−1 =

1

α1 − α2
(I+

α2

α1 − α2
11⊤)−1

=
1

α1 − α2
(I−

α2

α1−α2
11⊤

1 + α2

α1−α2
d
) = (β1 − β2)I+ β211

⊤

where

β1 =
α1 + (d− 2)α2

(α1 − α2)(α1 + (d− 1)α2)
, β2 = − α2

(α1 − α2)(α1 + (d− 1)α2)

In the following, we aim to establish the concentration of ŵLIME.

Concentration of Σn. Considering 0 ≤ π(·) ≤ 1 and zi ∈ {0, 1}d, each element within Σn resides
within the interval of [0, 2]. Moreover, as

1

2d
≤ α1 =

(1 + e−
1
σ2 )d−1

2d
≤ 2d−1

2d
=

1

2

1

2d
≤ α2 =

(1 + e−
1
σ2 )d−2

2d
≤ 2d−2

2d
=

1

4
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e−1/σ2

2d
≤ α1 − α2 = e−

1
σ2

(1 + e−
1
σ2 )d−2

2d
≤ 1

4

The elements within Σ are within the range of [0, 1
4 ]. Consequently, the elements in Σn −Σ fall

within the range of [− 1
4 , 2].

Referring to the matrix Hoeffding’s inequality [31], it holds true that for all t > 0,

P(∥Σn −Σ∥2 ≥ t) ≤ 2d exp(− nt2

32d2
)

Bounding ∥Σ−1∥2F .
∥Σ−1∥2F = dβ2

1 + (d2 − d)β2
2

Because

d

2d
≤ α1 + (d− 1)α2 ≤ 2 + (d− 1)

4
=

d+ 1

4

d− 1

2d
≤ α1 + (d− 2)α2 ≤ 2 + (d− 2)

4
=

d

4

we have

|β1| =
∣∣∣∣ α1 + (d− 2)α2

(α1 − α2)(α1 + (d− 1)α2)

∣∣∣∣ ≤ ∣∣∣∣ 1

α1 − α2

∣∣∣∣ ≤ 2de1/σ
2

, β2
1 ≤ 22de2/σ

2

|β2| =
∣∣∣∣− α2

(α1 − α2)(α1 + (d− 1)α2)

∣∣∣∣ = ∣∣∣∣e1/σ2 1

(α1 + (d− 1)α2)

∣∣∣∣ ≤ d−12de1/σ
2

,

β2
2 ≤ d−222de2/σ

2

so that

∥Σ−1∥2F = dβ2
1 + (d2 − d)β2

2 ≤ d22de2/σ
2

+ (d2 − d)d−222de2/σ
2

≤ 2d22de2/σ
2

Concentration of Γn. With |f | ≤ 1, all elements within both Γn and Γ exist within the range of
[0, 1]. According to matrix Hoeffding’s inequality [31], for all t > 0,

P(∥Γn − Γ∥ ≥ t) ≤ 2d exp

(
−nt2

8d

)
Concentration of ŵLIME. When ∥Σ−1(Σn −Σ)∥ ≤ 0.32 [8], we have

∥Σ−1
n Γn −Σ−1Γ∥ ≤ 2∥Σ−1∥F ∥Γn − Γ∥2 + 2∥Σ−1∥2F ∥Γ∥∥Σn −Σ∥

Given that

∥Σ−1(Σn −Σ)∥ ≤ ∥Σ−1∥∥Σn −Σ∥ ≤ 21/2d1/22de1/σ
2

∥Σn −Σ∥

Exploiting the concentration of Σn, where n ≥ n1 = 27d322de2/σ
2

log(4d/δ) and t = t1 =

5−222.5d−0.52−de−1/σ2

, we have

P(∥Σn −Σ∥2 ≥ t) ≤ 2d exp

(
− nt2

32d2

)
≤ 2d exp

(
− nt2

32d2

)
≤ δ

2
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Therefore, with a probability of at least 1− δ
2 , we have

∥Σ−1(Σn −Σ)∥ ≤ ∥Σ−1∥∥Σn −Σ∥ ≤ 21/2d1/22de1/σ
2

∥Σn −Σ∥ ≤ 0.32

For n ≥ n2 = 28ϵ−2d222de2/σ
2

log(4d/δ) and t2 = 2−2.5d−0.52−de−1/σ2

ϵ, the following concen-
tration inequality holds:

P(∥Γn − Γ∥ ≥ t2) ≤ 2d exp

(
−n2t

2
2

8d

)
≤ δ

2

In this context, with a probability of at least 1− δ
2 , we have

∥Σ−1∥∥Γn − Γ∥ ≤ ϵ

4

Considering ∥Γ∥ ≤
√
d, we select n ≥ n3 = 29ϵ−2d524de4/σ

2

log(4d/δ) and t3 =

2−3d−1.52−2de−2/σ2

ϵ, leading to

P(∥Σn −Σ∥2 ≥ t3) ≤ 2d exp

(
−n3t

2
3

32d2

)
≤ 2d exp

(
−n3t

2
3

32d2

)
≤ δ

2

With a probability at least 1− δ/2, we have

∥Σ−1∥2∥Γ∥∥Σn −Σ∥ ≤ ϵ

4

In summary, we choose n ≥ max{n1, n2, n3}, and then for all ϵ > 0, δ ∈ (0, 1)

P(∥Σ−1
n Γn −Σ−1Γ∥ ≥ ϵ) ≤ δ

B.5 Proof of Theorem 4.2 and Corollary 4.3

Theorem B.2. Suppose z′∼P such that the largest eigenvalue of z′(z′)⊤ is bounded by R and
E[z′(z′)⊤] = (α1 − α2)I + α211

⊤, ∥Var(z′(z′)⊤)∥2 ≤ ν2, |(z′f(z))i| ≤ M for some M > 0.
{z′i}ni=1 are i.i.d. samples from P and are used to compute GLIME explanation ŵGLIME. For any
ϵ > 0, δ ∈ (0, 1), if n = Ω(ϵ−2M2ν2d3γ4 log(4d/δ)) where γ2 = dβ2

1 + (d2 − d)β2
2 , β1 = (α1 +

(d−2)α2)/β0, β2 = −α2/β0, β0 = (α1−α2)(α1+(d−1)α2)), we have P(∥ŵGLIME−wGLIME∥2 <
ϵ) ≥ 1− δ. wGLIME = limn→∞ ŵGLIME.

Proof. The proof closely resembles that of Theorem 4.1. Employing the same derivation, we deduce
that:

Σ = (α1 + λ− α2)I+ α211
⊤, Σ−1 = (β1 − β2)I+ β211

⊤

where

β1 =
α1 + λ+ (d− 2)α2

(α1 + λ− α2)(α1 + λ+ (d− 1)α2)
, β2 = − α2

(α1 + λ− α2)(α1 + λ+ (d− 1)α2)

Given that λmax(z
′(z′)⊤) ≤ R and ∥Var(z′(z′)⊤)∥2 ≤ ν2, according to the matrix Hoeffding’s

inequality [31], for all t > 0:

P(∥Σn −Σ∥2 ≥ t) ≤ 2d exp

(
−nt2

8ν2

)
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Applying Hoeffding’s inequality coordinate-wise, we obtain:

P(∥Γn − Γ∥ ≥ t) ≤ 2d exp

(
− nt2

8M2d2

)
Additionally,

∥Σ−1∥2F = dβ2
1 + (d2 − d)β2

2 = γ2

By selecting n ≥ n1 = 25γ2ν2 log(4d/δ) and t1 = 235−2γ−1, we obtain

P(∥Σn −Σ∥2 ≥ t1) ≤ 2d exp

(
−n1t

2
1

8ν2

)
≤ δ

2

with a probability of at least 1− δ/2.

∥Σ−1(Σn −Σ)∥ ≤ ∥Σ−1∥ · ∥Σn −Σ∥ ≤ γt1 = 0.32

Letting n ≥ n2 = 25ϵ−2M2d2γ2 log(4d/δ) and t2 = 2−2ϵγ−1, we have

P(∥Γn − Γ∥ ≥ t2) ≤ 2d exp

(
− n2t

2
2

8M2d2

)
≤ δ

2

with a probability of at least 1− δ/2.

∥Σ∥∥Γn − Γ∥ ≤ γt2 ≤ ϵ

4

As ∥Γ∥ ≤ M , by choosing n ≥ n3 = 25ϵ−2M2ν2dγ4 log(4d/δ) and t3 = 2−2ϵM−1d−0.5γ−2, we
have

P(∥Σn −Σ∥2 ≥ t3) ≤ 2d exp

(
−n3t

2
3

2ν2

)
≤ δ

2

and with a probability of at least 1− δ/2,

∥Σ−1∥2∥Γ∥∥Σn −Σ∥ ≤ γ2Md0.5t3 =
ϵ

4

Therefore, by choosing n = max{n1, n2, n3}, we have

P(∥Σ−1
n Γn −Σ−1Γ∥ ≥ ϵ) ≤ δ

Corollary B.3. Suppose {z′i}ni=1 are i.i.d. samples from P(z′, ∥z′∥0 = k) = ek/σ
2

/(1+e1/σ
2

)d, k =
1, . . . , d are used to compute GLIME-BINOMIAL explanation. For any ϵ > 0, δ ∈ (0, 1), if
n = Ω(ϵ−2d5e4/σ

2

log(4d/δ)), we have P(∥ŵBinomial − wBinomial∥2 < ϵ) ≥ 1 − δ. wBinomial =
limn→∞ ŵBinomial.

Proof. For GLIME-BINOMIAL, each coordinate of z′(z′)⊤ follows a Bernoulli distribution, ensuring
the bounded variance of both z′(z′)⊤ and (z′f(z′))i. Additionally, we have

∥Γ∥ ≤
√
d,
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α1 =E[(z2i )′] = E[z′i] =
e1/σ

2

1 + e1/σ2

=

d∑
k=0

P(z′i = 1|∥z′∥0 = k)P(∥z′∥0 = k)

=

d∑
k=0

k

d

(
d
k

)
ek/σ

2

(1 + e1/σ2)d

=

d∑
k=0

(
d−1
k−1

)
ek/σ

2

(1 + e1/σ2)d

=
(1 + e1/σ

2

)d−1

(1 + e1/σ2)d
e1/σ

2

=
e1/σ

2

1 + e1/σ2

α2 =E[z′iz′j ] =
e1/σ

2

1 + e1/σ2

=
d∑

k=0

P(z′i = 1, z′j = 1|∥z′∥0 = k)P(∥z′∥0 = k)

=

d∑
k=0

k(k − 1)

d(d− 1)

(
d
k

)
ek/σ

2

(1 + e1/σ2)d

=

d∑
k=0

(
d−2
k−2

)
ek/σ

2

(1 + e1/σ2)d

=
(1 + e1/σ

2

)d−2

(1 + e1/σ2)d
e2/σ

2

=
e2/σ

2

(1 + e1/σ2)2
= α2

1

|β1|2 = | α1 + λ+ (d− 2)α2

(α1 + λ− α2)(α1 + λ+ (d− 1)α2)
|2

≤ | 1

α1 + λ− α2
| ≤ 1

|α1 − α2|
= e−1/σ2

(1 + e1/σ
2

)2 ≤ 4e1/σ
2

|β2|2 =| − α2

(α1 + λ− α2)(α1 + λ+ (d− 1)α2)
|2

≤ α2
2

(α1 − α2)(α1 + λ+ (d− 1)α2)2

=
α1α2

(1− α1)(α1 + (d− 1)α2)2

≤ α1α2

(1− α1)((d− 1)α2)2
=

e−1/σ2

(1 + e1/σ
2

)2

(d− 1)2
≤ 22e1/σ

2

(d− 1)2

Therefore,

dβ2
1 + (d2 − d)β2

2 ≤ de1/σ
2

+ e1/σ
2 d

d− 1
≤ de1/σ

2

B.6 Formulation of SmoothGrad

Proposition B.4. SmoothGrad is equivalent to GLIME formulation with z = z′ + x where z′ ∼
N (0, σ2I), ℓ(f(z), g(z′)) = (f(z)− g(z′))2 and π(z) = 1,Ω(v) = 0.

The explanation returned by GLIME for f at x with infinitely many samples under the above setting is

w∗ =
1

σ2
Ez′∼N (0,σ2I)[z

′f(z′ + x)] = Ez′∼N (0,σ2I)[∇f(x+ z′)]

which is exactly SmoothGrad explanation. When σ → 0, w∗ → ∇f(x+ z)|z=0.
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Proof. To establish this proposition, we commence by deriving the expression for the GLIME
explanation vector w∗.

Exact Expression of Σ: For each i = 1, · · · , n, let z′i ∼ N (0, σ2I). In this context,

Σ̂n =


1
n

∑
k(z

2
k1)

′ · · · 1
n

∑
k z

′
l1z

′
kd

...
. . .

...
1
n

∑
k z

′
kdz

′
k1 · · · 1

n

∑
k(z

2
kd)

′


This implies

Σ = Ez′∼N (0,σ2I)[z
′(z′)⊤] =

σ
2 · · · 0
...

. . .
...

0 · · · σ2


Σ−1 =


1
σ2 · · · 0
...

. . .
...

0 · · · 1
σ2


Consequently, we obtain

w∗ = Σ−1Γ =
1

σ2
Ez′∼N (0,σ2I)[z

′f(x+ z′)] = Ez′∼N (0,σ2I)[∇f(x+ z′)]

The final equality is a direct consequence of Stein’s lemma [17].
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