
A Appendix

In this appendix, we begin by providing detailed information on the reward design for our FGRM
method. Subsequently, we discuss the reasons why maximizing rewards via policy gradients can be
sub-optimal. In addition, we present additional qualitative and quantitative ablation studies showing
results on OOD data and uncertainty map visualization. Finally, we present potential of our proposed
framework on urban scene segmentation for autonomous driving applications.

A.1 Reward Design

For the in-distribution (ID) calibration, we adopt the Expected Calibration Error (ECE) metric as
the reward to maximize, which assesses whether more confident (i.e. less uncertain) predictions are
more likely to be correct. It quantifies the difference between confidence and accuracy on average.
For the calculation, we divide the prediction confidences into M bins and calculate the average
confidence and accuracy for each bin. Then, we compute the weighted average of the difference
between accuracy and confidence across all the bins using the following formula:

ECE =

M∑
m=1

|Nm|
N

|acc(Nm)− conf(Nm)| (1)

where N is the number of predictions, Nm is the predictions that fall into the m-th bin. To increase the
range of ECE values, we employ the negative logarithm of ECE as the final reward. By maximizing
the reward of ECE metric, the confidence miscalibration can be reduced. For out of distribution
(OOD) inference, it is desired that the model can assign high epistemic uncertainty to the OOD
regions compared to their ID counterparts. In this regards, we design the FGRM to maximize the
ratio between uncertainty of OOD regions and ID regions. It can be calculated as,∑

s∈OOD σs∑
s∈ID σs

(2)

where s represents the pixel index and σs represents the estimated epistemic uncertainty value. By
maximizing this designed reward, the model learns to mitigate the OOD over confidence.

A.2 Policy Gradient based Reward Maximization for Segmentation Backbone

Directly adopting the policy gradient method to optimize the segmentation backbone might be
sub-optimal. Considering the optimization objective,

J (ϕ) = E(x,y)[R(µ, ŷ, y)− βlog(
πϕ(x)

πθ̂(x)
)], (3)

where πϕ denotes the policy network we want to optimize and R(µ, ŷ, y) is the reward function. The
first term is the reward maximization and the second term is a KL penalty to mitigate over-optimization
towards the reward. The gradient with resepect to the first term is R(µ, ŷ, y)∇ϕlogπϕ(µ, ŷ|x). The
log-likelihood gradient is uniformly weighted by the reward value. Also note that updating parameters
ϕ based on policy gradient method would converge to the solution π∗

ϕ ∈ {πϕ|∇πϕ
J (ϕ) = 0}.

Differentiating objective J (ϕ) with respect to πϕ, we can express the closed-form solution as

π∗
ϕ =

πθexp(R(µi, ŷi,yi)/β)∫
πθexp(R(µi, ŷi,yi)/β)d(xi,yi)

(4)

The solution π∗
ϕ can be viewed as weighting the MLE model πθ by the normalized exponential reward

isotropically. The exploration space for optimizing the segmentation backbone is constrained, leading
to sub-optimal solutions. Our fine-grained parameter update mechanism addresses this issue by
distributing rewards individually to each network parameter based on its impact on the uncertainty
reward. This approach enables us to efficiently achieve the optimal solution for reward maximization.

A.3 Uncertainty Map Visualization

In Fig. 1, we present visualization of uncertainty maps and corresponding predictions on the LC
and ESD datasets. Regarding LC, all methods struggle to accurately segment the tract region
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Figure 1: Visualization of estimated uncertainty on LC and ESD datasets. For LC (first three rows),
we present the liver, tract, and cystic duct boundaries using orange, yellow, and cyan-blue color
respectively. For ESD (last three rows), we represent the submucoal and muscle boundaries by yellow
and cyan-blue color respectively. Uncertainty scores are denoted by colors, with blue indicating low
uncertainty and red indicating high uncertainty.
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Figure 2: a) Examples of generated out-of-distribution (OOD) images with perturbations; b-d)
ablation studies for OOD inference with endoscopic submucosal dissection (ESD) dataset on the
three key components, the change of uncertainty estimation with the strength of KL penalty, and the
progression of uncertainty metric and Dice curves during reward maximization process respectively.

due to reflection and bleeding. Our method successfully generates calibrated uncertainty for the
incorrectly segmented regions, providing valuable insights into the areas where the segmentation
may be unreliable. For ESD, it is a challenging in distinguishing between the ambiguous submucosa
and muscle tissues. Our method is able to generate uncertainties that specifically highlight potential
errors in the segmentation prediction for those ambiguous regions.

A.4 Additional Results on OOD Data

We present some examples of generated OOD examples in Fig. 2(a). We randomly applied four types
of perturbations, including contrast, brightness, pixelate, and noise, to the original images. We can

2



see that those perturbations mainly adjust the contrast, brightness, and clarity of surgical images,
which might be encountered in practical scenarios. We conducted additional ablation studies on
the OOD scenario using the endoscopic submucosal dissection dataset, including contribution of
each key component, effect of the fine-grained parameter update, and the progression of uncertainty
estimation and segmentation prediction. The results are presented in Fig. 2(b)-(d). These results on
the OOD scenario further confirm the findings observed in the ID scenario.

A.5 Proposed Framework for Autonomous Driving Applications

To demonstrate the versatility of our approach across various applications, we conducted additional
evaluation on the Cityscapes [2] dataset, which presents a diverse and realistic collection of urban
scene images from 50 different cities. This dataset is created for semantic segmentation with 5,000
frames annotated with high-precision pixel-level segmentation masks involving 30 fine-grained
classes.

In Table 1, we present the results of our uncertainty estimation framework when applied to the
Cityscapes dataset. Our method consistently outperforms all the comparison approaches. This
consistent superiority confirms the broad potential and applicability of our approach, particularly in
scenarios where safety and precision are important, such as in the field of autonomous driving.

Table 1: Comparison with different methods on Cityscapes dataset for urban scene segmentation.

Method
In-distribution Calibration OOD Inference Runtime

(ms) ↓ECE ↓ MI ↑ DICE ↑ PR ↑ BR ↑
Segmentation Backbone 11.94 3.51 78.15 0.70 0.06 0.063

Deep Ensemble [6] 10.66 4.91 79.10 1.37 0.26 0.334
Layer Ensemble [5] 10.40 4.73 79.04 1.15 0.11 0.089

LDU [3] 9.14 5.75 78.69 1.55 0.35 0.064
MC-dropout [4] 11.15 4.09 78.46 1.23 0.19 0.751

NatPN [1] 9.32 5.30 78.45 1.62 0.34 0.071
FGRM (Ours) 8.52 6.97 79.23 1.77 0.48 0.064
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