
Supplementary Material

In this supplementary, we first provide an overview of our proof techniques in Appendix A and then
in Appendix B provide the proofs of theorems and technical lemmas stated in the main paper.

A Overview of proof techniques

Our analysis of the generalization error is based on an extension of Gordon’s Gaussian process
inequality [13], called Convex-Gaussian Minimax Theorem (CGMT) [30]. Here, we outline the
general steps of this framework and refer to the supplementary for complete details and derivations.

Consider the following two Gaussian processes:

Xu,v ∶= uTGv +  (u,v) ,
Yu,v ∶= �u�`2 gTv + �v�

`2
hTu +  (u,v) ,

where G ∈ Rn×d, g ∈ Rn and h ∈ Rd, all have i.i.d standard normal entries. Further,  ∶ Rd × Rn → R
is a continuous function, which is convex in the first argument and concave in the second argument.

Given the above two processes, consider the following min-max optimization problems, which are
respectively referred to as the Primary Optimization (PO) and the Auxiliary Optimization (AO)
problems:

�PO(G) ∶= min
u∈Su

max
v∈Sv

Xu,v , (A.1)

�AO(g,h) ∶= min
u∈Su

max
v∈Sv

Yu,v . (A.2)

The main result of CGMT is to connect the above two random optimization problems. As shown
in [30](Theorem 3), if Su and Sv are compact and convex then, for any � ∈ R and t > 0,

P (��PO(G) − �� > t) ≤ 2P (��AO(g,h) − �� > t) .
An immediate corollary of this result (by choosing � = E[�AO(g,h)]) is that if the optimal cost of
AO problem concentrates in probability, then the optimal cost of the corresponding PO problem also
concentrates, in probability, around the same value. In addition, as shown in part (iii) of [30](Theorem
3), concentration of the optimal solution of the AO problem implies concentration of the optimal
solution of the PO around the same value. Therefore, the two optimization are intimately connected
and by analyzing the AO problem, which is substantially simpler, one can derive corresponding
properties of the PO problem.

The CGMT framework has been used to infer statistical properties of estimators in certain high-
dimensional asymptotic regime. The intermediate steps in the CGMT framework can be summarized
as follows: First form an PO problem in the form of (A.1) and construct the corresponding AO
problem. Second, derive the point-wise limit of the AO objective in terms of a convex-concave
optimization problem, over only few scalar variables. This step is called ‘scalarization’. Next, it
is possible to establish uniform convergence of the scalarized AO to the (deterministic) min-max
optimization problem using convexity conditions. Finally, by analyzing the latter deterministic
problem, one can derive the desired asymptotic characterizations.

Of course implementing the above steps involved problem-specific intricate calculations. Our proofs
of Theorems 3.1, 3.2, 3.3 in the supplementary follow this general strategy.

13



B Proof of theorems and technical lemmas

B.1 Proof of Lemma 2.1

By substituting for y from (2.1) in the definition of risk we obtain

Risk(✓) = E[(y −xT✓)2]
= E[(xT(✓0 − ✓))2] + E["2]
(a)= �

`∈[k]
⇡` E[((µ` + z)T(✓0 − ✓))2] + E["2]

= �
`∈[k]

⇡` E[(µT
`
(✓0 − ✓))2] + �

`∈[k]
⇡` �✓ − ✓0�2`2 + �2

(b)= (✓ − ✓0)TMdiag(⇡)MT(✓0 − ✓) + �✓0 − ✓�`2 + �2
,

where (a) follows from the Gaussian-Mixture model (2.2) and (b) holds since ∑`∈[k] ⇡` = 1.

B.2 Proof of Theorem 3.1 and Theorem 3.2

Recall that the look-alike estimator is defined as the min-norm estimator over the feature matrix XL,
where the look-alike representations are used instead of individual sensitive features; see (3.2).

To analyze risk of ✓̂L, we consider the ridge regression estimator given by

✓̂� = argmin
✓

1

2n
�y −XT

L
✓�2
`2
+ � �✓�2

`2
.

The minimum-norm estimator is given by ✓̂L = lim�→0+ ✓̂�.

We follow the CGMT framework explained in Section A. Recall that

XL = � Ms⇤
Mns⇤ +Zns

� ,
and therefore by substituting for y, X , and XL, we get

1

2n
�y −XT

L
✓�2
`2
= 1

2n
�" +XT✓0 −XT

L
✓�2
`2

= 1

2n
�" +⇤TMT

s
(✓0,s − ✓s) +ZT

s
✓0,s + (⇤TMT

ns
+ZT

ns
)(✓0,ns − ✓ns)�2

`2
.

We define the primary optimization loss as follows:

LPO(✓s,✓ns) ∶= 1

2n
�" +⇤TMT

s
(✓0,s − ✓s) +ZT

s
✓0,s + (⇤TMT

ns
+ZT

ns
)(✓0,ns − ✓ns)�2

`2
+� �✓s�2`2+� �✓ns�2`2

We continue by deriving the auxiliary optimization (AO) problem. By duality, we have

LPO(✓s,✓ns) =max
v

1

n

�
�vT" + vT⇤TMT

s
(✓0,s − ✓s) + vTZT

s
✓0,s + vT(⇤TMT

ns
+ZT

ns
)(✓0,ns − ✓ns) − �v�

2

`2

2

�
�

+ � �✓s�2`2 + � �✓ns�2`2
Note that the above is jointly convex in (✓s,✓ns) and concave in v, and the Gaussian matrix Z is
independent of everything else. Therefore, the AO problem reads:

LAO(✓s,✓ns) =max
v

1

n
�vT" + vT⇤TMT

s
(✓0,s − ✓s)

+ �✓0,s�`2 gT
s
v + �v�

`2
hT
s
✓0,s

+ �✓0,ns − ✓ns�`2 gT
ns
v + �v�

`2
hT
ns
(✓0,ns − ✓ns)

+ vT⇤TMT
ns
(✓0,ns − ✓ns) − �v�

2

`2

2
� + � �✓s�2`2 + � �✓ns�2`2 ,
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where gs,gns ∈ Rn and hs ∈ Rp, hns ∈ Rd−p are independent Gaussian random vectors with i.i.d
N(0,1) entries.

We next fix norm of �v�
`2
= �, and maximize over its direction to obtain

LAO(✓s,✓ns) =max
�≥0

1

n
�� �" +⇤TMT

s
(✓0,s − ✓s) + �✓0,s�`2 gs + �✓0,ns − ✓ns�`2 gns +⇤TMT

ns
(✓0,ns − ✓ns)�

`2

+ �hT
s
✓0,s + �hT

ns
(✓0,ns − ✓ns) − �2

2
� + � �✓s�2`2 + � �✓ns�2`2

=max
�≥0

1

n
�� �" +⇤TMT

s
(✓0,s − ✓s) +⇤TMT

ns
(✓0,ns − ✓ns) +��✓0,s�2`2 + �✓0,ns − ✓ns�2`2g�

`2

+ �hT
s
✓0,s + �hT

ns
(✓0,ns − ✓ns) − �2

2
� + � �✓s�2`2 + � �✓ns�2`2 ,

where we used that gs,gns ∈ Rn have independent Gaussian entries. Here, g ∈ Rn has i.i.d entries
from N(0,1). Next, note that the above optimization over � has a closed form. Using the identity
max�≥0(�x − �2�2) = x2+�2, with x+ =max(x,0), we get

LAO(✓s,✓ns) = 1

2n
��" +⇤TMT

s
(✓0,s − ✓s) +⇤TMT

ns
(✓0,ns − ✓ns) +��✓0,s�2`2 + �✓0,ns − ✓ns�2`2g�

`2

+hT
s
✓0,s +hT

ns
(✓0,ns − ✓ns)�2+ + � �✓s�2`2 + � �✓ns�2`2 . (B.1)

Scalarization of the auxiliary optimization (AO) problem. We next proceed to scalarize the AO
problem. Consider the singular value decomposition

Ms = Us⌃sV
T
s
,

with Us ∈ Rp×r, ⌃s ∈ Rr×r, Vs ∈ Rk×r, where r = rank(Ms) ≤ k. Decompose qs ∶= ✓0,s − ✓s
in its projections onto the space spanned by the columns u1,s, . . . ,ur,s of Us, and the orthogonal
component:

qs = r�
i=1
↵iui,s + ↵0q

⊥
s
,

where �q⊥
s
�
`2
= 1, ↵0 ≥ 0, and UT

s
q⊥
s
= 0. Using the shorthand ↵ = (↵1, . . . ,↵r), we write

⇤TMT
s
(✓0,s − ✓s) = ⇤TVs⌃sU

T
s
qs = ⇤TVs⌃s↵ .

In addition,

�✓s�2`2 = �✓0,s − (✓0,s − ✓s)�2`2= �✓0,s�2`2 + �qs�2`2 − 2�✓0,s,qs�= �✓0,s�2`2 + �qs�2`2 − 2�✓0,s,Us↵� − 2↵0�✓0,s,q⊥s �
= �✓0,s�2`2 + �qs�2`2 − 2�UT

s
✓0,s,↵� − 2↵0�✓0,s,q⊥s �

= �✓0,s�2`2 + (↵2

0
+ �↵�2

`2
) − 2�UT

s
✓0,s,↵� − 2↵0�✓0,s,q⊥s � . (B.2)

Similarly, we define qns = ✓0,ns − ✓ns and consider the singular value decomposition

Mns = Uns⌃nsV
T
ns
,

with Uns ∈ R(d−p)×t, ⌃ns ∈ Rt×t, Vns ∈ Rk×t, where t = rank(Mns) ≤ k. Decomposing qns in its
projections on the orthogonal columns u1,ns, . . . ,ur,ns of Uns, and the orthogonal component we
write

qns = t�
i=1
�iui,ns + �0q⊥ns ,

with �q⊥
ns
�
`2
= 1, �0 ≥ 0, and UT

ns
q⊥
ns
= 0. Define � = (�1, . . . ,�t). In this notation, we have

⇤TMT
ns
(✓0,ns − ✓ns) = ⇤TVns⌃nsU

T
ns
qns = ⇤TVns⌃ns� .
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Also, �✓0,ns − ✓ns�`2 = �qns�`2 =
�
�2
0
+ ���2

`2
. In addition,

hT
ns
(✓0,ns − ✓ns) = hT

ns
qns = t�

i=1
�ih

T
ns
ui,ns + �0hT

ns
q⊥
ns
.

Using the above identities in (B.1), we have

LAO(✓s,✓ns) = 1

2n
��" +⇤TVs⌃s↵ +⇤TVns⌃ns� +��✓0,s�2`2 + �20 + ���2`2 g�

`2

+hT
s
✓0,s + t�

i=1
�ih

T
ns
ui,ns + �0hT

ns
q⊥
ns
�2+

+ � �✓0,s�2`2 + �(↵2

0
+ �↵�2

`2
) − 2��UT

s
✓0,s,↵� − 2�↵0�✓0,s,q⊥s �

+ � �✓0,ns�2`2 + �(�20 + ���2`2) − 2��UT
ns
✓0,ns,�� − 2��0�✓0,ns,q⊥ns� . (B.3)

By the above characterization, minimization over ✓s and ✓ns reduces to minimization over ↵0,�0, ↵,
�, q⊥

s
and q⊥

ns
. Further, these variables are free from each other and can be optimized over separately.

For q⊥
s

, there is only one term involving this variable and therefore, minimization over it reduces to

min
q⊥s ,�q⊥s �`2=1

−�✓0,s,q⊥s � = min
q⊥s ,�q⊥s �`2=1

−�U⊥
s
(U⊥

s
)T✓0,s,q⊥s � = − �(U⊥s )T✓0,s�`2 .

For q⊥
ns

, we note that there are two terms involving this variable, namely �hns√
n
,q⊥

ns
� and

�(U⊥
ns
)T✓0,ns,q⊥ns�. Since �q⊥

ns
�
`2
= 1, it is easy to see that the optimal q⊥

ns
should be in the

span of h⊥
ns

and (U⊥
ns
)T✓0,ns. In addition,

�h⊥ns√
n
, (U⊥

ns
)T✓0,ns� (p)→ 0 ,

by the law of large numbers. In words, these two vectors are asymptotically orthogonal. Hence, we
can consider the following decomposition of the optimal q⊥

ns
:

q⊥
ns
= −⇠ h⊥

ns�h⊥
ns
�
`2

+�1 − ⇠2U⊥ns(U⊥ns)T✓0,ns�(U⊥
ns
)T✓0,ns�`2 ,

where ⇠ ≥ 0 and h⊥
ns

denotes the projection of hns onto the (left) null space of Uns. This brings us to

min
✓s,✓ns

LAO(✓s,✓ns) = min
↵0,�0≥0,↵,�

1

2
� 1√

n
�" +⇤TVs⌃s↵ +⇤TVns⌃ns� +��✓0,s�2`2 + �20 + ���2`2 g�

`2

+ hT
s
✓0,s√
n
+ t�

i=1
�i
hT
ns
ui,ns√
n
− �0⇠ �h⊥ns�`2√

n
�2+

+ � �✓0,s�2`2 + �(↵2

0
+ �↵�2

`2
) − 2��UT

s
✓0,s,↵� − 2�↵0 �(U⊥s )T✓0,s�`2

+ � �✓0,ns�2`2 + �(�20 + ���2`2) − 2��UT
ns
✓0,ns,�� − 2��0�1 − ⇠2 �(U⊥

ns
)T✓0,ns�

`2
.

(B.4)
Note that at this stage, the AO problem is reduced to an optimization over r + t + 3 scalar variables
(↵0,�0 ≥ 0, 0 ≤ ⇠ ≤ 1 and ↵ ∈ Rr, � ∈ Rt).

Convergence of the auxiliary optimization problem. We next continue to derive the point-wise
in-probability limit of the AO problem.

First observe that since " and g are independent with i.i.d N(0,1) entries, we have

" +��✓0,s�2`2 + �20 + ���2`2 g (d)=
�
�2 +2 (�✓0,s�2`2 + �20 + ���2`2) g̃ ,

where g̃ ∈ Rn has i.i.d N(0,1) entries.

Second, by construction ⇤⇤T = diag(n1, . . . , nk) ∈ Rk×k, where n` denotes the number of examples
from cluster `. Hence,
1

n
�⇤TVs⌃s↵ +⇤TVns⌃ns��2

`2
= (Vs⌃s↵ +Vns⌃ns�)Tdiag(n1

n
, . . . ,

nk

k
)(Vs⌃s↵ +Vns⌃ns�)

(p)→ (Vs⌃s↵ +Vns⌃ns�)Tdiag(⇡)(Vs⌃s↵ +Vns⌃ns�)
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Next, by using concentration of Lipschitz functions of Gaussian vectors, we obtain
1√
n
�" +⇤TVs⌃s↵ +⇤TVns⌃ns� +��✓0,s�2`2 + �20 + ���2`2 g�

`2

p→�(Vs⌃s↵ +Vns⌃ns�)Tdiag(⇡)(Vs⌃s↵ +Vns⌃ns�) + �2 + (�✓0,s�2`2 + �20 + ���2`2)
Also, since �✓0,s�`2 is bounded and �ui,s�`2 = 1, we get

hT
s
✓0,s√
n

,
hT
ns
ui,ns√
n

(p)→ 0 .

In addition, �h⊥
ns
�
`2

concentrates around
√
d − p − t and (d − p − t)�n →  d −  p, because t ≤ k

remains bounded as n diverges, and so
�h⊥

ns
�
`2√

n

(p)→ � d − p .

Using the above limits, the objective in (B.4) converges in-probability to
D(↵0,�0, ⇠,↵,�) ∶=
1

2
��(Vs⌃s↵ +Vns⌃ns�)Tdiag(⇡)(Vs⌃s↵ +Vns⌃ns�) + �2 + (�✓0,s�2`2 + �20 + ���2`2) − �0⇠� d −  p�2++ � �✓0�2`2 + �(↵2

0
+ �2

0
+ �↵�2

`2
+ ���2

`2
)

− 2� ��UT
s
✓0,s,↵� + ↵0 �(U⊥s )T✓0,s�`2 + �UT

ns
✓0,ns,�� + �0�1 − ⇠2 �(U⊥

ns
)T✓0,ns�

`2
� (B.5)

We are now ready to prove the theorems.

B.2.1 Proof of Theorem 3.1

Using Lemma 2.1, we have

Risk(✓̂L) = �2 + �✓0 − ✓�2`2 + (✓0 − ✓)TMdiag(⇡)MT(✓0 − ✓)
= �2 + �qs�2`2 + �qns�2`2 + qT

s
Msdiag(⇡)MT

s
qs + qT

ns
Mnsdiag(⇡)MT

ns
qns

= �2 + (↵2

0
+ �2

0
+ �↵�2

`2
+ ���2

`2
)

+↵T⌃sV
T
s

diag(⇡)Vs⌃s↵ + �T⌃nsV
T
ns

diag(⇡)Vns⌃ns� . (B.6)

Since  d −  p ≤ 1, we are in the over- determined (a.k.a underparametrized) regime. As �→ 0+, the
terms involving � become negligible compared to the first term in (B.5) except those that include ↵0,
as ↵0 is not present in the first term . Since (x)2+ is increasing, and

(Vs⌃s↵ +Vns⌃ns�)Tdiag(⇡)(Vs⌃s↵ +Vns⌃ns�) + ���2`2 ≥ 0,
the minimum over ↵ and � is achieved for ↵ = 0 ∈ Rr and � = 0 ∈ Rt. The optimization (B.5) then
reduces to

min
↵0,�0≥0,0≤⇠≤1

1

2
���2 + (�✓0,s�2`2 + �20) − �0⇠� d −  p�2+ + �↵2

0
− 2�↵0 �(U⊥s )T✓0,s�`2 . (B.7)

The optimal ⇠ is given by ⇠ = 1. Also, setting derivative with respect to ↵0 to zero we obtain the
optimal ↵0 = �(U⊥s )T✓0,s�`2 . Next, by setting derivative with respect to �0 we arrive at

�
2

0
= (�2 + �✓0,s�2`2)  d −  p

1 − ( d −  p) .
Using the optimal variables in (B.6) we obtain the risk of minimum-norm estimator as

Risk(✓̂L) = �2 + �(U⊥
s
)T✓0,s�2

`2
+ (�2 + �✓0,s�2`2)  d −  p

1 − ( d − p)
= (�2 + �✓0,s�2`2) 1

1 − ( d − p) − �UT
s
✓0,s�2

`2
.

Recall that by assumption, rs = �✓0,s�`2 and �UT
s
✓0,s�

`2
=√⇢rs, which completes the proof.
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B.2.2 Proof of Theorem 3.2

We continue from (B.5). In the case of  d −  p ≤ 1, it is easy to see that the derivative of the first
term of (B.5), in the active region is decreasing in �0. With the consideration � → 0+, minimizing
over �0 will push us into the non-active region. Therefore the optimization problem (B.5) reduces to
minimize �✓0�2`2 + ↵2

0
+ �2

0
+ �↵�2

`2
+ ���2

`2

− 2��UT
s
✓0,s,↵� + ↵0 �(U⊥s )T✓0,s�`2 + �UT

ns
✓0,ns,�� + �0�1 − ⇠2 �(U⊥

ns
)T✓0,ns�

`2
�

subject to

(Vs⌃s↵ +Vns⌃ns�)Tdiag(⇡)(Vs⌃s↵ +Vns⌃ns�) + �2 + (�✓0,s�2`2 + �20 + ���2`2) ≤ �20⇠2( d −  p)
(B.8)

By Assumption 2, ⌃s = µIk, Vs = Ik×k, and ⌃ns = 0, Uns = 0 (no cluster structure on non-sensitive
features and an orthogonal, equal energy cluster centers on the sensitive features). Therefore, by
fixing � ∶= ���

`2
, the optimization problem (B.8) becomes:

minimize ↵
2

0
+ �2

0
+ �↵�2

`2
+ �2 − 2��UT

s
✓0,s,↵� + ↵0 �(U⊥s )T✓0,s�`2 + �0

�
1 − ⇠2 �✓0,ns�`2�

subject to

µ
2↵Tdiag(⇡)↵ + �2 + �✓0,s�2`2 + �20 + �2 ≤ �20⇠2( d −  p) . (B.9)

Since ↵0 does not appear in the constraint, it is easy to see that its optimal value is given by
↵0 = �(U⊥s )T✓0,s�`2 . Also, note that by decreasing � the objective value decreases and also by the
constraint on the other variables become more relaxed. Consequently, the optimal value of � is � = 0.
Removing ↵0 from the objective function, we are left with

minimize �
2

0
+ �↵�2

`2
− 2��UT

s
✓0,s,↵� + �0�1 − ⇠2 �✓0,ns�`2�

subject to µ
2↵Tdiag(⇡)↵ + �2 + �✓0,s�2`2 + �20 ≤ �20⇠2( d − p) . (B.10)

Optimal choice of ⇠ results in the constraint to become equality. Solving for ⇠, the optimization
reduces to

minimize �
2

0
+ �↵�2

`2
− 2����U

T
s
✓0,s,↵� +

����
�2
0
− µ2↵Tdiag(⇡)↵ + �2 + �✓0,s�2`2 + �20

 d −  p

�✓0,ns�`2
���

Setting derivative with respect to �0 to zero, we obtain����
�2
0
− µ2↵Tdiag(⇡)↵ + �2 + �✓0,s�2`2 + �20

 d −  p

= �1 − 1

 d −  p

��✓0,ns�`2 . (B.11)

Setting derivative with respect to ↵ to zero and using the previous stationary equation, we get

↵ = �I + µ
2diag(⇡)

 d −  p − 1�
−1

UT
s
✓0,s . (B.12)

We next square both sides of (B.12) and rearrange the terms to get

�
2

0
= 1

 d −  p − 1 ��2 + �✓0,s�2`2 + µ2↵Tdiag(⇡)↵� + �1 − 1

 d −  p

��✓0,ns�2`2
= 1

 d −  p − 1 ��2 + r2
s
+ µ2↵Tdiag(⇡)↵� + �1 − 1

 d −  p

� r2
ns
,

which are the same expressions for ↵ and �0 given in the theorem statement.

The final step is to write the risk of estimator in terms of ↵, �0. Invoke equation (B.6), and recall
that in the current case, ⌃ns = 0, ⌃s = µI . Also, as we showed in our derivation, � = ���

`2
= 0,

↵0 = �(U⊥s )T✓0,s�`2 , by which we arrive at

Risk(✓̂L) = µ2↵Tdiag(⇡)↵ + �2 + (�(U⊥
s
)T✓0,s�2

`2
+ �2

0
+ �↵�2

`2
)

= �2 + (1 − ⇢)r2
s
+ �2

0
+↵T �I + µ2diag(⇡)�↵ . (B.13)

This concludes the proof.
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B.3 Proof of Theorem 3.3

We follow the proof strategy used for Theorem 3.1-3.2. Here, we would like to characterize the risk
of min-norm estimator ✓̂. The features matrix has a clustering structure, but the learner is not using
that (no look-alike clustering) and is just compute the min-norm estimator for fitting the responses to
individual features. Therefore, one can think of this setting as a special case of our previous analysis
when there is no sensitive features (so  p = 0).

(a) By setting  p = 0 and rs = 0 in the result of Theorem 3.1, we get that when  d ≤ 1,

Risk(✓̂) = �
2

1 −  d

.

(b) In this case, we specialize the proof of Theorem 3.2 to the case that  p = 0. Continuing
from (B.8), and removing the terms corresponding to sensitive features, we arrive at

minimize �
2

0
+ ���2

`2
− 2��UT

ns
✓0,ns,�� + �0�1 − ⇠2 �(U⊥

ns
)T✓0,ns�

`2
�

subject to

(Vns⌃ns�)Tdiag(⇡)(Vns⌃ns�) + �2 + �2
0
+ ���2

`2
≤ �2

0
⇠
2
 d (B.14)

We drop the index ‘ns’ as it is not relevant in this case. Also by Assumption 2, ⌃ns = µId,
Vns = Id. Therefore, the above optimization can be written as

minimize �
2

0
+ ���2

`2
− 2��UT✓0,�� + �0�1 − ⇠2 �(U⊥)T✓0�

`2
�

subject to �T(I + µ2diag(⇡))� + �2 + �2
0
≤ �2

0
⇠
2
 d . (B.15)

Optimal ⇠ makes the constraint equality. Solving for ⇠, the above optimization can be written
as so we have

minimize �
2

0
+ ���2

`2
− 2����U

T✓0,�� +
����

�2
0
− �T(I + µ2diag(⇡))� + �2 + �2

0

 d

�(U⊥)T✓0�
`2

��� .

Setting the derivative with respect to �0 to zero, we get����
�2
0
− �T(I + µ2diag(⇡))� + �2 + �2

0

 d

= �1 − 1

 d

��(U⊥)T✓0�
`2

. (B.16)

Setting derivative with respect to � to zero and using the above equation, we obtain

� = �I + I + µ2diag(⇡)
 d − 1 �−1UT✓0 . (B.17)

We next square both sides of equation (B.16), and rearrange the terms to get:

�
2

0
= 1

 d − 1 ��2 + �T(I + µ2diag(⇡))�� + �1 − 1

 d

��(U⊥)T✓0�2
`2

.

Under the simplifying Assumption 2, there is no cluster structure on the non-sensitive
features and so Uns = 0. Therefore,

�UT✓0�
`2
= �UT

s
✓0,s�

`2
=√⇢rs ,

�(U⊥)T✓0�2
`2
= �✓0�2`2 − �UT✓0�2

`2
= (1 − ⇢)r2

s
+ r2

ns
.

We next proceed to compute the risk of estimator in terms of �, �0. We use equation (B.6),
which for the min-norm estimator with no look-alike clustering, reduces to

Risk(✓̂) = �2 + �2
0
+ �T(I + µ2diag(⇡))� . (B.18)

This concludes the proof. Note that in the theorem statement we made the change of variables
�0 → �̃0 and � → ↵̃, for an easier comparison with the risk of look-alike estimator.)

19



B.4 Proof of Proposition 3.4

Consider singular value decompositions XL = U⌃V T and X̃L = Ũ⌃̃Ṽ T . We then can write the
estimators ✓̃L and ✓̂L as follows:

✓̂L = U⌃−1V Ty, ✓̃L = Ũ⌃̃−1Ṽ Ty .

We first bound �✓̂L − ✓̃L�. We write

�✓̂L − ✓̃L� ≤ �U⌃−1V T − Ũ⌃̃−1Ṽ T��y� . (B.19)

We have

�y� = �XT✓0 + "� = �⇤TMT✓0 +ZT✓0 + "� .
Note that ZT✓0 + " (d)= ��✓0�2 + �2g where g ∼ N(0, In). In addition,

1

n
�⇤TMT✓0�2 = 1

n
✓T
0
M⇤⇤TMT✓0

= ✓T
0
Mdiag(n1

n
, . . . ,

nk

n
)MT✓0

p→ ✓T
0
Mdiag(⇡1, . . . ,⇡k)MT✓0 .

Therefore by using concentration of Lipschitz functions of Gaussian vectors, we get

1√
n
�y� p→�✓T

0
Mdiag(⇡)MT✓0 + �✓0�2 + �2 .

This shows that
1√
n
�y�→ C ≤�(µ + 1)(r2

s
+ r2

ns
) + �2. (B.20)

We next use the result of [28, Theorem 3.3], by which we obtain

�U⌃−1V T − Ũ⌃̃−1Ṽ T� ≤ 1 +√5
2

max� 1

�min(⌃)2 ,
1

�min(⌃̃)2 ��U⌃V T − Ũ⌃̃Ṽ T� . (B.21)

Note that

�U⌃V T − Ũ⌃̃Ṽ T� = �XL − X̃L� = �Ms⇤ − �Ms⇤̃� ≤ �√n , (B.22)

by the assumption of the theorem statement. We next lower bound �min(⌃) = �min(XL). Recall
that XT

L
= (M⇤)T + [0n×p,Zn×(d−p)], with Z having i.i.d N(0,1) entries.

Next suppose that Condition (i) holds true, namely � <�1 − ( d −  p)−� d −  p, with  d − p <
0.5. Using the result of [31, Theorem 2.1], we have with probability at least 1 − n−1,

�min(XL) ≥√n��
�
 d −  p − 1 − 1 −

�
2 logn

n

�
� .

Furthermore,

�min(X̃L) ≥ �min(XL) − �XL − X̃L�
≥√n��

�
1 − ( d −  p) −� d −  p −

�
2 logn

n
− ���

≥ c′√n ��1 − ( d −  p) −� d −  p� ,
using the assumption on the estimation error rate �. Therefore, using the above bound along
with (B.22) in (B.21) we get

�U⌃−1V T − Ũ⌃̃−1Ṽ T� ≤ 1 +√5
2c′2

1√
n ��1 − ( d − p) −� d −  p�2 � .
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Combining the above bound with (B.20), we get

�✓̂L − ✓̃L� ≤ 1 +√5
2c′2

C

��1 − ( d −  p) −� d −  p�2 � . (B.23)

We next note that by triangle inequality, the above bound implies that

�✓̃L − ✓0� − �✓̂L − ✓0� ≤ �✓̂L − ✓̃L� = O(�) .
Therefore, by invoking Lemma 2.1, we obtain the desired result on Risk(✓̃L).
Next suppose that Condition (ii) holds, namely � <� d −  p − 1 − 1 with  d −  p > 2. Using the
result of [31, Theorem 2.1] for XT, we have with probability at least 1 − n−1,

�min(XL) ≥√n��
�
 d −  p − 1 − 1 −

�
2 logn

n

�
� .

By following a similar argument we prove the claim under Condition (ii).
B.5 Proof of Theorem 5.1

We use Theorem 3.3 (b) to characterize Risk(✓̂) in the regime of  d ≥ 1. Specializing to the case of
balanced cluster priors, the risk depends on ↵̃ only through its norm ↵̃ ∶= �↵̃�

`2
, and is given by

Risk(✓̂) P→ �
2 + �̃2

0
+ �µ2

k
+ 1� ↵̃2

=  d

 d − 1 ��2 + �µ2

k
+ 1� ↵̃2� + �1 − 1

 d

� ((1 − ⇢)r2
s
+ r2

ns
),

with

↵̃ = ��1 +
µ
2

k
+ 1

 d − 1
�
�
−1√

⇢rs .

In addition, by Theorem 3.1 we have

Risk(✓̂L) P→ �
2 + r2

s

1 −  d +  p

− ⇢r2
s
.

Note that Risk(✓̂L) in this regime does not depend on µ
2�k. Also, it is easy to verify that Risk(✓̂) is

decreasing in µ
2�k. Therefore the gain � is decreasing in µ

2�k.

Also observe that Risk(✓̂) is increasing in rns, while Risk(✓̂L) does not depend on rns. Therefore,
the gain � is increasing in rns.

To understand the dependence of � on ⇢, we write

� − 1 = Risk(✓̂)
Risk(✓̂L) − 1

=
 d

 d−1 ��2 + �µ2

k
+ 1��1 + µ

2�k+1
 d−1 �−2 ⇢r2s � + �1 − 1

 d
� ((1 − ⇢)r2

s
+ r2

ns
)

�2+r2s
1− d+ p

− ⇢r2
s

− 1

=
 d

 d−1 ��2 + �µ2

k
+ 1��1 + µ

2�k+1
 d−1 �−2 ⇢r2s � + �1 − 1

 d
� (r2

s
+ r2

ns
) − �

2+r2s
1− d+ p

+ ⇢r
2
s

 d

�2+r2s
1− d+ p

− ⇢r2
s

As we see the numerator is increasing in ⇢ and denominator is decreasing in ⇢, which implies that the
gain � is increasing in ⇢.
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We next show that � ≥ 1 if condition (5.1) holds. Since � is decreasing in µ
2�k and increasing in ⇢,

it suffices to show the claim assuming µ
2�k →∞ and ⇢ = 0. In this case we have �µ2

k
+ 1� ↵̃2 → 0

and so

�→
�
2
 d

 d−1 + �1 − 1

 d
� (r2

s
+ r2

ns
)

�2+r2s
1− d+ p

≥
�
2
 d

 d−1 + �1 − 1

 d
� r2

s

�2+r2s
1− d+ p

=
 d

 d−1 + �1 − 1

 d
�SNR2

1+SNR2

1− d+ p

≥ 1,
where the last step follows from condition (5.1).
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