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Abstract

Image classifiers are information-discarding machines, by design. Yet, how these
models discard information remains mysterious. We hypothesize that one way
for image classifiers to reach high accuracy is to zoom to the most discriminative
region in the image and then extract features from there to predict image labels,
discarding the rest of the image. Studying six popular networks ranging from
AlexNet to CLIP, we find that proper framing of the input image can lead to the
correct classification of 98.91% of ImageNet images. Furthermore, we uncover
positional biases in various datasets, especially a strong center bias in two popular
datasets: ImageNet-A and ObjectNet. Finally, leveraging our insights into the
potential of zooming, we propose a test-time augmentation (TTA) technique that
improves classification accuracy by forcing models to explicitly perform zoom-in
operations before making predictions. Our method is more interpretable, accurate,
and faster than MEMO, a state-of-the-art (SOTA) TTA method. We introduce
ImageNet-Hard, a new benchmark that challenges SOTA classifiers including large
vision-language models even when optimal zooming is allowed.

1 Introduction

Since the release of AlexNet in 2012 [38], deep neural networks have set many ImageNet (IN) [59]
accuracy records [38, 23]. While many papers reported improved learning algorithms or architectures,
little is known about how the inner workings of image classifiers actually evolve. The success is
often attributed to a network’s ability to detect more objects [9] and a variety of facets of each object
(i.e., invariance to style, pose, and form changes) [50, 21]. By aggregating the information from all
the visual cues in a scene, a classifier somehow chooses a better label for the image. For example,
Figs. 13–14 in [58] show that a model detects both dogs and cats in the same image and only discards
the dog features right before the classification layer to arrive at a tiger cat prediction.

When processing an image, a network may implicitly zoom in or out (defined in Sec. 3) to the most
discriminative image region ignoring the rest of the image (Fig. 1a), and then extract that localized
region’s features to predict image labels. We hypothesize that the improved image classification may
largely be due to the networks accurately zooming to the discriminative areas (e.g., junco and magpie
birds in Fig. 1a) rather than more accurately describing them (i.e. generating better features of these
two birds). In this work, we present supporting evidence for our zooming hypothesis.
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sleeping bag 24.56% puck 7.69% submarine 9.08% beaker 35.86%

sleeping bag 9.40% breastplate 16.86% quill 14.80%

snail 73.07% snowplow 13.25% mask 8.59%

(b)

Figure 1: (a) Each subfigure shows an input image, predicted label, and confidence score from an
ImageNet classifier (top and middle: ResNet-50 [23]; bottom: ViT-B/32 [17]). With the standard
center-crop transform, all 3 samples were misclassified (left-most column). Adjusting framing via
zooming yields correct predictions. (b) The zooming process correctly classifies a snail ImageNet-A
image. We uniformly adjust the input query image’s smaller dimension to match the target scale S.
We then partition the image into a 3× 3 grid, generating 9 crops centered at grid-cell centers (i.e., •
anchor points) and feed each crop to the original image classifier.

We conduct a thorough study to test the effects of zooming in and out on the classification accuracy
of six network architectures on six ImageNet-scale benchmarks. Our main findings also include:

1. A major, surprising finding is that state-of-the-art, IN-trained models can accurately
predict up to 98.91% of ImageNet samples when an optimally-zoomed image is pro-
vided. The remaining few hundred IN images (0.39%) that are never correctly labeled by
any model (despite optimal zooming) include mostly ill-posed and rare images (Sec. 4.1).

2. ImageNet-A [27] and ObjectNet [86] both exhibit a substantial center bias. For example,
by only upsampling and center-cropping each ImageNet-A image, ResNet-50’s accuracy
increases dramatically from 0.09% to 14.58% (Sec. 4.2).

3. Zooming can be leveraged as an inductive bias at test time to improve ImageNet classification
accuracy. That is, integrating zoom transformations into MEMO [83], a leading test-time
augmentation method, yields consistently higher accuracy than the baseline ResNet-50
models and also MEMO with default transformations on multiple datasets (Sec. 4.3).

Our findings show that the accuracy of image classifiers can be improved by finding an optimal
zoom setting first and then classifying that crop alone (Fig. 1a). Motivated by this insight, we
build ImageNet-Hard1, a new 1000-way classification benchmark that challenges state-of-the-
art (SOTA) classifiers despite the application of optimal zooming (Sec. 4.4). In other words, we
collect images from seven existing ImageNet-scale benchmarks where OpenAI’s CLIP ViT-L/14 [53]
misclassifies even when allowed to try 324 zooming settings. Interestingly, SOTA classifiers that
operate at 224×224 resolution perform poorly on ImageNet-Hard (below 19% accuracy). Analyzing
misclassifications on ImageNet-Hard reveals a major remaining challenge in the era of SOTA
classifiers of Transformers [17], EfficientNets [69, 36], and large vision-language models (Sec. 4.5).

2 Related Work

Learning to Zoom in image classification Leveraging zoom-in or crops of an image has a long
history of improving fine-grained image classification with approaches varying from combining
multiple crops at different resolutions [18, 73], using multiple crops of the object (i.e., part-based
classification) [16, 37, 84, 68, 84, 36] to warping the input image [55, 31, 32]. We note that a common

1Code and data are available on https://taesiri.github.io/ZoomIsAllYouNeed.
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prior definition of “zoom” [55, 31, 32, 70] is to first divide an input image into a grid and then warp
the image, distorting the aspect ratio of the objects in the image. In contrast, our zoom procedure
utilizes only two functions: resize and crop, maintaining the original aspect ratio.

Furthermore, to our knowledge, we are the first to perform a zoom study on ImageNet-scale datasets
(ImageNet [59], ImageNet-A [27], ObjectNet [8], etc) while prior zoom approaches [16, 37, 84, 68,
84, 36, 32] exclusively focus on non-ImageNet, fine-grained classification (e.g. classifying birds
or dogs). Due to such differences in the image distribution of interests, prior works mostly study
zooming in (which benefits fine-grained classification) while we study both zooming in and out.

Test-time data augmentation (TTA) is a versatile technique that could help estimate uncertainty [65,
7, 6] and improve classification accuracy [38, 67, 23, 52, 46, 62, 34, 14]. When test inputs are sampled
from unseen, non-training distributions, augmenting the data often improve a model’s generalization
to new domains [74, 83]. A simple TTA method is 10-crop evaluation [38] in which 5 patches of
224× 224 px along with their horizontal reflections (resulting in 10 patches) are extracted from the
original image. An alternative way to leverage the marginal output distributions over augmented
data is to use them as gradient signals to update the classifier’s parameters [75, 83]. We employ this
approach to update the model during test time, with patches being zoom-based augmentations.

Biases in ImageNet and datasets Resize-then-center-crop has been a pre-processing standard for
ImageNet classification since AlexNet [38]. This pre-processing exploits the known center bias of
ImageNet. While ImageNet has been shown to contain a variety of biases in image labels [10, 71],
object poses [5], image quality [39], we are the first to examine the positional biases of the out-of-
distribution (OOD) benchmarks for ImageNet classifiers and find a strong center bias in ImageNet-A
and ObjectNet that could affect how the community interprets progress on these OOD benchmarks.

Perhaps the closest to us is a preprint by Li et al. [42] that shows that cropping to the main object
can improve model accuracy on ImageNet-A [27]. Yet, unlike [42], we study six ImageNet-scale
datasets, both zooming in and zooming out, and we propose a new dataset of ImageNet-Hard.

3 Method

Zoom definition To zoom in or out of the image, we only use resize and crop operations. Initially,
we uniformly resize the test image so that the smaller dimension matches the target scale of S. Then,
we define a 3× 3 grid on the image to divide it into 9 patches. We perform a CenterCrop operation at
the center (• in Fig. 1b) of each patch to extract a 224× 224 px crop from each of the nine locations
(see Python code in Appendix A.1). In the CenterCrop step, zero-padding is used when the content to
be cropped is smaller than 224× 224. Overall, at each target scale S, we generate 9 crops (Fig. 1b).

We test 36 different values of S ranging from 10 to 1024 px, resulting in a total of 36 × 9 = 324
different zoomed versions for each image. Based on initial scale factor S, we define three groups:
(1) zoom-out group contains all augmented crops where S < 224; (2) zoom-in group contains all
augmented crops where S > 224; and (3) zoom-224 group contains the 9 patches where S = 224.

Benchmark datasets We use the ImageNet (IN) [59] dataset with both the original and ImageNet-
ReaL [10] (ReaL) labels. For each IN image, we use the union of the IN and ReaL labels (IN+ReaL)
to complement each other to reduce noise in IN labels. We further examine the effects of zoom-based
transformations on four popular OOD benchmarks: (a) natural adversarials (ImageNet-A [27]), (b)
image renditions (ImageNet-R [26]), (c) black-and-white sketches (ImageNet-Sketch [75]), and (d)
viewpoint-and-background-controlled samples (ObjectNet [8]). We refer to these as benchmarks as
IN-A, IN-R, IN-S, and ON, respectively, in the rest of the paper.

Classifiers We study the effects of zoom-based transformations on six popular image classifiers
in the last decade: AlexNet [38], VGG-16 [63], ResNet-18 & ResNet-50 [23], ViT-B/32 [17], and
OpenAI’s CLIP-ViT-L/14 [53]. The inclusion of the 11-year-old AlexNet provides a baseline for the
power of deep features (when given the right region to look at). Predicted labels from CLIP-ViT-L/14
are acquired using its standard zero-shot classification setup (Appendix A.5).
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4 Experimental Results

4.1 Zooming has the potential to substantially improve image classification accuracy

To understand the potential of zooming in improving image classification accuracy, first, we establish
an upper-bound accuracy (i.e. when an “optimal” zoom is given). That is, we apply 36 scales × 9
anchors = 324 zoom transformations (Sec. 3) to each image to generate 324 zoomed versions of the
input. We then feed all N = 324 versions to each network and label an image “correctly classified
given the optimal zoom” if at least 1 of the 324 is correctly labeled. We call such maximum possible
top-1 accuracy “upper-bound accuracy” in Tab. 1. Our experiment also informs the community of the
type of image that cannot be correctly labeled even with an optimal zooming strategy.

Table 1: On in-distribution data (IN & ReaL) there
exists a substantial improvement when models are
provided with an optimal zoom, either selected from
36 (b) or 324 pre-defined zoom crops (c). In contrast,
OOD benchmarks still pose a significant challenge

to IN-trained models even with optimal zooming (i.e.,
all upper-bound accuracy scores < 80%).

IN ReaL IN+ReaL IN-A IN-R IN-S ON
(a) Standard top-1 accuracy based on N = 1 crop
AlexNet 56.16 62.67 61.76 1.75 21.10 10.05 14.23
VGG-16 71.37 78.90 78.52 2.69 26.98 16.78 28.32
ResNet-18 69.45 76.94 76.47 1.37 32.14 19.41 27.59
ResNet-50 75.75 82.63 82.97 0.21 35.39 22.91 36.18
ViT-B/32 75.75 81.89 82.59 9.64 41.29 26.83 30.89
CLIP-ViT-L/14 75.03 80.68 81.95 71.28 87.74 58.23 66.32
(b) Upper-bound accuracy using N = 36 crops
Random 3.60 3.60 3.60 18.00 18.00 3.60 31.85
AlexNet 85.19 90.30 89.74 31.37 47.04 24.40 49.17
VGG-16 92.30 96.08 95.81 46.69 52.86 34.34 62.94
ResNet-18 92.08 95.97 95.73 47.48 58.85 37.91 63.08
ResNet-50 94.46 97.36 97.40 55.68 61.42 41.71 69.60
ViT-B/32 95.05 97.61 97.88 68.43 68.77 49.10 70.30
CLIP-ViT-L/14 94.19 97.32 97.56 97.16 98.60 83.77 89.59
(c) Upper-bound accuracy using N = 324 crops
Random 32.40 32.40 32.40 100.00 100.00 32.40 100.00
AlexNet 90.03 93.85 93.48 42.23 55.52 29.53 59.65
VGG-16 95.30 97.90 97.66 58.27 60.88 39.90 71.85
ResNet-18 95.15 97.76 97.55 58.87 66.89 43.68 71.44
ResNet-50 96.78 98.62 98.57 66.68 68.84 47.64 76.83
ViT-B/32 97.19 98.75 98.91 78.03 75.58 55.99 79.28
CLIP-ViT-L/14 96.78 98.69 98.80 98.45 99.20 89.00 93.13

microphone four poster reel

oxcart shopping basket plate, soup bowl

sliding door goldfish, plastic bag canon

pitcher swab, broom reflex camera

(a
) 

La
ck

 o
f i

nf
o

(b
) 

Ra
re

 c
as

es
(c

) 
Ill

us
io

ns
(d

) 
M

an
y 

ob
je

ct
s

Figure 2: IN+Real samples that are not cor-
rectly classifiable by IN-trained models us-
ing any of the 324 zoom transforms.

Results Table 1 shows upper-bound accuracy over different values of N = {1, 36, 324}. First, the
random baselines (given N = 324 attempts per image) are at 32.4% for 1,000 classes (IN, ReaL,

IN+ReaL, and IN-Sketch), and 100% for 200 and 313 classes (IN-A and ON, respectively). Yet, the
accuracy of models with optimal zooming is far from random—e.g. ResNet-50 largely outperforms
not only the random baseline but also the 1-crop baseline on IN (96.78% vs. 75.75%; Tab. 1a vs. c).

On the IN, ReaL, and IN+ReaL datasets, there is a substantial gap for all models (around +20 to
+35 points) between the 1-crop and the optimal zooming setting (Tab. 1a vs. c). Surprisingly, given
optimal zooming, the 11-year-old AlexNet actually can correctly label over 90% of IN images, which
is roughly the 1-crop accuracy (87.8%) of the 2022 state-of-the-art ConvNexts [44]. This result is
consistent with our hypothesis: One way for state-of-the-art classifiers to obtain their current accuracy
is to simply learn how to zoom on top of the same, old feature extractors (e.g. that of AlexNet).

Unclassifiable IN images Interestingly, even with optimal zooming, no model reaches 100% on
IN images. We find that 0.39% of the IN+ReaL images were not classified correctly by any of the
IN-trained classifiers and these images are similar to natural adversarial images (Fig. 2) and can be
categorized into four groups:

1. Lack of information (Fig. 2a): Images lack adequate signals for classification due to low
light, occlusion, blurriness, or noise.

2. Rare cases (Fig. 2b): Images depict the primary object but in an uncommon form, pose, or
rendition.
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Figure 3: Upper-bound accuracy (%) of ResNet-50 at each of the 9 zoom locations. The large gaps
between the center and eight off-center locations on IN-A and ON demonstrate a center bias, which
is much smaller in IN (Appendix B.2) and IN-R (b). The values in parentheses indicate the delta with
respect to the center crop.

3. Illusions (Fig. 2c): Images have misleading elements, like a shadow appearing as a staircase,
leading to misclassification.

4. Many objects (Fig. 2d): Images displaying several classes of objects but not all classes are
listed in the set of groundtruth labels.

OOD datasets pose a significant challenge to IN-trained models despite optimal zoom-
ing. Across IN-A, IN-R, and ON, all IN-trained models perform far below the 324-crop random
baseline (100%) with the highest score being 79.28% (Tab. 1). In contrast, CLIP reaches far better
scores than IN-trained models (98.45% on IN-A and 99.20% on IN-R; Tab. 1). Our result suggests
that OOD images (e.g. objects in unusual poses or renditions) require a more robust feature extractor
to recognize besides zooming. And that CLIP was trained on an Internet-scale dataset [53] and thus
is much more familiar with a variety of poses, styles, and shapes of objects [21].

Among the 324 zoom transformations, for each (classifier, dataset) pair, we initially construct a
bipartite graph connecting transforms to images based on their correct classification. With this graph,
we employ the iterative, greedy minimum-set cover algorithm [64, 35] to compute the minimum set
of transforms required to achieve the upper-bound accuracy detailed in Sec. 4.1. Through this process,
we discover that, on average, only 70% of the transforms are essential. Furthermore, we identify the
top-36 zoom transforms most important to classification (see visualizations in Appendix D.1).
More details on this process can be found in Appendix B.4.

The upper-bound accuracy using 36 crops (Tab. 1b) is only slightly lower than that when using all 324
crops but is substantially higher than (1) the standard 1-crop, e.g. 85.19% vs. 56.16% for AlexNet on
IN (Tab. 1b); and (2) the random baseline (i.e. 3.6% for IN). Our result confirms that these 36 zoom
transforms are indeed important to classification (not because models are given 36 random trials per
image) and that studying them might reveal interesting insights into the datasets.

As our 324 transforms include both zoom-in and zoom-out, we further analyze the contribution of
each zoom type to each dataset. We find that, across 7 datasets, zoom-in is more useful than zoom-out.
And that zoom-out is the most important to abstract images i.e., of IN-R and IN-S (Appendix B.6).

4.2 ImageNet-A and ObjectNet suffer from a severe center bias

The standard image pre-processing for IN-trained models involves resizing the image so its smaller
dimension is 256, then taking the center 224× 224 crop of the resized image [2, 38]. While suitable
for ImageNet, this pre-processing may not be optimal for every OOD dataset, not allowing a model
to fully utilize off-center visual cues (which optimal zooming could). Leveraging the minimum
set of transforms obtained in Appendix B.4, we quantify which spatial locations (out of 9 anchors;
Fig. 1b) contain the most discriminative features in each dataset. That is, we compute the upper-bound
accuracy for each of the 9 anchor points per dataset and discover biases in some benchmarks.

Experiment For each image, we have 9 anchors (Fig. 1b) and the originally K = 36 zoomed
versions per anchor as defined in Sec. 3. Yet, after reducing to the minimum set (Appendix B.4),
K averages at 25, over all datasets, and 10 ≤ K ≤ 31. Here, we count the probability that the K
zoomed versions per anchor lead to a correct prediction. In other words, we compute the upper-bound
accuracy as in Sec. 4.1 but for each anchor separately.
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Results First, as expected, the upper-bound accuracy for each anchor (Fig. 3) is consistently lower
than when all 9 anchors are allowed (Tab. 1c). Second, across all 6 datasets, the center anchor
consistently achieves the highest upper-bound accuracy versus the other 8 locations (Fig. 3 and
Appendix B.2), indicating a center bias in all datasets. However, we find this bias is small in IN,
IN-R, and IN-S but large in IN-A and ON (i.e. the largest difference between center accuracy and the
lowest off-center accuracy is around -25 and -23 points, respectively; whereas for other datasets, it is
around (-1) to (-5) points, as shown in Fig. 3).

The center bias in ObjectNet can be explained by the fact that the images were captured using
smartphones with aspect ratios of 2:3 or 9:16 (Appendix D.3.3). Overall, such strong center bias in
IN-A and ON may not be desirable since improvements on these two benchmarks may be attributed
to learning to zoom to the center as opposed to the intended quest of recognizing objects in unusual
forms (IN-A) or poses (ON). By merely upscaling the image and center cropping, we can achieve
higher accuracy using nearly all the same models on these two datasets (Figs. A14 and A17).

We also find that, during test time, center-zooming (Appendix B.5) increases the top-1 accuracy of all
IN-trained models but not CLIP, even on IN-A and ON images. This observation is intriguing consid-
ering these OOD datasets contain more distracting objects than ImageNet images (Appendix C.2)
and therefore, center-zooming should de-clutter the scene for more accurate classification. However,
CLIP prefers a specific zoom scale that provides sufficient background for object recognition—it
struggles to identify a single object in a tightly-cropped image [85]. Future research should examine
whether this “zoom bias” of CLIP is due to its image- or text-encoder, or both.

4.3 Test-time augmentation of MEMO with only zoom-in transforms improves accuracy

Aggregating model predictions over zoom-in versions of the input image during test time leads
to higher top-1 accuracy on IN, IN-ReaL, IN-A and ON, but lower accuracy on IN-R and IN-S
(Appendix B.7). However, interestingly, always zooming out on IN-R and IN-S abstract images also
hurts accuracy, suggesting that an adaptive zooming strategy might be a better approach.

Here, we test building such an adaptive test-time zooming strategy by modifying MEMO [83], a
SOTA test-time augmentation method that finetunes a pre-trained classifier at test time to achieve a
more accurate prediction. Specifically, MEMO finds a network that produces a low-entropy predicted
label over a set of K = 16 augmented versions of the test image I and then runs this finetuned
model on I again to produce the final prediction. It does this by applying different augmentations
to the test point I to get augmented points I1, . . . , IK , passing these through the model to obtain
predictive distributions, and updating the model parameters by minimizing the entropy of the averaged
marginal distribution over predictions. While improving accuracy, MEMO requires a pre-defined
set of diverse augmentation transforms (e.g. sheer, rotate, and solarize in AugMix [26]). Yet, the
hyperparameters for each type of transform are hard-coded, and the contribution of each transform to
improved classification accuracy is unknown.

We improve MEMO’s accuracy and interpretability by replacing AugMix transforms with only
zoom-in functions. Intuitively, a model first looks at all zoomed-in frames of the input image (at
different zoom scales and locations) and then decides to achieve the most confident prediction.

Experiment MEMO relies on AugMix [25], which applies a set of 13 image transforms, such as
translation, rotation, and color distortion, to an original image at varying intensities, and then chains
them together to create K = 16 new augmented images (examples in Appendix D.5).

We replace AugMix with RandomResizedCrop [4] (RRC), which takes a random crop of the input
image (i.e. at a random location, random rectangular area, and a random aspect ratio) and then resizes
it to the fixed 224×224 (i.e. the network input size). RRC basically implements a random zoom-in
function (examples in Appendix D.5).

We compare the original MEMO [83] (which uses AugMix) and our version that uses RRC on five
benchmarks (IN, IN-A, IN-R, IN-S, and ON). We follow the same experimental setup as in [83]
(e.g. K = 16). Specifically, we test three ResNet-50 variants that were pre-trained using distinct
augmentation techniques.2

2The ResNet-50 model used as a baseline in this Sec. 4.3 is different from that in our other (non-MEMO)
sections of the paper.
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We utilize Grad-Cam [58] to understand the impact of MIMO on the network’s attentions within the
final layer, both before and after modification. Specifically, our investigation seeks test our hypothesis
concerning the model’s focus on the regions of interest within an image.

Results Both our MEMO + RRC and the original MEMO + AugMix [83] consistently outperform
the baseline models, which do not use MEMO, on all five datasets (Tab. 2). That is, when combined
with MEMO, zoom-in transforms implemented via RRC are also helpful in classifying IN-S and IN-R
images—where we previously find zoom-in to not help in mean/max aggregation (Appendix B.7).

On average, over all three models and five datasets, our RRC outperforms AugMix by +0.28 points,
with a larger impact on IN-A, where it achieves a mean improvement of +1.10 points (Tab. 2). Our
results show that zoom-in alone can be a useful inductive bias, helping improve downstream image
classification. In contrast, some of the transformations among the 13 transform functions in AugMix
may not be essential to the results of Zhang et al. [83] (no ablation studies of transformations were
provided in [83]) and are less effective than our zoom-in.

Table 2: MEMO + RRC (i.e. random zoom-in transforms) outperforms baselines and MEMO [83].
Baseline (1-crop) MEMO + AugMix [83] MEMO + RRC (Ours)

IN IN-A IN-R IN-S ON IN IN-A IN-R IN-S ON IN IN-A IN-R IN-S ON

ResNet-50 [23] 76.13 0.00 36.17 24.09 35.92 77.27 0.83 41.28 27.63 38.38 77.50 1.31 40.81 27.53 38.85
DeepAug+AugMix [26] 75.82 3.87 46.77 32.62 34.81 76.27 5.35 50.79 35.70 36.42 76.38 5.76 50.88 35.65 36.64
MoEx+CutMix [40] 79.04 7.97 35.52 23.96 38.59 79.38 11.21 40.65 27.07 40.62 79.49 13.61 40.41 26.80 41.43
mean ± std 36.75 ± 24.75 39.26 (+2.51) ± 24.32 39.54 (+2.79) ± 24.10

Figure 4 shows Grad-CAM visualizations for three samples, providing evidence of how the network’s
behavior changes before and after the MEMO update. For an image of a pug, the network initially
focused on a kitchen appliance, failing to detect the object correctly. After applying the MEMO
modification, it refocused on the dog, classifying it accurately. Similarly, in an image of a fox
squirrel, the network initially had a diffuse focus but refocused on the fox squirrel after the update.
These results demonstrate the effectiveness of the MEMO modification in guiding the network’s
attention or encouraging the model to perform an implicit zoom on the regions of interest, thereby
improving its classification performance.

Figure 4: Grad-CAM for the activation of the last convolutional layer of a ResNet-50 before and after
the MEMO update suggests that the network attends to the object of interest after the update.

4.4 ImageNet-Hard: A benchmark with images that remain unclassifiable, even after 324
zoom attempts

Existing ImageNet-scale benchmarks followed one of the following three construction methods: (1)
perturbing real images with the aim of making them harder for models to classify (e.g., ImageNet-
C [24] and DAmageNet [13]); (2) collecting the real images that models misclassify (e.g., IN-A,
ImageNet-O [27]); or (3) setting up a highly-controlled data collection process (e.g., IN-S and ON).
Yet, none of such benchmarks explicitly challenge models on the ability to recognize a well-framed
object in an image (i.e., no zooming required). For example, ON is supposed to test the recognition
of objects in unusual poses but the cluttered background in ON images is actually a major reason for
misclassification (Sec. 4.2). Furthermore, the results in Tab. 1 suggest that given optimal zooming,
these existing benchmarks only challenge IN-trained models but not the Internet-scale vision-language
models (e.g. CLIP) anymore. We propose ImageNet-Hard, a novel ImageNet-scale benchmark that
challenges existing and future SOTA models. ImageNet-Hard is a collection of images that the SOTA
CLIP-ViT-L/14 fails to correctly classify even when 324 zooming attempts are provided.
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4.4.1 ImageNet-Hard construction

Initial data collection We take CLIP-ViT-L/14 (the highest-performing model in Tab. 1) and run
the zooming procedure to find “Unclassifiable images” (defined in Sec. 4.1) from the following six
datasets: IN-V2 [56], IN-ReaL, IN-A, IN-R, IN-S, and ON. That is, for each image x, we generate
324 zoomed versions of x and feed them into CLIP-ViT-L/14. We add x to ImageNet-Hard only if
none of the 324 versions are correctly classified.

Adding ImageNet-C The original IN-C [24] are the original IN images but center-cropped to 224
× 224 px, which significantly makes the classification task unnecessarily more ill-posed (e.g., by
adding Gaussian noise to a crop where the main object is already removed).

To find a subset of IN-C images for adding into ImageNet-Hard, we first re-generate ImageNet-C
by adding the 19 types of corruption noise to IN without resizing the original IN images. Second,
we run CLIP-ViT-L/14 on all 19 corruption types and manually select a subset of six diverse and
lowest-accuracy corruption groups: Impulse Noise, Frost, Fog, Snow, Brightness, and Zoom Blur.
We repeat the initial data collection process for these 6 image sets of IN-C.

Groundtruth labels After the above procedure, our dataset contains 13,925 images collected from
IN+ReaL, IN-V2, IN-A, IN-C, IN-R, IN-S, and ON (see the distribution in Appendix E.1). ImageNet-
Hard presents a 1000-way classification task where the 1000 classes are from ImageNet. We manually
inspect all images and remove 295 samples that are obviously ill-posed (e.g. an entirely black image
but labeled great white shark in IN-S Fig. A60), arriving at a total of 13,630 ImageNet-Hard
images. A sample contains only one groundtruth label from its original datasets except for IN and
IN-C images, which have a set of IN+ReaL labels. Each IN or IN-C image is considered correctly
labeled by a model if its top-1 predicted label is among the groundtruth labels.

Refining groundtruth labels via human feedback Label noise is still present in IN and OOD
benchmarks despite cleaning efforts [10, 56, 81]. Since ImageNet-Hard contains images misclassified
by CLIP-ViT-L/14, our manual inspection confirms many misclassified images have debatable labels.

To ameliorate the issue, we orchestrate a human feedback study for eliminating images with inaccurate
labels. First, the first author examine every image and flag 3,133 images as ambiguous and needs
verification. Then, we have two groups of annotators to help verify the labels (by choosing Accept,
Reject, or Not Sure). Group A is composed of three students, each examine all 3,133 images where
Group B is composed of 38 students, each examine 50 randomly-selected images. Our inter-annotator
aggregation procedure merges labels from both groups and results in 2,280 images removed (out of
3,133 originally flagged), leaving ImageNet-Hard at a total of 11,350 images.

That is, we accept an image x if one of the two conditions is satisfied: (1) when all 3/3 group-A
annotators accept x; or (2) when 2/3 group-A annotators accept x and all group-B reviewers of x
accept x (assuming at least 1 group-B annotator reviews x; otherwise x will be rejected).

Inspired by IN-ReaL [10], we further clean up the labels by eliminating 370 images associated with
the labels sunglass, sunglasses, tub, bathtub, cradle, bassinet, projectile, and missile, i.e.,
the classes that often contain similar images that belong to more than one class. After this refinement,
the final ImageNet-Hard dataset contains a total of 10,980 images.

4K version We utilize GigaGAN [33] to upscale every image in our final dataset and construct
ImageNet-Hard-4K, which is aimed to facilitate future research into how a super-resolution step may
improve image classification results (e.g., to classify an object when the image is blurry).

Release ImageNet-Hard and ImageNet-Hard-4K are released on HuggingFace (see samples in
Fig. A49) under MIT License. Code for evaluating models on ImageNet-Hard is on GitHub.

4.4.2 ImageNet-Hard challenges SOTA classifiers, especially those operating at 224×224

Here, we evaluate the standard 1-crop, top-1 accuracy of SOTA classifiers on ImageNet-Hard. We
use the image pre-processing function defined by each classifier. In addition to the 6 models in
Sec. 4.1, we also test CLIP-ViT-L/14@336px [53], EfficientNet (B0@224px and B7@600px) [69],
and EfficientNet-L2@800px [1]. CLIP-ViT-L/14@336px, EfficientNet-B7@600px, and EfficientNet-
L2@800px are state-of-the-art models that operate at high resolutions of 336×336, 600×600, and
800×800 respectively. In addition, our evaluation includes models from the OpenCLIP family [30].
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Results Tab. 3 shows fairly low top-1 accuracy by various classifiers on ImageNet-Hard. First, all
well-known IN-trained classifiers that operate at 224×224 perform poorly between 7.34% (AlexNet)
and 18.52% accuracy (ViT-B/32).

Since ImageNet-Hard is based on a collection of images that OpenAI’s CLIP ViT-L/14@224px
mislabels, this classifier’s accuracy on our dataset is only 1.86%. Yet, interestingly, CLIP-ViT-
L/14@336px also performs poorly at 2.02% (Tab. 3). Furthermore, all 68 tested OpenCLIP models
perform poorly, with an accuracy below 16% (see details in Appendix E.6).

Separately, we observe a trend that models operating at a higher resolution tend to perform better on
ImageNet-Hard with EfficientNet-L2@800px scoring highest at 39.00% (compared to 88.40% [79]
on the original ImageNet). Overall, all models perform substantially worse on ImageNet-Hard
(Tab. 3) than on other ImageNet-scale datasets (see Tab. A6; 1-crop). This result is expected because
ImageNet-Hard is a set of hard cases collected from those OOD benchmarks.

ImageNet-Hard-4K We find that when upsampling images to 4K using GigaGAN [33] and
downsampling them back to the resolution of each classifier does not help but even hurt the accuracy
slightly (Tab. A13). Given that GigaGAN performs remarkably well, this result suggests ImageNet-
Hard is different from typical fine-grained animal classification where improving the texture details
increases classification accuracy [76]. The next section (Sec. 4.5) sheds light on model failures on
ImageNet-Hard, revealing challenges posed to future SOTA models.

Table 3: Top-1 accuracy (%) on ImageNet-Hard of IN-trained models and those trained on larger,
non-ImageNet datasets (black). All models operate at 224×224 unless otherwise specify.

Classifier Accuracy Classifier Accuracy Classifier Accuracy

AlexNet 7.34 ViT-B/32 18.52 CLIP-ViT-L/14@224px 1.86
VGG-16 12.00 EfficientNet-B0@224px 16.57 CLIP-ViT-L/14@336px 2.02
ResNet-18 10.86 EfficientNet-B7@600px 23.20 OpenCLIP-ViT-bigG-14 15.93
ResNet-50 14.74 EfficientNet-L2@800px 39.00 OpenCLIP-ViT-L-14 15.60

4.5 Analysis of Image Classification Errors

Motivated by the fact that EfficientNet-L2 is the best classifier on ImageNet-Hard, we qualitatively
analyze its failure cases to characterize the challenge posed by our benchmark. Specifically, we pro-
vide gpt-3.5-turbo [51] with a pair of EfficientNet-L2’s top-1 (incorrect) label and the groundtruth
label and ask it to categorize the error into “common” or “rare” based on the labels’ semantic similar-
ity (see Appendix E.3 for full details). For instance, mislabeling bucket into barrel is common (as
two objects are quite related) while mislabeling cloak into jigsaw puzzle is rare.

cup
beaker

bucket
barrel

clownfish
rock beauty

tape player
cassette

slide rule
ruler

(a) Common

tray
weighing scale

snorkel
hook

tray
quill

llama
plectrum

cloak
jigsaw puzzle

(b) Rare

Figure 5: ImageNet-Hard samples misclassified by EfficientNet-L2@800px can be categorized into
two groups: (a) Common: the top-1 label is related to the groundtruth label; and (b) Rare: the top-1
label is semantically far from the groundtruth label. See Figs. A56 and A57 for more samples.

Results See Appendix E.4 for samples of wrong labels that EfficientNet-L2 most frequently
misclassifies into. We find that 39.4% of EfficientNet-L2’s misclassifications on the ImageNet-Hard
dataset are “common”, while 60.6% are “rare”.

A. Common group captures model confusion between two related classes (e.g. two fish species:
clownfish and rock beauty; Fig. 5a). Yet, another source of problem for these “errors” is the
debatable groundtruth labels, which may require domain-expert annotators to verify and rectify [45].

B. Rare group captures errors where the model confusion is between two semantically distant classes
(e.g., llama → plectrum; Fig. 5b). This often happens with abstract images or objects in unusual
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poses [5] or forms [15]. Classifying this group of images is challenging and sometimes requires a
strong understanding of context and reasoning capabilities.

5 Discussion and Conclusion

Limitations By manual inspection, we estimate 14.7% of labeling noise, which ImageNet-Hard
inherits from the source datasets.

Our study rigorously analyzed the zooming effect on six known classifiers and image classification
benchmarks. We first demonstrate that previous state-of-the-art classifiers, as old as AlexNet [38],
could potentially achieve near 90% accuracy with optimal zooming. This sparks the intriguing
question of whether image classifiers’ evolution over the past ten years is about mastering where
and at what scale to zoom (instead of enhancing feature extractors, a.k.a. representation learning
[3]). Through another lens, we probe the evolution by analyzing the implicit zooming mechanisms
that deep classifiers apply to input images. This perspective diverges from [54], which studied the
progression of representation learning from CNNs to ViTs.

We are the first to document the spatial biases of existing benchmarks. Notably, IN-A and ON contain
a large center bias and simply zooming to the center will de-clutter the scene and yield a high accuracy
(24.69% for ViT-B/32 on IN-A; Tab. A5), which is competitive with state-of-the-art trained models
(e.g. 24.1% of Robust ViT [11]) and much higher than state-of-the-art TTA techniques (e.g. 11.21%
of MEMO [83]; Tab. 2). Our simple, but strong zoom-in baselines on IN-A and ON motivate future
research into better-controlled benchmarks that more explicitly test models on a set of pre-defined
properties. Our proposed TTA method with zoom-in transforms (MEMO + RRC) is not only more
accurate but also more interpretable and faster to run (Tab. A7) than the original MEMO.

Finally, we introduce ImageNet-Hard (Sec. 4.4), a new challenging dataset for SOTA IN-trained and
vision-language classifiers.
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Appendix for:
ImageNet-Hard: The Hardest Images Remaining from a Study of

the Power of Zoom and Spatial Biases in Image Classification

A Implementation details

In this section, we provide a detailed description of our experimental setup, including the Python
code for our zoom transform, the classifiers we employed, and the setup we used for zero-shot
classification.

A.1 Sample Python code for zoom-based transform

from PIL import Image
import torchvision.transforms.functional as fv
import torchvision.transforms as transforms
from functools import partial

def crop_at(size , slice_x , slice_y):
def slice_crop(image , size , slice_x , slice_y):

width , height = image.size
tile_size_x = width // 3
tile_size_y = height // 3
anchor_x = (slice_y * tile_size_x) + (tile_size_x // 2)
anchor_y = (slice_x * tile_size_y) + (tile_size_y // 2)
return fv.crop(

image ,
anchor_y - (size // 2),
anchor_x - (size // 2),
size ,
size ,

)
return partial(slice_crop , size=size , slice_x=slice_x , slice_y=
slice_y)

zoom_scale = 255
zoom_transform = transforms.Compose(

[
transforms.Resize(

zoom_scale ,
interpolation=transforms.InterpolationMode

.BICUBIC ,
max_size=None ,
antialias=None ,

),
crop_at (224, i, j),

]
)

Figure A1: Sample python code.
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A.2 Datasets’ licenses

Dataset Name License
ImageNet Custom license, non-commercial
ImageNet-A License
ImageNet-R MIT License
ImageNet-Sketch MIT License
ImageNet-C MIT License
ObjectNet Custom license derived from Creative Commons Attribution 4.0
ImageNet-V2 MIT License

Table A1: Dataset Licenses

A.3 Zoom Scales used
In our experiments, we tried the following zoom scales:

10, 16, 32, 48, 64, 96, 122, 128, 192, 224, 235, 240, 256, 288, 320, 348, 384, 448, 460, 512,

573, 576, 640, 664, 672, 680, 686, 690, 700, 720, 768, 798, 832, 896, 911, 1024.

A.4 Model selection
We use the official OpenAI’s official CLIP for all CLIP-related experiments. All IN-trained models
are retrieved from the torchvision [48] library. For models from the OpenCLIP family, we utilize
the OpenCLIP library version 2.20.0. In the case of the EfficientNet-B family, we use the Hugging
Face Transformers library. Lastly, for EfficientNet-L2, we use the implementation from the timm
library.
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A.5 Zero-shot classification using CLIP
For CLIP, we follow the standard zero-shot classification. This involves creating a text template for
each class in the dataset, which contains a generic description of an image featuring an object from
that class. Then, we use CLIP’s text encoder to obtain embeddings for these templates and then
average them to obtain a final vector that represents the class. To classify an image, we calculate the
cosine similarity between its embedding and the text vectors for each class and then select the class
with the highest value.

A.6 Zoom-based transform

(a)

wool tennis ball 3.73% wool 83.23% wool 77.49%

knot 55.13% wool 61.55% wool 77.53% spindle 45.44%

Zoom scale 512

Standard center crop
wool 89.71% wool 34.45% tick 4.0%

(b)

Figure A2: (a) Making a 3-by-3 uniform grid out of the image. We pick the center point in each
region as the anchor. (b) Sample image showing how our zoom transform is applied to an image.
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B Additional Results
In this section, we provide additional results for our experiments.

B.1 Zooming out is needed for a small portion of the datasets
In our approach, we leverage the power of both zoom-in and zoom-out transforms, and Tab. 1 results
indicate that this combined zooming approach can be effective in classifying images from diverse
datasets. Zooming in enhances texture patterns while zooming out provides a better perspective of
the object’s shape. The question we aim to answer is which dataset and model pairs require which
type of zoom, and whether zooming is always necessary. Additionally, we investigate which types
of networks are less reliant on explicit zooming, as they implicitly focus on the main object in the
image.

Experiment We separate zoom transforms into three groups and report the maximum possible
accuracy as defined in Sec. 3. We use transforms in the minimum set covers (as shown in Fig. A10)
for each dataset and classifier pair. We then report the number of images that can only be classified
using transforms in each group separately.

hyena

french horn 15.65% hyena 8.31% snow leopard 10.41%

triceratops 31.22% american alligator 6.17% hyena 18.64% snow leopard 21.78%

Zoom scale 122

Standard center crop web site 5.47% hyena 15.64% snow leopard 11.52%

Figure A3: A sample image from the ImageNet-Sketch dataset that can only be solved by zooming
out. For this image, with the standard ImageNet transform, the entire body of the animal is not visible.
Instead, zooming out of the image helps you see the whole body of the animal. More samples can be
found in Appendix D.3.

Results In general, we find that zooming in is more effective than zooming out. Zooming in
provides two benefits: (1) it helps the model to focus on the key region where the target object is
located, and (2) the model can extract features from the target object at a higher resolution. Across all
methods and datasets, we can see a certain percentage of images are only classifiable using transforms
of the zoom-out group. In particular, for ImageNet-R and ImageNet-Sketch, between 1.2% − 3%
(Table A2) of the entire dataset can only be solved using a transform in the zoom-out group. This is
especially true for drawings, where the texture may lack distinguishable features, and zooming out
allows us to better perceive the shape.
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Table A2: Breakdown of maximum possible accuracy by different zoom groups. In each dataset,
certain images necessitate a specific zoom group for correct classification regardless of the model
being used. However, CLIP performs well overall without depending heavily on a particular zoom
level. On average, the percentage of datasets that can only be solved with a specific zoom group is
very small for this model.

Dataset Model zoom-in
Solve

zoom-out
Solves

zoom-224
Solves

Only zoom-in
Solves

Only zoom-out
Solves

Only zoom-224
Solves

ImageNet

ResNet-18 94.57 79.49 81.16 10.59 0.43 0.08
ResNet-50 96.30 85.84 86.39 7.59 0.40 0.04
ViT-B/32 96.83 86.18 85.12 7.59 0.30 0.02
VGG-16 94.60 82.11 83.08 8.92 0.58 0.07
AlexNet 89.17 62.92 67.98 18.01 0.65 0.18
CLIP-ViT-L/14 95.82 90.80 87.04 4.81 0.83 0.05

ImageNet ReaL

ResNet-18 97.37 86.10 87.62 7.38 0.27 0.07
ResNet-50 98.22 91.07 91.87 4.65 0.25 0.04
ViT-B/32 98.50 90.79 88.06 4.92 0.18 0.03
VGG-16 97.38 88.43 89.40 6.02 0.38 0.07
AlexNet 93.15 69.58 74.85 15.47 0.45 0.19
CLIP-ViT-L/14 98.05 94.44 91.69 3.20 0.55 0.04

ImageNet+ReaL

ResNet-18 97.16 85.51 86.77 7.72 0.28 0.05
ResNet-50 98.25 91.10 91.77 4.60 0.24 0.03
ViT-B/32 98.70 91.00 90.95 4.92 0.14 0.02
VGG-16 97.12 87.88 89.09 6.25 0.42 0.06
AlexNet 92.79 68.65 73.93 16.25 0.47 0.16
CLIP-ViT-L/14 98.24 95.09 92.41 2.75 0.47 0.04

ImageNet-A

ResNet-18 63.66 47.95 45.37 13.97 2.75 0.21
ResNet-50 65.28 52.36 48.59 12.05 3.13 0.22
ViT-B/32 73.07 56.34 54.84 14.20 2.04 0.27
VGG-16 56.67 44.95 39.35 11.80 3.85 0.24
AlexNet 52.69 32.86 31.95 17.15 2.34 0.30
CLIP-ViT-L/14 98.35 96.71 93.57 1.70 0.69 0.04

ImageNet-R

ResNet-18 57.07 12.19 10.07 40.67 0.92 0.19
ResNet-50 64.52 12.95 10.36 48.72 1.00 0.23
ViT-B/32 76.71 18.57 21.92 51.75 0.85 0.15
VGG-16 56.59 13.15 13.27 38.24 0.93 0.29
AlexNet 39.91 10.39 9.11 26.27 1.08 0.36
CLIP-ViT-L/14 97.99 81.32 77.03 12.01 0.44 0.05

ImageNet-Sketch

ResNet-18 41.14 27.06 27.41 11.83 1.77 0.36
ResNet-50 44.72 32.80 31.45 10.99 2.23 0.24
ViT-B/32 53.45 37.43 37.38 13.11 1.83 0.36
VGG-16 36.20 27.20 24.59 9.47 2.97 0.28
AlexNet 27.71 13.84 15.11 11.26 1.22 0.33
CLIP-ViT-L/14 86.20 80.67 73.94 6.64 2.38 0.12

ObjectNet

ResNet-18 68.98 38.52 37.23 25.76 1.93 0.25
ResNet-50 74.16 51.56 47.79 19.68 2.16 0.30
ViT-B/32 77.66 44.49 42.65 27.43 1.34 0.20
VGG-16 69.19 41.72 39.49 23.34 2.27 0.31
AlexNet 56.76 23.45 22.59 28.85 2.27 0.33
CLIP-ViT-L/14 91.28 82.22 77.60 8.37 1.38 0.15

Average

ResNet-18 74.28 53.83 53.66 16.85 1.19 0.17
ResNet-50 77.35 59.67 58.32 15.47 1.34 0.16
ViT-B/32 82.13 60.69 60.13 17.70 0.95 0.15
VGG-16 72.54 55.06 54.04 14.86 1.63 0.19
AlexNet 64.60 40.24 42.22 19.04 1.21 0.26
CLIP-ViT-L/14 95.13 88.75 84.75 5.64 0.95 0.07

20



B.2 Anchor-based analysis of Center bias in ImageNet and OOD datasets
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Figure A7: ResNet-50

B.3 Distribution of the minimum set cover per classifier and dataset
In this section, we provide details on the distribution of minimum set cover size.

B.4 Only 70% of all transforms are needed to reach maximum possible accuracy
In Sec. 4.1, we first pre-define all 324 zoom transforms and then compute the maximum possible
accuracy to ensure the predicted labels were the results of models looking at a controlled zoomed
region (i.e. not because a model was given 324 arbitrary trials per image). Here, we aim to compute
the minimum number of zoom settings required for a model to reach the same upper-bound accuracy.
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Figure A8: ViT-B/32
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Figure A9: CLIP-ViT-L/14

Table A3: Distribution of the minimum set cover per classifier and dataset. (ZI: zoom-in, ZO:
zoom-out, ZL: zoom-224)

ReaL IN-A IN-R IN-Sketch ON

ZI ZO ZL Total ZI ZO ZL Total ZI ZO ZL Total ZI ZO ZL Total ZI ZO ZL Total

ResNet-18 160 33 8 201 174 31 6 211 204 65 9 278 209 51 9 269 191 54 9 254
ResNet-50 136 33 9 178 165 42 7 214 200 62 9 271 216 56 9 281 187 63 9 259
ViT-B/32 134 30 4 168 167 19 7 193 196 52 9 257 218 46 9 273 206 58 9 273
VGG-16 158 34 9 201 181 33 8 222 214 66 9 289 210 54 9 273 198 52 9 259
AlexNet 191 40 8 239 170 33 9 212 212 51 9 272 217 49 9 275 201 58 9 268
CLIP-ViT-L/14 141 48 8 197 75 14 4 93 76 33 5 114 142 61 9 212 205 66 9 280

Evaluating this minimum set may reveal spatial biases of a dataset (Sec. 4.2) as well as the implicit
zoom operation that a state-of-the-art model (e.g. CLIP) may have learned.
Experiment Given a (dataset, classifier) pair, we constructed a bipartite graph G = (N,E), where
N = A ∪B, A represents the set of transforms, and B represents the set of images. The edges E are
defined as follows:

E = {(ni, nj) | ni ∈ A,nj ∈ B, and transform ni leads to the correct classification of image nj}

We aim to find a minimum set cover [64, 35] in this graph, synonymous with finding a minimum
subset of transforms among the 324 that lead to the correct prediction for all classifiable images in
Sec. 4 (i.e. those that make up the accuracy scores in Tab. 1c), without unnecessary transforms.
The resulting subset of transforms from the process leads to the correct prediction for all classifiable
images without sacrificing accuracy. During each iteration of the greedy minimum set cover algorithm,
the transform that yields the highest number of correct classifications for the remaining images is
selected. This process continues until all of the images have been “covered,” i.e. all images have
connected to a transform with at least one edge. The result aligns with our initial goal to remove
unnecessary zoom transforms while maintaining the maximum possible accuracy, as outlined in
Sec. 4 (i.e., those that make up the accuracy scores in Tab. 1c). The outline of the algorithm can be
seen in Algorithm 1.
Results Fig. A10 shows the minimum number of transforms per dataset required to reach the
maximum possible accuracy. Although this number varies depending on the dataset and classifier, on
average, the size of the minimum cover is 229, which is ∼70% of all 324 pre-defined transforms.
We evaluate the maximum possible accuracy using the top 36 transforms, the same number as the
number of zoom scales and report the results in Tab. 1b. This set of transforms is achieved by
stopping the algorithm after 36 iterations, which provided us with 36 high-performing transforms.
The maximum possible accuracy using only 36 crops is only slightly lower than that when using
all 324 crops but is substantially higher than the standard 1-crop, e.g. 85.19% vs. 56.16% for
AlexNet on IN (Tab. 1b). Also, the upper-bound accuracy for 36 crops being much higher than the
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Algorithm 1 Greedy Minimum Set Cover for Transforms

1: Initialization: C = ∅ (Covered set of images), T = ∅ (Selected transforms)
2: while C ̸= B do
3: Find ni ∈ A \ T that maximizes |nj ∈ B \ C | (ni, nj) ∈ E|
4: C = C ∪ {nj | (ni, nj) ∈ E}
5: T = T ∪ {ni}
6: end while
7: Result: The subset of transforms corresponding to T can classify images without sacrificing

accuracy.

Figure A10: The minimum number of zoom transforms (out of 324) required to achieve the maximum
possible accuracy scores reported in Tab. 1c.

IN ReaL IN+ReaL IN-A IN-R IN-S ON µ

AlexNet 255 239 246 212 272 275 268 252
VGG-16 242 201 201 222 289 273 259 241
ResNet-18 250 201 208 211 278 269 254 239
ResNet-50 234 178 183 214 271 281 259 231
ViT-B/32 233 168 173 193 257 273 273 224
CLIP-ViT-L/14 251 197 186 93 114 280 212 190

random baseline (i.e. 3.6% for IN) confirms that the pre-defined zoom transforms are important to
classification (not because models are given 36 random trials per image). The top-36 zoom transforms
for ResNet-50 on ImageNet contain zooms at various locations in the image (see the visualizations in
Appendix D.1).
Remarkably, CLIP requires 190 transforms on average, which is fewer than every other model
(Fig. A10; µ column). This can be attributed to either the implicit zoom power of CLIP or the fact it
has a stronger feature extractor.

B.5 Center-zooming increases the accuracy of all ImageNet-trained models but not CLIP
Previously, we have found that CLIP obtains the best accuracy on all six datasets (Tab. 1a) and
also requires the smallest minimum set of zoom transforms to obtain the upper-bound accuracy
(Appendix B.4). It is important to understand what classification strategy a CLIP classifier internally
performs to classify better. Here, we test the hypothesis that the state-of-the-art CLIP is already
performing an implicit zoom on images. If that is true, directly zooming to the center, exploiting the
strong center bias of ImageNet-A and ObjectNet, will not improve CLIP accuracy.
Experiment We evaluate the accuracy of all models when center-zooming on IN-A and ON images
at 11 different scales S ∈ {128, 160, 192, ..., 448} (Fig. A11). That is, center-zooming at S first
resizes the input image so that the smaller dimension becomes S and then takes a 224×224 center
crop (zero-padding is applied when necessary).
Results In Fig. A11, we show the changes in the top-1 accuracy (1-crop) when varying the center-
zoom scales away from the default ImageNet transform scale (S = 256) for both ImageNet-A and
ObjectNet. While IN-trained networks exhibit consistent improvement as the zoom scale increases,
CLIP shows a monotonic decrease in performance (Fig. A11; yellow curves decreasing on both
sides of S = 256). This result is surprising but consistent with our hypothesis that CLIP internally
performs implicit zooming to reach its peak accuracy and therefore manually zooming (either in or
out) at the center mostly ruins its performance.

B.6 Zoom-in is more useful than zoom-out, which is most important to abstract images
Zooming in enhances texture patterns while zooming out provides a better perspective of the object’s
shape, which is known to be useful to image classification [12, 19]. Results in Sec. 4.1 and Ap-
pendix B.4 indicate that this combined zooming approach can be effective in classifying images
from diverse datasets. Here, we test which dataset and model pairs require which type of zoom, and
whether zooming in or out is always necessary.
Experiment To better understand the effectiveness of each zoom group, we calculate the maximum
possible accuracy using all nine locations and different zoom scales S to show per-dataset trends.
Additionally, we examined the percentage of images within each dataset that required a specific
zoom group to be accurately classified. This analysis allowed us to gain a more comprehensive
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(b) ObjectNet

Figure A11: Absolute changes in the top-1 accuracy (%) of 6 models on ImageNet-A (a) and
ObjectNet (b) when center-zooming images at various scales. Interestingly, center-zooming helps
IN-trained networks but hurts CLIP.

understanding of the role that each zoom group played in reaching the maximum possible accuracy
reported in Tab. 1.
Results The maximum possible accuracy for different zoom scales reveals a clear trend for each
dataset. For instance, a slight zoom-out enhances accuracy for abstract image datasets like IN-Sketch
(Fig. A12a). Conversely, for adversarial image datasets such as IN-A, zooming in improves accuracy
(Fig. A12b) This pattern is also evident in evaluations using standard 1-crop accuracy (Appendix B.9).
Furthermore, the percentage of images that are exclusively classifiable with the zoom-in group is
consistently higher than the other two groups, i.e. using ViT-B/32 51.75% on IN-A, and 13.11% on
IN-S (Tab. A4a). This shows that most datasets necessitate focusing on the object of interest in the
image to both see texture patterns better and reduce background clutter (see Tab. A2 for full results).
However, we also find that the zoom-out group is also necessary for the correct classification of a
small portion of each dataset. For instance, 1.22% − 2.97% of IN-S images (Tab. A4b) require a
zoom-out transform to be correctly labeled (i.e. zoom-in does not help at all).

Table A4: % of images in the entire dataset that require a particular zoom group to be classified
correctly. See Tab. A2 for full results.

zoom-in (a) zoom-out (b) zoom-224 (d)

IN-A IN-S IN-A IN-S IN-A IN-S

ResNet-18 40.67 11.83 0.92 1.77 0.19 0.36
ResNet-50 48.72 10.99 1.00 2.23 0.23 0.24
ViT-B/32 51.75 13.11 0.85 1.83 0.15 0.36
VGG-16 38.24 9.47 0.93 2.97 0.29 0.28
AlexNet 26.27 11.26 1.08 1.22 0.36 0.33
CLIP-ViT-L/14 12.01 6.64 0.44 2.38 0.05 0.12

B.7 Simple aggregation of the zoom transforms can improve accuracy on some datasets but
not all

Sec. 4.1 and Appendix B.5 show that using the same feature extractors (even as old as AlexNet), it
is possible to achieve higher image classification accuracy if we know where to zoom and at which
scale. A practical follow-up question is: How to build a classifier that knows how to zoom given
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(a) ImageNet-Sketch
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(b) ImageNet-A

Figure A12: Maximum possible accuracy using nine crops at varying scales. The vertical line
represents the standard ImageNet zoom scale (S = 256). While for ImageNet-Sketch (a), zooming
out marginally improves the accuracy, for scale factors larger than 256, ImageNet-A (b) exhibits an
increase in accuracy. See Appendix B.9 for details.

a test image? In this section, we establish simple baselines that aggregate predictions over a set of
zoom transforms.
Experiment We employ the mean method from prior work [61, 46], and the max method to
aggregate output marginal distributions. For a given image, we get N output distributions over
classes from a classifier, in which N is the total number of used transforms. The aggregation process
combines these N distributions and outputs a final prediction for the given image. In the aggregation
step, we use the mean or max method to infer the final confidence for each class along N distributions.
Finally, we select the class that has the highest confidence score. Additionally, we test 5-crop and
10-crop evaluation [38, 63, 23] and compare them with our methods. We use the transforms in the
minimum set found for IN-ReaL to evaluate the remaining datasets. The purpose is to reduce the
number of augmentations and prevent training on OOD benchmarks.
Results max aggregation of zoom-in transforms results in the largest improvements on ImageNet-
A. That is, on IN-A, ViT-B/32 reaches a top-1 accuracy of 24.69% (+15.05) (Tabs. A5 and A6)
and a ResNet-50 accuracy increases by +13.03 points from 16.62% to 29.65% (Appendix C.3)–a
surprisingly strong baseline for future studies. On ObjectNet, max aggregation of zoom-in transforms
also yields +1.99 improvement over the 1-crop ViT-B/32 baseline.
On the other hand, mean aggregation results in smaller but more consistent improvements over the
1-crop baseline for many datasets (+3.56 on IN, +4.08 on ReaL, +4.65 on IN-A, and +3.03 on ON;
Tab. A5). mean aggregation (Tab. A5b) also outperforms the standard 5-crop and 10-crop [38, 23]
aggregation on these four datasets (Tab. A5e–f).
In contrast, for all 6 datasets, aggregating zoom-out and zoom-224 transforms consistently worsen
the performance over the 1-crop baseline (Tab. A5c–d). That is, we find that for a few dozen images
(e.g. sketches and abstract visuals; Fig. 1ac), interestingly, only zooming out can lead to a correct
classification (Appendix B.6), yet for most images in these 6 benchmarks, zooming out hurts the
accuracy.
In summary, based on the insights from Sec. 4.1, showing that zooming could help classification, we
find that simple methods for aggregating zoom-in transforms at test-time can directly improve model
accuracy over the 1-crop and zoom-224 baselines on four benchmarks, i.e. all except IN-R and IN-S,
which contain abstract images.
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Table A5: Top-1 accuracy (%) of aggregation methods on an IN-trained ViT-B/32 model. Compared
to the 1-crop baseline, aggregating zoom-in transforms consistently yields improved accuracy on
IN-A, ON but worse accuracy on IN-R and IN-S. zoom-224 refers to the set of zoom transforms at
S = 224. See Tab. A6 for more results.

(a) (b) zoom-in ß (c) zoom-out Þ (d) zoom-224 (e) 5-crop (f) 10-crop [38]

Dataset 1-crop max mean max mean max mean max mean max mean

IN 75.75 74.35 (-1.40) 79.31 (+3.56) 71.48 69.47 72.66 73.67 77.33 77.73 77.30 77.87
ReaL 81.89 80.22 (-1.67) 85.97 (+4.08) 77.95 76.28 79.25 80.31 83.24 83.80 83.17 83.87
IN-A 9.64 24.69 (+15.05) 14.29 (+4.65) 7.79 5.48 8.12 7.39 12.19 9.88 12.32 9.67
IN-R 41.29 39.90 (-1.39) 40.06 (-1.23) 39.05 36.21 39.52 39.28 43.90 43.17 44.31 43.28
IN-S 26.83 19.74 (-7.09) 20.89 (-5.94) 22.37 19.25 25.06 25.21 28.72 28.66 28.94 28.76
ON 30.89 32.88 (+1.99) 33.92 (+3.03) 22.56 19.51 22.75 22.72 26.96 24.98 27.14 24.97

Table A6: Performance of various aggregating methods (%) – The bold numbers show maximum
accuracy per model/dataset. CLIP strongly and consistently favors 10-crop over other settings.

(a) (b) zoom-in ß (c) zoom-out Þ (d) zoom-224 (e) 5-crop (f) 10-crop [38]
Dataset 1-crop Max Mean Max Mean Max Mean Max Mean Max Mean
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IN 69.45 68.45 (-1.00) 71.45 (+2.00) 60.33 56.79 67.85 68.70 70.61 71.32 70.83 71.85
ReaL 76.94 76.33 (-0.61) 79.94 (+3.00) 67.64 63.92 75.73 76.74 78.26 79.01 78.42 79.46
IN-A 1.37 11.68 (+10.31) 5.48 (+4.11) 2.44 2.19 3.41 2.69 3.16 2.13 3.28 1.87
IN-R 32.14 30.60 (-1.54) 28.95 (-3.19) 29.08 27.28 32.29 32.54 33.99 33.38 34.59 33.83
IN-S 19.41 14.86 (-4.55) 14.34 (-5.07) 14.48 11.49 17.80 17.83 20.83 20.70 21.39 21.06
ON 27.59 28.21 (+0.62) 25.92 (-1.67) 16.11 14.10 22.82 22.86 24.77 20.91 25.47 21.03
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es
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et
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0

IN 75.75 73.24 (-2.51) 77.30 (+1.55) 69.06 66.42 74.45 75.39 76.67 77.13 76.89 77.43
ReaL 82.63 80.36 (-2.27) 84.68 (+2.05) 76.35 73.85 81.96 82.85 83.67 84.06 83.82 84.31
IN-A 0.21 16.11 (+15.9) 6.23 (+6.02) 2.79 2.19 3.04 2.11 2.28 0.95 2.43 1.00
IN-R 35.39 33.58 (-1.81) 32.73 (-2.66) 35.85 33.22 36.64 36.44 37.47 36.50 38.23 36.86
IN-S 22.91 16.89 (-6.02) 17.80 (-5.11) 19.51 17.12 21.60 21.66 24.71 24.51 24.94 24.74
ON 36.18 34.56 (-1.62) 34.22 (-1.96) 27.10 25.32 31.78 31.98 33.34 29.58 33.93 29.86
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IN 75.75 74.35 (-1.40) 79.31 (+3.56) 71.48 69.47 72.66 73.67 77.33 77.73 77.30 77.87
ReaL 81.89 80.22 (-1.67) 85.97 (+4.08) 77.95 76.28 79.25 80.31 83.24 83.80 83.17 83.87
IN-A 9.64 24.69 (+15.05) 14.29 (+4.65) 7.79 5.48 8.12 7.39 12.19 9.88 12.32 9.67
IN-R 41.29 39.90 (-1.39) 40.06 (-1.23) 39.05 36.21 39.52 39.28 43.90 43.17 44.31 43.28
IN-S 26.83 19.74 (-7.09) 20.89 (-5.94) 22.37 19.25 25.06 25.21 28.72 28.66 28.94 28.76
ON 30.89 32.88 (+1.99) 33.92 (+3.03) 22.56 19.51 22.75 22.72 26.96 24.98 27.14 24.97
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IN 71.37 69.60 (-1.77) 72.46 (+1.09) 64.75 59.95 69.51 70.48 72.31 73.09 72.67 73.53
ReaL 78.90 77.23 (-1.67) 80.59 (+1.69) 72.55 67.68 77.48 78.58 79.80 80.42 80.13 80.80
IN-A 2.69 11.55 (+8.86) 6.24 (+3.55) 3.33 2.77 4.69 3.87 4.87 3.19 5.09 3.19
IN-R 26.98 26.18 (-0.80) 24.74 (-2.24) 28.01 25.62 27.76 27.78 28.75 27.95 29.23 28.35
IN-S 16.78 13.30 (-3.48) 13.05 (-3.73) 15.18 13.37 15.82 15.97 17.80 17.63 18.28 17.92
ON 28.32 26.96 (-1.36) 26.15 (-2.17) 19.88 16.42 23.47 23.60 26.21 21.65 26.52 21.80
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IN 56.16 54.74 (-1.42) 56.98 (+0.82) 40.78 27.09 51.80 51.50 57.86 58.60 58.26 59.11
ReaL 62.67 61.46 (-1.21) 64.35 (+1.68) 45.84 30.58 58.25 58.16 64.53 65.39 64.98 65.94
IN-A 1.75 4.65 (+2.90) 3.27 (+1.52) 1.56 1.23 2.31 1.97 2.53 2.04 2.64 2.03
IN-R 21.10 20.65 (-0.45) 17.97 (-3.13) 15.72 11.25 19.91 19.55 22.79 21.86 23.26 22.16
IN-S 10.05 7.94 (-2.11) 6.54 (-3.51) 5.82 2.72 8.29 7.39 10.84 10.65 11.20 10.80
ON 14.23 14.91 (+0.68) 11.80 (-2.43) 6.11 3.75 9.65 9.01 12.63 9.57 12.84 9.58
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4 IN 75.03 70.01 (-5.02) 74.45 (-0.58) 72.01 72.21 74.45 76.04 76.77 76.91 76.72 77.00

ReaL 80.68 76.37 (-4.31) 81.31 (+0.63) 78.28 78.93 81.45 82.05 82.26 82.55 82.26 82.55
IN-A 71.28 76.57 (+5.29) 68.16 (-3.12) 60.71 49.51 71.69 70.04 77.80 76.61 78.25 76.83
IN-R 87.74 84.12 (-3.62) 83.54 (-4.20) 86.84 86.29 88.12 88.24 89.64 89.66 90.01 89.94
IN-S 58.23 51.88 (-6.35) 56.06 (-2.17) 57.14 57.43 59.00 59.90 61.28 61.61 61.59 62.07
ON 66.32 60.20 (-6.12) 58.10 (-8.22) 56.57 58.11 62.44 62.65 66.70 64.88 66.87 64.97

B.8 Runtime analysis of MEMO

Another benefit of RRC compared to AugMix is faster inference time. Table A7 shows the runtime
analysis of MEMO. Typically, TTA methods suffer from slow runtime due to augmentation and
test-time training processes. We find that MEMO + RRC consistently leads to an average 1.6×
speed-up compared to MEMO + AugMix (Tab. A7; 0.65s / image vs. 1.15s / image), providing more
evidence to support this transformation as a viable option for test-time augmentations.

B.9 1-crop accuracy with different zoom scales

In this section, we demonstrate the performance of various models when zooming in or out of an
image. In other words, we utilize the standard 1-crop ImageNet transform while altering the initial
scale of the image.
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Table A7: Average runtime per query image (in seconds). Using RandomResizedCrop in MEMO
speed ups the runtime by an average factor of 1.6×.

Runtime (in seconds) IN IN-A IN-R IN-S ON
MEMO + AugMix [83]

ResNet-50 [23] 1.24 1.12 1.12 1.32 1.51
DeepAug+AugMix [26] 1.19 1.07 1.12 1.23 1.55
MoEx+CutMix [40] 1.15 1.16 1.11 1.31 1.53

MEMO + RRC (Ours)
ResNet-50 [23] 0.64 0.60 0.65 0.88 1.19
DeepAug+AugMix [26] 0.62 0.62 0.64 0.87 1.18
MoEx+CutMix [40] 0.65 0.62 0.66 0.88 1.19

In this section, we are conducting experiments using the following models: AlexNet [38], ConvNext
(Base, Large, Small, Tiny) [44], DenseNet-161 [29], EfficientNet-B7 [69], MobileNet (V2, V3
Large) [60, 28], ResNet (50, 101) [23], ResNeXt-50 (32x4d) [80], ShuffleNet V2 x1.0 [47], VGG-
19 [63], Vision Transformer (ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32) [17], and Wide ResNet-50-
2 [82].
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Figure A13: ImageNet accuracy using a 1-crop transform (the vertical line represents the standard
ImageNet transform scale factor).
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Figure A14: ImageNet-A accuracy using a 1-crop transform (the vertical line represents the standard
ImageNet transform scale factor).
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Figure A15: ImageNet-R accuracy using a 1-crop transform (the vertical line represents the standard
ImageNet transform scale factor).
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Figure A16: ImageNet-Sketch accuracy using a 1-crop transform (the vertical line represents the
standard ImageNet transform scale factor).
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Figure A17: Accuracy using a 1-crop transform on 5K random images of the ObjectNet dataset (the
vertical line represents the standard ImageNet transform scale factor).
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Figure A18: Breakdown of the accuracy of IN-trained models at different crop locations and scale
size – Analysis of accuracy across various crop locations and scale sizes reveals that different datasets
exhibit distinct optimal conditions. For instance, the IN-A dataset experiences a considerable increase
in accuracy when zoomed in, while ImageNet-R yields better results when zoomed out.
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B.10 Distribution of the Top 36 performing transforms.
In this section, we provide more details about the distribution of the top-36 performing transforms.
Our results suggest that, on average, 26.65% of all top-36 performing transforms belong to the center
at varying scales.

Lo
ca

tio
n 

He
at

m
ap 1 5 2

4 9 4

3 6 2

ResNet-18

3 4 2

4 9 5

2 4 3

ResNet-50

3 5 4

4 6 4

3 6 1

ViT-B/32

3 5 1

4 7 4

2 6 4

VGG-16

1 5 1

6 11 4

2 4 2

AlexNet

3 4 4

4 6 4

3 5 3

CLIP ViT-L/14

200 400 600 800 1000
Size

0

2

4

6

Si
ze

 Fr
eq

ue
nc

y

200 400 600 800 1000
Size

0

1

2

3

4

5

200 400 600 800 1000
Size

0

2

4

6

200 400 600 800 1000
Size

0

2

4

6

200 400 600 800 1000
Size

0

2

4

6

200 400 600 800 1000
Size

0

2

4

6

8

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Figure A19: Distribution of Top-36 performing transforms for ImageNet-ReaL
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Figure A20: Distribution of Top-36 performing transforms for ImageNet-A
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Figure A21: Distribution of Top-36 performing transforms for ImageNet-R
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Figure A22: Distribution of Top-36 performing transforms for ImageNet-Sketch
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Figure A23: Distribution of Top-36 performing transforms for ObjectNet

B.11 Background occlusion in ImageNet dataset
Sample images for images with and without occlusion.
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(a) A sample image of the Tank class without oc-
clusion.

(b) Image with heavy background occlusion.

(c) A clean sample image of the Four Poster
class.

(d) A low-quality image with background occlu-
sion.

Figure A24: Background occlusion examples.

33



C Additional Experiments
In this section, we provide additional experiments with the proposed zoom-based transform.

C.1 Zooming is similarly important to the foreground and background contents
Background pixels, despite often being neglected in image classification, can contain predictive
signals [86, 78, 20, 57]. It has remained largely unknown how much the image context (background)
could contribute to the model performance. While Zhu et al. [86] disentangle the predictiveness
of background (BG) and foreground (FG) via model training, we directly measure how pretrained
models perceive these two signals.

Experiment Using bounding-box annotations provided by Russakovsky et al. [59], we create
two dataset variations of ImageNet: FGSet and BGSet, following Zhu et al. [86]. We mask all the
background for FGSet as in Fig. A25b, and for BGSet we mask all the main objects, as depicted
in Fig. A25d & Fig. A25f. After that, we compute the accuracy of these two sets with all tested
classifiers using ImageNet and ImageNet-ReaL labels as in Tab. A8.

Results Our results suggest that zooming is important to ImageNet regardless of whether foreground
or background features are used, with the difference for FGSet and BGSet on average being similar
(Tab. A8). Additionally, when only the background features were available, almost half of ImageNet
images (45.23%) could be correctly classified if optimal Zoom was used. Finally, we found that
with only foreground information, ViT-B/32 could achieve a maximum possible accuracy of 95.50%
given an optimal zooming method, suggesting that only 98.75% − 95.50% = 3.25% of images
(Tab. 1) required the background information. These findings suggest that both foreground and
background features are important for ImageNet classification, but that an optimal zooming method
can considerably improve performance even in the absence of one of these feature sets.

axoloti 99.84%

(a)
axoloti 23.82%

(b)

goose 46.93%

(c)
hummingbird 41.64%

(d)

parachute 99.90%

(e)
flagpole 28.05%

(f)

Figure A25: The foreground and the background both contain predictive signals. A ResNet-50
classifier can detect axolotl (a), even when the main object is masked (b). Removing the background
from images of ‘goose’ (c) and ‘parachute’ (e) causes misclassification (d, f).

C.2 Adversarial datasets contain more objects compared to ImageNet
So far, our findings indicate that if we apply the zoom-in operation to the two datasets of ImageNet-
A and ObjectNet, the performance of conventional vision models improves consistently up to a
certain threshold (Sec. 4 and Appendix B.5). This suggests that the initial images contain distracting
elements that impede the model from correctly identifying the object of interest. Both ImageNet-A
and ObjectNet are considered out-of-distribution datasets, which are specifically designed to evaluate
a vision model’s ability to withstand natural adversarial and pose attacks. We hypothesize that the
primary reason that these datasets are hard can be attributed to background clutter, multiple objects,
and the presence of a positional bias in these images.

Experiment We use OWL-ViT [49], an open vocabulary object detection model, to quantify the
number of objects present in three datasets of ImageNet, ImageNet-A, and ObjecNet. The OWL-ViT
expects an input image with a set of object names and will determine if any object instances are
present in the image. To specify object names, we use LVIS vocabulary [22], which encompasses a
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Table A8: ImageNet classification from object-only and background-only signals. Numbers show
the maximum possible top-1 accuracy (%) using zoom-based transforms for minimum set covers
in Appendix B.4. We discover that background signals potentially hold significance for image
classification. The bold numbers show the highest possible accuracy per dataset and group.

1-crop Max possible using zooming

FGSet BGSet FGSet BGSet

IN ReaL IN ReaL IN ReaL IN ReaL

ResNet-18 59.77 64.97 4.91 7.84 89.89(+30.12) 92.04(+27.07) 25.81(+20.90) 31.33(+23.49)
ResNet-50 68.02 72.90 6.18 9.83 93.45(+25.43) 94.89(+21.99) 30.30(+24.12) 35.98(+26.15)
ViT-B/32 67.46 71.78 9.72 13.38 94.40(+26.94) 95.50(+23.72) 39.70(+29.98) 45.23(+31.85)
VGG-16 63.78 69.09 5.36 8.59 91.01(+27.23) 92.91(+23.82) 26.98(+21.62) 32.62(+24.03)
AlexNet 42.38 46.54 3.66 5.46 80.20(+37.82) 83.25(+36.71) 22.02(+18.36) 27.04(+21.58)
CLIP-ViT-L/14 74.46 78.62 9.49 13.80 96.14(+21.68) 97.35(+18.73) 36.85(+27.36) 42.51(+28.71)
mean 62.65 67.32 6.55 9.82 90.85 (+28.20) 92.66 (+25.34) 30.28 (+23.73) 35.79 (+25.97)

comprehensive list of 1203 distinct objects. The OWL-ViT model includes a threshold parameter
that reflects its confidence level in its predictions. To assess whether different threshold values would
affect our results, we conducted our experiment using both 0.1 and 0.05 as threshold values.
After calculating the distribution of the number of objects in images, we perform a Mann-Whitney
U test to determine whether there is a statistically significant difference in this distribution between
datasets. As each dataset has a different number of classes, we limited our analysis to shared classes
between any two datasets.

Results The results of our study reveal a contrast between ImageNet and ImageNet-A, as well as
ImageNet and ObjectNet. This finding implies a dissimilarity between the images in the original
ImageNet dataset and its OOD datasets that might arise from the presence of background clutter.
Specifically, on average, images in ImageNet-A and ObjectNet datasets tend to feature more objects,
which can pose more significant distractions for image classification models.
The results of the Mann-Whitney U test also reflect this finding, the p-value for both thresholds was
found to be less than 0.05, which is statistically significant at the 95% confidence level (Tab. A9).

0 100 200 300 400 500
Number of objects per image

ImageNet (T=0.05)

ImageNet-A (T=0.05)

ImageNet (T=0.1)

ImageNet-A (T=0.1)

Figure A26: Comparison of the number of objects in two datasets of ImageNet and ImageNet-A
using OWL-ViT [49] – T denotes the classification’s threshold

C.2.1 p-values for Mann Whitney U test

Table A9: The result of the Mann-Whitney U test to compare ImageNet with ImageNet-A and
ObjectNet

T = 0.05 T = 0.01

ImageNet-A 6.27E-265 1.71E-235
ObjectNet 1.80E-02 3.66E-02
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ImageNet (T=0.1)

ObjectNet (T=0.1)

Figure A27: Comparison of the number of objects in two datasets of ImageNet and ObjectNet using
OWL-ViT [49] – T denotes the classification’s threshold

C.3 Zooming further improves robustified models on ImageNet-A
Intensive data augmentations have been proven to significantly boost CNNs’ performance [77, 66] on
ImageNet. Motivated by these previous successes and the fact that neural networks trained on diverse
augmentations are able to learn robust representations [41], we want to know if robustified pretrained
models (i.e. trained with intensive augmentations) could reach higher accuracy on ImageNet-A using
zooming in.

Experiment We test 4 different ResNet-50 classifier versions that have been trained with different
data augmentation procedures. From the the torchvision library, we select two sets of model
weights; trained with (V23) and without (V14) data augmentations. We also take two other mod-
els trained with DeepAugmentation+AugMix [26] and MoEx+CutMix [40]. The second column
in Tab. A10 represents the accuracy of models using 1-crop.

Results Zooming in consistently helps ResNet-50 networks, with improvements varying from +13
to +24 points. The best-performing network is torchvision-V2 which uses the max aggregator and
achieves 29.65%. These results suggest that simple aggregation over the proposed zoom transform is
effective for datasets that have dominant center bias.

Table A10: The results of different aggregation functions on four ResNet-50 variants when tested on
ImageNet-A (%). Each model has been trained using different training-time augmentation techniques.
Improvements values in parentheses are with respect to the 1-crop baseline.

ResNet-50 Baseline Max Mean

torchvision V1 0.21 16.11 (+15.90) 6.23
MoEx+CutMix [40] 8.60 24.72 (+16.12) 15.32
DeepAug+AugMix [26] 3.94 27.93 (+23.99) 13.16
torchvision V2 16.62 29.65 (+13.03) 22.08

3ResNet50_Weights.IMAGENET1K_V2
4ResNet50_Weights.IMAGENET1K_V1
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D Visualization
In this section, we provide several visualizations of zooming transforms.

D.1 Visualizations for 36 top performing zoom transforms

lorikeet 99.99 lorikeet 67.27 lorikeet 94.61 american chameleon 22.52 lorikeet 99.99 toucan 4.79

nail 6.63 american chameleon 18.16 lorikeet 99.99 walking stick 51.01 marmoset 19.49 padlock 29.04

jacamar 76.85 house finch 9.41 lorikeet 99.99 jay 3.75 lorikeet 99.17 envelope 8.31

nail 5.33 lorikeet 99.99 lorikeet 99.85 walking stick 50.61 jacamar 16.14 lorikeet 99.99

junco 8.63 african chameleon 51.25 fox squirrel 8.68 lorikeet 97.88 padlock 23.99 lorikeet 99.57

lorikeet 100.00 lorikeet 87.24 lorikeet 99.99 prison 11.33 bee eater 8.77 envelope 21.19

Figure A28: Different framing of an image of a lorikeet according to 36 high-performing transforms
of a ResNet-50 model
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lorikeet 79.42 lorikeet 52.52 nail 71.63 lorikeet 89.07 lorikeet 83.68 nail 24.36

nail 24.03 lorikeet 32.33 nail 18.32 lorikeet 85.56 lorikeet 84.60 brambling 20.48

lorikeet 84.89 junco 20.68 american chameleon 35.06 lorikeet 89.01 fox squirrel 4.87 matchstick 1.91

lorikeet 63.08 junco 13.49 african chameleon 22.09 lorikeet 84.10 hummingbird 4.90 fox squirrel 14.09

mantis 5.92 walking stick 42.57 lorikeet 66.01 jacamar 46.12 nail 26.69 lorikeet 40.54

lorikeet 89.44 brambling 7.15 lorikeet 83.27 lorikeet 79.72 lorikeet 53.44 american chameleon 7.24

Figure A29: Different framing of an image of a lorikeet according to 36 high-performing transforms
of a ViT/B-32 model
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stethoscope 66.02 Chihuahua 57.99 golden_retriever 42.50 stethoscope 99.49 hand_blower 31.78 golden_retriever 77.68

stethoscope 84.86 maraca 9.43 golden_retriever 25.41 golden_retriever 53.12 Chihuahua 83.43 stethoscope 39.02

Chihuahua 27.77 stethoscope 90.66 stethoscope 27.31 golden_retriever 63.55 hand_blower 46.10 golden_retriever 20.16

stethoscope 92.62 Chihuahua 45.02 hand_blower 24.99 stethoscope 74.40 stethoscope 52.77 Chihuahua 96.98

maraca 10.31 golden_retriever 51.76 stethoscope 92.74 hand_blower 38.98 studio_couch 26.20 stethoscope 94.44

envelope 39.45 stethoscope 49.90 stethoscope 97.62 Chihuahua 38.00 stethoscope 94.04 stethoscope 64.81

Figure A30: Different framing of an image of a stethoscope according to 36 high-performing
transforms of a ResNet-50 model
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stethoscope 58.74 golden_retriever 64.73 stethoscope 49.28 golden_retriever 24.52 stethoscope 90.36 hand_blower 71.19

golden_retriever 6.58 golden_retriever 51.53 golden_retriever 65.42 golden_retriever 19.13 stethoscope 50.20 Chihuahua 13.69

Chihuahua 35.41 hand_blower 8.72 golden_retriever 24.47 toaster 7.65 hand_blower 18.88 stethoscope 55.30

stethoscope 98.13 stethoscope 85.59 Chihuahua 83.62 stethoscope 45.72 golden_retriever 18.43 golden_retriever 58.57

syringe 7.61 stethoscope 46.36 stethoscope 19.38 golden_retriever 83.03 washer 12.84 stethoscope 27.22

hand_blower 23.94 golden_retriever 39.58 stethoscope 89.99 golden_retriever 30.16 hand_blower 25.89 hand_blower 14.61

Figure A31: Different framing of an image of a stethoscope according to 36 high-performing
transforms of a ViT/B-32 model
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D.2 Overview of 324 transforms
The visualizations below illustrate the transforms that result in the correct prediction of the query
image, using ViT-B/32 [17] and CLIP-ViT-L/14 [53]. Each circle represents a transform, with the
initial zoom scale indicated in the accompanying text. The green circles represent the transformations
that lead to correct classification, while the red circles indicate incorrect ones.
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Figure A32: Visualization of effective transforms that lead to the correct classification of an image
containing scorpion, using a ViT-B/32 model.
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Figure A33: Visualization of effective transforms that lead to the correct classification of an image
containing scorpion, using a CLIP-ViT-L/14 model.
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Figure A34: Visualization of effective transforms that lead to the correct classification of an image
containing bubble, using a ViT-B/32 model.
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Figure A35: Visualization of effective transforms that lead to the correct classification of an image
containing bubble, using a CLIP-ViT-L/14 model.
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Figure A36: Visualization of effective transforms that lead to the correct classification of an image
containing agama, using a ViT-B/32 model.
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Figure A37: Visualization of effective transforms that lead to the correct classification of an image
containing agama, using a CLIP-ViT-L/14 model.
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Figure A38: Visualization of effective transforms that lead to the correct classification of an image
containing acorn, using a ViT-B/32 model.
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Figure A39: Visualization of effective transforms that lead to the correct classification of an image
containing acorn, using a CLIP-ViT-L/14 model.
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D.3 Only zoom-out solves
Sample images that required zooming out to be classified correctly.

D.3.1 ImageNet-Sketch

matchstick folding chair 

plate rack 56.2% matchstick 

Standard center crop matchstick 

Zoom scale 96 

16.57% folding chair 

19.67% matchstick 

19.51% matchstick 

17.34% folding chair 14.69% 

27 .29% matchstick 18.38% 

22.72% matchstick 17.67% 

microphone microphone 91.54% microphone 91.98% microphone 92.48% 

C C . .  111c PholD--153730  

sax 43.73% microphone 96.65% microphone 97 .17% microphone 97.52% 

Standard center crop microphone 85.4 7% microphone 87 .62% microphone 88.71% 

Zoom scale 96 

water Tower water tower 18.65% water tower 44.72% water tower 14.72% 

""" JJJl11 ) I  

guillotine 18.88% coffeepot 7.8% water tower 12.96% coffeepot 11.47% 

Standard center crop folding chair 18.63% crutch 13.23% crutch 13.07% 

Zoom scale 122 

ice lolly ice lolly 71.77% ice lolly 72.11 % ice lolly 73.97% 

shovel 18.61% ice lolly 89.15% ice lolly 90.24% ice lolly 88.92% 

Standard center crop ice lolly 87 .12% ice lolly 88.39% ice lolly 84.71% 

Zoom scale 96 

Figure A40: ImageNet-Sketch images that can only be solved using zoom-out. Predictions are from a
ResNet-50 classifier.
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D.3.2 ImageNet-R

dragonfly lipstick 8.27% lipstick 8.61 % lipstick 6.89% 

lipstick 11.05% tennis ball 6.19% dragonfly 6.82% tennis ball 8.28% 

Standard center crop granny smith 10.58% granny smith 8.51 % granny smith 8.57% 

Zoom scale 122 

scuba diver scuba diver 47.01% scuba diver 44.12% scuba diver 34.63% 

gasmask 37.97% scuba diver 29.31% scuba diver 21.54% scuba diver 15.66% 

Standard center crop scuba diver 24.39% scuba diver 23.3% scorpion 15.91% 

Zoom scale 96 

mantis lipstick 12.66% lipstick 15.69% lipstick 13.76% 

candle 15.96% dragonfly 6.36% dragonfly 9.21 % lipstick 5.93% 

Standard center crop dragonfly 6.15% dragonfly 8.09% mantis 6.09% 

Zoom scale 192 

carousel 28.81% sax 54.08% sax 70.08% 

hotdog 

carousel 49.44% hotdog 26.13% sax 18.53% sax 33.17% 

Standard center crop sax 36.52% sax 76.4% sax 92.12% 

Zoom scale 128 

Figure A41: ImageNet-R images that can only be solved using zoom-out. Predictions are from a
ResNet-50 classifier.
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D.3.3 ObjectNet

water Bottle water bottle 42.16% water bottle 42.76% water bottle 41.09% 

umbrella 10.55% water bottle 20.44% water bottle 22.05% water bottle 21.13% 

Standard center crop car wheel 12.63% water bottle 17.73% carwheel 11.62% 

Zoom scale 48 

monitor monitor 

printer 46.01 % television 

Standard center crop television 

Zoom scale 48 

36.02% monitor 

22.79% monitor 

8.6% television 

44.65% monitor 34.75% 

21.67% television 21.88% 

12.45% television 9.22% 

envelope envelope 81.52% envelope 82.54% envelope 75.4% 

band aid 84.06% envelope 75.51 % envelope 80.52% envelope 70.17% 

Standard center crop envelope 58.52% envelope 67.44% envelope 55.87% 

Zoom scale 48 

cellular telephone cellular telephone 81.35% cellular telephone 76.86% cellular telephone 62.74% 

jersey 28.74% cellular telephone 76.1 % cellular telephone 43.02% cellular telephone 66.47% 

Standard center crop jersey 58.14% jersey 43.9% jersey 58.03% 

Zoom scale 122 

Figure A42: ObjectNet images that can only be solved using zoom-out. Predictions are from a
ResNet-50 classifier.
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D.4 Only zoom-in solves
Sample images that required zooming in to be classified correctly.

D.4.1 ObjectNet

sweatshirt soap dispenser 12.26% envelope 83.05% envelope 25.31% 

paper towel 33.54% cleaver 21.11 % paper towel 94.0% hoopskirt 25.54% 

Standard center crop jean 33.2% sleeping bag 29.82% sweatshirt 19.55% 

Zoom scale 512 

wok paper towel 64.52% paper towel 19.37% soap dispenser 54.49% 

paper towel 29.83% iron 91.17% toilet tissu 16.79% doormat 44.31% 

Standard center crop band aid 9.64% wok 61.57% strainer 28.0% 

Zoom scale 768 

barber chair screw 5.64% toilet tissu 21.64% running shoe 17.16% 

iron 18.11% nail 19.71% barber chair 16.85% backpack 26.91% 

Standard center crop television 37.71 % ashcan 12.33% plastic bag 13.13% 

Zoom scale 576 

swimming trunks envelope 48.19% toilet tissu 9.57% vacuum 8.44% 

sleeping bag 68.12% sleeping bag 72.3% swimming trunks 67.43% jean 21.25% 

Standard center crop running shoe 33.91 % band aid 6.55% vase 12.76% 

Zoom scale 512 

Figure A43: ObjectNet images that can only be solved using zoom-in. Predictions are from a ResNet-
50 classifier.
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D.5 AugMix and RandomResizedCrop

Figure A44: K = 16 sample outputs from AugMix [25] (which yields the results of random sampling
from 13 transformations that include both spatial and color distortions).

Figure A45: K = 16 sample outputs from RandomResizedCrop (RRC), which basically randomly
zooms into an arbitrary region in the input image.

Figure A46: K = 16 sample outputs from AugMix [25] (which yields the results of random sampling
from 13 transformations that include both spatial and color distortions).

Figure A47: K = 16 sample outputs from RandomResizedCrop (RRC), which basically randomly
zooms into an arbitrary region in the input image.
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E ImageNet-Hard
In this section, we provide details about the ImageNet-hard dataset.

E.1 Distribution

31.6%

16.3%

11.5% 7.7%

7.7%

7.1%

5.4%

1.5%
4.8%

0.9%

4.7%

0.7%
ImageNet-Hard Distribution

IN-Sketch
IN-C-Zoom Blur
ObjectNet
IN-C-Impulse Noise
IN-C-Snow
IN-C-Frost
IN-C-Fog
IN-R
IN-C-Brightness
IN-A
IN+Real
IN-V2

Figure A48: The distribution of the dataset within the ImageNet-Hard Dataset.

E.2 Samples images
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stingray accordion cannon grasshopper hammer stingray bucket Labrador retriever 

Siberian husky badger lion badger doormat sea snake amphibian admiral 

polecat paddle dishwasher nail American egret red-backed sandpiper polecat Windsor tie 

soap dispenser bloodhound promontory Chihuahua isopod slug pedestal letter opener 

toaster cup, coffee mug grocery store dung beetle barn envelope cabbage butterfly scorpion 

balloon balloon racket African chameleon common iguana acorn lycaenid drumstick 

computer keyboard microwave shopping basket shopping basket espresso maker hoopskirt shopping basket cup 

hoopskirt sweatshirt park bench mixing bowl shower curtain great white shark syringe wool 

Figure A49: Sample images from ImageNet-Hard dataset with groundtruth labels.

E.3 Analysis of wrong predictions
We used gpt-3.5-turbo to categorize each misprediction made by EfficientNet-L2 into two classes:
plausible and implausible, based on the semantic distance between the groundtruth label and the
predicted label.
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System Message:

User:

Assistant:

You are a helpful assistant tasked with evaluating an image classifier by 
reviewing its predictions.

I am looking at a picture of a `curly coated retriever`. The model 
predicted it is a `flat coated retriever`. Can you categorize this 
prediction as plausible mistake or implausible mistake? provide a one line 
description.

This prediction can be categorized as a plausible mistake, as curly coated 
and flat coated retrievers can look similar to an untrained eye.

Figure A50: Sample prompt and response of gpt-3.5-turbo for a plausible classification. The text
in the Assistant block is the generated response.

System Message:

User:

Assistant:

You are a helpful assistant tasked with evaluating an image classifier by 
reviewing its predictions.

I am looking at a picture of a “ostrich”. The model predicted it is a “sea 
anemone”. Can you categorize this prediction as plausible mistake or 
implausible mistake? provide a one line description.

This is an implausible mistake as ostriches are large flightless birds and 
not related to sea anemones in any way.

Figure A51: Sample prompt and response of gpt-3.5-turbo for an implausible classification. The
text in the Assistant block is the generated response.
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E.4 Confusing classes
In this section, we present a selection of examples highlighting the errors made by our highest-
performing model, EfficientNet-L2.

espresso maker water jug espresso maker espresso maker espresso maker

Figure A52: Images misclassified into coffemaker by EfficientNet-L2

meat loaf dough shower cap chocolate sauce manhole cover

Figure A53: Images misclassified into strainer by EfficientNet-L2

sleeping bag plane slot plane plane 

Figure A54: Images misclassified into space shuttle by EfficientNet-L2

baseball espresso safe pop bottle espresso maker

Figure A55: Images misclassified into safety pin by EfficientNet-L2
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E.5 Common and rare misclassification
This section shows some sample misclassification for EfficientNet-L2 and OpenCLIP’s ViT-bigG-14
classifiers.

gordon setter
english setter

tiger cat
lynx

long-horned beetle
ground beetle

slug
sea slug

black-and-tan coonhound
rhodesian ridgeback

sidewinder
saharan horned viper

boa constrictor
indian cobra

ladle
strainer

kerry blue terrier
tibetan terrier

english springer
sussex spaniel

maillot
tights

promontory
cliff

water bottle
water jug

sundial
analog clock

greater swiss mountain dog
appenzeller sennenhund

sweatshirt
cloak

great pyrenees
kuvasz

cup
cocktail shaker

mixing bowl
tray

tray
plate rack

patio
greenhouse

parallel bars
barbell

plate
consomme

notebook
ring binder

moving van
garbage truck

american black bear
polar bear

redbone
weimaraner

bucket
cauldron

shoji
window screen

grey fox
red fox

grey fox
red fox

plow
tractor

lakeland terrier
airedale terrier

pop bottle
wine bottle

paper towel
toilet paper

hog, warthog
wild boar

Figure A56: Examples of misclassifications by EfficientNet-L2 under the Common category.
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table lamp
plunger

espresso maker
cleaver

spaghetti squash
nematode

scale
modem

valley
eraser

sea slug
sea anemone

magnetic compass
gong

nipple
pill bottle

plane
airliner

safety pin
tray

coral reef
thimble

window screen
shopping basket

teddy
pill bottle

polaroid camera
harmonica

quilt
muzzle

apiary
pan flute

shopping basket
wardrobe

american chameleon
nematode

park bench
barber chair

mixing bowl
consomme

safety pin
chain

garter snake
spotted salamander

squirrel monkey
three toed sloth

sleeping bag
safety pin

meat loaf
sea urchin

wok
hook

saint bernard
alaskan tundra wolf

chiton, isopod
sea urchin

chest
labrador retriever

barber chair
plunger

drumstick
bucket

poncho
hoop skirt

green lizard
banded gecko

envelope
speaker

balance beam
scorpion

green mamba
sidewinder

Figure A57: Examples of misclassifications by EfficientNet-L2 under the Rare category.
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irish water spaniel
welsh springer spaniel

red king crab
dungeness crab

quilt
infant bed

combination lock
padlock

lakeland terrier
norwich terrier

african wild dog
hyena

pot
soup bowl

french horn
brass

stage
front curtain

valley
promontory

amphibious vehicle
tank

beaker
whiskey jug

red admiral
gossamer winged butterfly

toy poodle
miniature poodle

brass
saxophone

doormat
prayer rug

great dane
boxer

ballpoint pen
fountain pen

window shade, spotlight
bell cot

wardrobe
sliding door

plate
artichoke

fiddler crab
rock crab

clogs
sandal

indigo bunting
junco

carolina anole
chameleon

night snake
eastern hog nosed snake

wallet
purse

station wagon
passenger car

griffon bruxellois
french bulldog

barn spider
wolf spider

skunk
weasel

dingo
grey wolf

wok
pot

night snake
indian cobra

bolete
mushroom

limpkin
crane bird

Figure A58: Examples of misclassifications by OpenCLIP under the Common category.
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printer
tray

sweatshirt
vacuum cleaner

fiddler crab
loupe

bucket
bottle cap

bath towel
jeans

lionfish
grille

quilt
four poster bed

cup, coffee mug
dutch oven

affenpinscher
giant schnauzer

irish terrier
dromedary

gordon setter
entlebucher sennenhund

petri dish
lens cap

chow chow
irish terrier

irish water spaniel
toy poodle

pot pie
couch

hoop skirt
bridegroom

sulphur crested cockatoo
grey parrot

earth star
acorn

bath towel
bell cot

chameleon
stick insect

platypus
junco

pedestal
tile roof

crane machine
church

monastery
st. bernard

otterhound
border terrier

bell cot
dome

frying pan
ladle

shoe store, sandal
titi

howler monkey
white headed capuchin

crt screen
mobile phone

milk can
snowplow

plunger
red wine

table lamp
plunger

mortar
teapot

velvet
seat belt

hoop skirt
tights

Figure A59: Examples of misclassifications by OpenCLIP under the Rare category.
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E.6 Evaluating OpenCLIP models’ performance on ImageNet-Hard
All the models in this section are downloaded and used from the OpenCLIP library version 2.20.0.

Table A11: Zero-shot performance of OpenCLIP on ImageNet-Hard (%)

Model Pre-trained Dataset Top-1 Accuracy

RN50 yfcc15m 0.80
RN50 cc12m 1.18
RN50-quickgelu yfcc15m 0.75
RN50-quickgelu cc12m 1.08
RN101 yfcc15m 0.65
RN101-quickgelu yfcc15m 0.62
ViT-B/32 laion400m_e31 5.34
ViT-B/32 laion400m_e32 5.41
ViT-B/32 laion2b_e16 5.66
ViT-B/32 laion2b_s34b_b79k 6.13
ViT-B/32 datacomp_m_s128m_b4k 2.79
ViT-B/32 commonpool_m_clip_s128m_b4k 2.50
ViT-B/32 commonpool_m_laion_s128m_b4k 2.41
ViT-B/32 commonpool_m_image_s128m_b4k 2.72
ViT-B/32 commonpool_m_text_s128m_b4k 2.46
ViT-B/32 commonpool_m_basic_s128m_b4k 2.23
ViT-B/32 commonpool_m_s128m_b4k 1.73
ViT-B/32 datacomp_s_s13m_b4k 0.61
ViT-B/32 commonpool_s_clip_s13m_b4k 0.84
ViT-B/32 commonpool_s_laion_s13m_b4k 0.66
ViT-B/32 commonpool_s_image_s13m_b4k 0.61
ViT-B/32 commonpool_s_text_s13m_b4k 0.77
ViT-B/32 commonpool_s_basic_s13m_b4k 0.75
ViT-B/32 commonpool_s_s13m_b4k 0.43
ViT-B/32-quickgelu laion400m_e31 5.34
ViT-B/32-quickgelu laion400m_e32 5.28
ViT-B/16 laion400m_e31 6.31
ViT-B/16 laion400m_e32 6.46
ViT-B/16 laion2b_s34b_b88k 7.18
ViT-B/16 datacomp_l_s1b_b8k 5.98
ViT-B/16 commonpool_l_clip_s1b_b8k 4.92
ViT-B/16 commonpool_l_laion_s1b_b8k 4.44
ViT-B/16 commonpool_l_image_s1b_b8k 4.75
ViT-B/16 commonpool_l_text_s1b_b8k 5.63
ViT-B/16 commonpool_l_basic_s1b_b8k 4.44
ViT-B/16 commonpool_l_s1b_b8k 3.83
ViT-B/16-plus-240 laion400m_e31 6.65
ViT-B/16-plus-240 laion400m_e32 6.69
ViT-L/14 laion400m_e31 8.83
ViT-L/14 laion400m_e32 8.72
ViT-L/14 laion2b_s32b_b82k 10.13
ViT-L/14 datacomp_xl_s13b_b90k 15.60
ViT-L/14 commonpool_xl_clip_s13b_b90k 11.58
ViT-L/14 commonpool_xl_laion_s13b_b90k 11.42
ViT-L/14 commonpool_xl_s13b_b90k 12.44
ViT-H/14 laion2b_s32b_b79k 13.01
ViT-g/14 laion2b_s12b_b42k 11.47
ViT-g/14 laion2b_s34b_b88k 14.03
ViT-bigG-14 laion2b_s39b_b160k 15.93
roberta-ViT-B/32 laion2b_s12b_b32k 5.21
xlm-roberta-base-ViT-B/32 laion5b_s13b_b90k 5.72
xlm-roberta-large-ViT-H/14 frozen_laion5b_s13b_b90k 12.95
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convnext_base laion400m_s13b_b51k 4.74
convnext_base_w laion2b_s13b_b82k 6.09
convnext_base_w laion2b_s13b_b82k_augreg 7.25
convnext_base_w laion_aesthetic_s13b_b82k 5.57
convnext_base_w_320 laion_aesthetic_s13b_b82k 5.50
convnext_base_w_320 laion_aesthetic_s13b_b82k_augreg 7.14
convnext_large_d laion2b_s26b_b102k_augreg 10.39
convnext_large_d_320 laion2b_s29b_b131k_ft 10.69
convnext_large_d_320 laion2b_s29b_b131k_ft_soup 11.20
convnext_xxlarge laion2b_s34b_b82k_augreg 14.27
convnext_xxlarge laion2b_s34b_b82k_augreg_rewind 14.23
convnext_xxlarge laion2b_s34b_b82k_augreg_soup 14.68
coca_ViT-B/32 laion2b_s13b_b90k 5.83
coca_ViT-B/32 mscoco_finetuned_laion2b_s13b_b90k 0.20
coca_ViT-L/14 laion2b_s13b_b90k 10.79
coca_ViT-L/14 mscoco_finetuned_laion2b_s13b_b90k 9.28

Table A12: Zero-shot performance of CommonPool and DataComp models on ImageNet-Hard (%)
Scale Model Pretrained Top-1 Accuracy

xl
ar

ge

ViT-L/14 datacomp_xl_s13b_b90k 15.60
ViT-L/14 commonpool_xl_clip_s13b_b90k 11.58
ViT-L/14 commonpool_xl_laion_s13b_b90k 11.42
ViT-L/14 commonpool_xl_s13b_b90k 12.44

la
rg

e

ViT-B/16 datacomp_l_s1b_b8k 5.98
ViT-B/16 commonpool_l_clip_s1b_b8k 4.92
ViT-B/16 commonpool_l_laion_s1b_b8k 4.44
ViT-B/16 commonpool_l_image_s1b_b8k 4.75
ViT-B/16 commonpool_l_text_s1b_b8k 5.63
ViT-B/16 commonpool_l_basic_s1b_b8k 4.44
ViT-B/16 commonpool_l_s1b_b8k 3.83

m
ed

iu
m

ViT-B/32 datacomp_m_s128m_b4k 2.79
ViT-B/32 commonpool_m_clip_s128m_b4k 2.50
ViT-B/32 commonpool_m_laion_s128m_b4k 2.41
ViT-B/32 commonpool_m_image_s128m_b4k 2.72
ViT-B/32 commonpool_m_text_s128m_b4k 2.46
ViT-B/32 commonpool_m_basic_s128m_b4k 2.23
ViT-B/32 commonpool_m_s128m_b4k 1.73

sm
al

l

ViT-B/32 datacomp_s_s13m_b4k 0.61
ViT-B/32 commonpool_s_clip_s13m_b4k 0.84
ViT-B/32 commonpool_s_laion_s13m_b4k 0.66
ViT-B/32 commonpool_s_image_s13m_b4k 0.61
ViT-B/32 commonpool_s_text_s13m_b4k 0.77
ViT-B/32 commonpool_s_basic_s13m_b4k 0.75
ViT-B/32 commonpool_s_s13m_b4k 0.43
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E.7 Evaluating classifiers on ImageNet-Hard-4K

Table A13: Top-1 accuracy (%) on ImageNet-Hard-4K. Most models obtain a lower accuracy
compared to their corresponding accuracy on ImageNet-Hard.

Classifier Accuracy Classifier Accuracy Classifier Accuracy
AlexNet 7.08 (-0.16) ViT-B/32 18.12 (-0.40) CLIP-ViT-L/14@224px 1.81 (-0.05)
VGG-16 11.32 (-0.68) EfficientNet-B0@224px 12.94 (-3.63) CLIP-ViT-L/14@336px 1.88 (-0.14)
ResNet-18 10.42 (-0.44) EfficientNet-B7@600px 18.67 (-4.53) OpenCLIP-ViT-bigG-14 14.33 (-1.60)
ResNet-50 13.93 (-0.81) EfficientNet-L2@800px 28.42 (-10.58) OpenCLIP-ViT-L-14 13.04 (-2.56)

E.8 Obviously ill-posed samples from ImageNet-Sketch

n01484850/7064.JPEG

n01514859/7079.JPEG
n01537544/7125.JPEG n01537544/7149.JPEG n01560419/7174.JPEG

n01560419/7184.JPEG
n01664065/7332.JPEG

n01667114/7353.JPEG

n01693334/7527.JPEG n01693334/7544.JPEG

n01697457/7625.JPEG n01697457/7628.JPEG

n01734418/7794.JPEG n01734418/7801.JPEG n01734418/7809.JPEG

n01734418/7810.JPEG

n01742172/7862.JPEG n01768244/8064.JPEG n01773549/8102.JPEG n01774750/8162.JPEG

n01796340/8179.JPEG n01796340/8183.JPEG
n01797886/8202.JPEG

n01798484/8231.JPEG n01798484/8243.JPEG

Figure A60: Sample images from ImageNet-Sketch that are completely black.
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F Additional Details
F.1 Additional results for performance of classifiers using maximum possible accuracy
In this section, we present the delta values for Tab. 1, which represent the difference in relation to the
1-crop accuracy for each cell.

Table A14: On in-distribution data (IN & ReaL) there exists a substantial improvement when models
are provided with an optimal zoom, either selected from 36 (b) or 324 pre-defined zoom crops (c). In
contrast, OOD benchmarks still pose a significant challenge to IN-trained models even with optimal
zooming (i.e., all upper-bound accuracy scores < 80%). Improvements are respected to the standard
1-crop accuracy.

IN ReaL IN+ReaL IN-A IN-R IN-S ON
(a) Standard top-1 accuracy based on N = 1 crop
AlexNet 56.16 62.67 61.76 1.75 21.10 10.05 14.23
VGG-16 71.37 78.90 78.52 2.69 26.98 16.78 28.32
ResNet-18 69.45 76.94 76.47 1.37 32.14 19.41 27.59
ResNet-50 75.75 82.63 82.97 0.21 35.39 22.91 36.18
ViT-B/32 75.75 81.89 82.59 9.64 41.29 26.83 30.89
CLIP-ViT-L/14 75.03 80.68 81.95 71.28 87.74 58.23 66.32
(b) Upper-bound accuracy using N = 36 crops
AlexNet 85.19 (+29.03) 90.30 (+27.63) 89.74 (+27.98) 31.37 (+29.62) 47.04 (+25.94) 24.40 (+14.35) 49.17 (+34.94)
VGG-16 92.30 (+20.93) 96.08 (+17.18) 95.81 (+17.29) 46.69 (+44.00) 52.86 (+25.88) 34.34 (+17.56) 62.94 (+34.62)
ResNet-18 92.08 (+22.63) 95.97 (+19.03) 95.73 (+19.26) 47.48 (+46.11) 58.85 (+26.71) 37.91 (+18.50) 63.08 (+35.49)
ResNet-50 94.46 (+18.71) 97.36 (+14.73) 97.40 (+14.43) 55.68 (+55.47) 61.42 (+26.03) 41.71 (+18.80) 69.60 (+33.42)
ViT-B/32 95.05 (+19.30) 97.61 (+15.72) 97.88 (+15.29) 68.43 (+58.79) 68.77 (+27.48) 49.10 (+22.27) 70.30 (+39.41)
CLIP-ViT-L/14 94.19 (+19.16) 97.32 (+16.64) 97.56 (+15.61) 97.16 (+25.88) 98.60 (+10.86) 83.77 (+25.54) 89.59 (+23.27)
(c) Upper-bound accuracy using N = 324 crops
AlexNet 90.03 (+33.87) 93.85 (+31.18) 93.48 (+31.72) 42.23 (+40.48) 55.52 (+34.42) 29.53 (+19.48) 59.65 (+45.42)
VGG-16 95.30 (+23.93) 97.90 (+19.00) 97.66 (+19.14) 58.27 (+55.58) 60.88 (+33.90) 39.90 (+23.12) 71.85 (+43.53)
ResNet-18 95.15 (+25.70) 97.76 (+20.82) 97.55 (+21.08) 58.87 (+57.50) 66.89 (+34.75) 43.68 (+24.27) 71.44 (+43.85)
ResNet-50 96.78 (+21.03) 98.62 (+15.99) 98.57 (+15.60) 66.68 (+66.47) 68.84 (+33.45) 47.64 (+24.73) 76.83 (+40.65)
ViT-B/32 97.19 (+21.44) 98.75 (+16.86) 98.91 (+16.32) 78.03 (+68.39) 75.58 (+34.29) 55.99 (+29.16) 79.28 (+48.39)
CLIP-ViT-L/14 96.78 (+21.75) 98.69 (+18.01) 98.80 (+16.85) 98.45 (+27.17) 99.20 (+11.46) 89.00 (+30.77) 93.13 (+26.81)

F.2 Comparing modern architectures with regard to their maximum possible accuracy.
In this section, we repeated the experiment presented in Tab. 1 in order to include a broader range of ar-
chitectures and conduct a rank analysis. Specifically, we added MaxViT [72], Swin Transformer [43],
ConvNext [44], EfficientNet [69], and MobileNetV3 [28].
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Table A15: Repeating the experiment in Tab. 1 for various architectures, please note that the small
variations of ResNet-50 and ViT-B/32 models arise from the use of different CUDA and PyTorch
versions.

(a) Standard top-1 accuracy based on N = 1 crop
Classifier ImageNet ImageNet-ReaL ImageNet-A

MobileNetV3-Small 67.42 74.47 2.73
ResNet-50 75.74 82.63 0.17
EfficientNet-B0 77.69 84.13 7.01
ViT-B/32 75.75 81.89 9.51
ConvNext-Base 83.49 88.19 33.99
Swin-B 83.37 87.80 34.87
MaxViT-T 83.49 88.05 36.00

(b) Upper-bound accuracy using N = 36 crops
MobileNetV3-Small 91.79 95.63 44.45
ResNet-50 94.47 97.35 54.97
EfficientNet-B0 94.87 97.49 59.33
ViT-B/32 95.04 97.60 68.33
ConvNext-Base 95.78 97.68 82.25
Swin-B 95.95 97.75 82.81
MaxViT-T 96.11 97.99 83.33

(c) Upper-bound accuracy using N = 324 crops
MobileNetV3-Small 95.20 97.66 57.53
ResNet-50 96.77 98.63 66.15
EfficientNet-B0 96.87 98.60 69.20
ViT-B/32 97.19 98.75 77.77
ConvNext-Base 97.16 98.53 87.16
Swin-B 97.39 98.69 88.15
MaxViT-T 97.45 98.83 88.24
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(b) ImageNet-ReaL
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(c) ImageNet-A

Figure A61: Comparing modern architectures using maximum possible accuracy
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1-Crop Rank 36-Crop Rank Max Possible Rank
Metric
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MobileNetV3-Small
ResNet-50
EfficientNet-B0
ConvNext-Base
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Figure A62: Average rank analysis of various architectures on ImageNet, ImageNet-ReaL, and
ImageNet-A using different metrics. Max-ViT consistently emerges as the top performer across all
experiments. Despite its high 1-crop accuracy, ConvNext’s rank declined when more crops were
included. Conversely, ViT-B/32 exhibited a reverse trend; while its 1-crop rank was not robust, the
inclusion of more crops elevated its accuracy beyond that of ConvNext.
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F.3 Error-analysis for MEMO results
In this section, we repeated the MEMO experiment using various random seeds to evaluate the
consistency of the results. Our findings demonstrate a consistent trend between MEMO and RRC,
indicating that this relationship holds steady regardless of variations in individual runs.
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Figure A63: Error bars representing the outcomes of the MEMO experiment on ImageNet, conducted
with three distinct random seeds.
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Figure A64: Error bars representing the outcomes of the MEMO experiment on ImageNet-A,
conducted with three distinct random seeds.

F.4 Grad-CAM visualizations for MEMO + RRC
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Figure A65: Additional Grad-CAM visualization for the final convolutional layer of a ResNet-50
before and after MEMO + RRC update.
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Figure A66: Additional Grad-CAM visualization for the final convolutional layer of a ResNet-50
before and after MEMO + RRC update.
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G Datasheet for ImageNet-Hard
G.1 Motivation
The questions in this section are primarily intended to encourage dataset creators to clearly articulate
their reasons for creating the dataset and to promote transparency about funding interests. The latter
may be particularly relevant for datasets created for research purposes.

• For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.
The ImageNet-Hard is a new benchmark to test the robustness of state-of-the-art image
classifiers. It comprises an array of challenging images collected from six validation datasets
of ImageNet. This dataset challenges state-of-the-art image classification models because
even by perfectly localizing the key objects, the state-of-the-art classifiers still fail to correctly
recognize.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
The dataset was created in collaboration efforts between the University of Alberta, Canada,
and Auburn University, USA; mostly by, Mohammad Reza Taesiri and Anh Nguyen.

• Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
Anh Nguyen was supported by NSF Grant No. 2145767, and donations from NaphCare
Foundation, and Adobe Research

• Any other comments?
No.

G.2 Composition
Dataset creators should read through these questions prior to any data collection and then provide
answers once data collection is complete. Most of the questions in this section are intended to
provide dataset consumers with the information they need to make informed decisions about using
the dataset for their chosen tasks. Some of the questions are designed to elicit information about
compliance with the EU’s General Data Protection Regulation (GDPR) or comparable regulations in
other jurisdictions.
Questions that apply only to datasets that relate to people are grouped together at the end of the
section. We recommend taking a broad interpretation of whether a dataset relates to people. For
example, any dataset containing text that was written by people relates to people.

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.
Each instance of the ImageNet-Hard dataset corresponds to an image and at least one
groundtruth label that will be used to assess image classifiers.

• How many instances are there in total (of each type, if appropriate)?
There are 10,980 images in this dataset.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe
how this representativeness was validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of instances, because instances
were withheld or unavailable).
ImageNet-Hard is a combination of various publicly available datasets. We tried multiple
refinement steps to make sure to get the best possible samples for the intended purpose.
Then, it is not representative of any larger sets but a selective combination of multiple sets.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
The dataset contains both raw and processed images. The processed images come from
ImageNet-C. Details can be found in Sec. 4.4.
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• Is there a label or target associated with each instance? If so, please provide a description.
Yes. Each sample has the label that is the folder name the image belongs to. Basically, we
follow the structure of the ImageNet paper [59].

• Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.
No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
No. The individual instances has no relationships.

• Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.
No. This dataset is created for the testing purposes.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.
To the best of our knowledge, No. We tried our best efforts to filter any errors, sources of
noise, or redundancies to create the ImageNet-Hard dataset.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that might apply to a dataset consumer? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.
Yes. It does link and inherits from existing image datasets and was detailed in Sec. 4.4.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
No.

If the dataset does not relate to people, you may skip the remaining questions in this section.

• Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.
N/A.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.
N/A.

• Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.
N/A.

• Any other comments?
No.
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G.3 Collection Process
As with the questions in the previous section, dataset creators should read through these questions
prior to any data collection to flag potential issues and then provide answers once collection is
complete. In addition to the goals outlined in the previous section, the questions in this section
are designed to elicit information that may help researchers and practitioners to create alternative
datasets with similar characteristics. Again, questions that apply only to datasets that relate to
people are grouped together at the end of the section.

• How was the data associated with each instance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If the data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.
The dataset is linked from other 6 datasets. Please find the contribution of original daatasets
in Appendix E.1)

• What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated?
We used both algorithm and human efforts to collect the data. Algorithms were used to
choose hard samples from various datasets. We then used two human groups and their
agreement to make sure the high quality of the process. Details for the human validation
in Sec. 4.4. Finally, we removed samples that have debatable labels (e.g. sunglass vs.
sunglasses).

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
No, the dataset was not a subset of a larger set.

• Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
In the data collection process, we involved students who voluntarily participated.

• Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the timeframe in which the data associated with the instances was
created.
Feedback data was collected from April 20 2023 – May 4 2023.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well
as a link or other access point to any supporting documentation.
N/A. In this study, humans are not the subjects. Their voluntary feedback, however, is used
to filter out incorrectly labelled samples from the original 6 datasets.

If the dataset does not relate to people, you may skip the remaining questions in this section.
• Did you collect the data from the individuals in question directly, or obtain it via third

parties or other sources (e.g., websites)?
We only involved individuals in the label verification step (i.e. 3133 samples). The answers
from individuals directly affect if one of those 3133 samples will be kept or not.

• Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link
or other access point to, or otherwise reproduce, the exact language of the notification itself.
N/A. In this study, humans are not the subjects. Their voluntary feedback, however, is used
to filter out incorrectly labelled samples from the original 6 datasets.

• Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.
N/A. In this study, humans are not the subjects. Their voluntary feedback, however, is used
to filter out incorrectly labelled samples from the original 6 datasets.
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• If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).
N/A. In this study, humans are not the subjects. Their voluntary feedback, however, is used
to filter out incorrectly labelled samples from the original 6 datasets.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted? If so, please provide a description of
this analysis, including the outcomes, as well as a link or other access point to any supporting
documentation.
N/A. In this study, humans are not the subjects. Their voluntary feedback, however, is used
to filter out incorrectly labelled samples from the original 6 datasets.

• Any other comments?
No.

G.4 Preprocessing/cleaning/labeling
Dataset creators should read through these questions prior to any preprocessing, cleaning, or labeling
and then provide answers once these tasks are complete. The questions in this section are intended to
provide dataset consumers with the information they need to determine whether the “raw” data has
been processed in ways that are compatible with their chosen tasks. For example, text that has been
converted into a “bag-of-words” is not suitable for tasks involving word order.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip the
remaining questions in this section.
Yes, we did cleaning up the data. We removed 370 images associated with the labels
sunglass, sunglasses, tub, bathtub, cradle, bassinet, projectile, and missile, i.e., the
classes that often contain similar images that belong to more than one class. Also, the
agreement human setup in Sec. 4.4 helps us remove bad samples.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.
No, we did not save. However, the “raw” data (i.e. six image datasets) can be found on the
Internet.

• Is the software that was used to preprocess/clean/label the data available? If so, please
provide a link or other access point.
Yes, we provided the source code for the algorithms that can be found at here.

• Any other comments?
No.

G.5 Uses
The questions in this section are intended to encourage dataset creators to reflect on the tasks for
which the dataset should and should not be used. By explicitly highlighting these tasks, dataset
creators can help dataset consumers to make informed decisions, thereby avoiding potential risks or
harms.

• Has the dataset been used for any tasks already? If so, please provide a description.
The dataset was used for image classification in this paper.

• Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
The papers that use the dataset could be found at this paperwithcode repository.

• What (other) tasks could the dataset be used for?
Studying the effects of upscaling on image classification.
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• Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a dataset consumer might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks
or harms (e.g., legal risks, financial harms)? If so, please provide a description. Is there
anything a dataset consumer could do to mitigate these risks or harms?
No.

• Are there tasks for which the dataset should not be used? If so, please provide a
description.
No.

• Any other comments?
No.

G.6 Distribution
Dataset creators should provide answers to these questions prior to distributing the dataset ei-
ther internally within the entity on behalf of which the dataset was created or externally to third parties.

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
The dataset will be shared with the common public.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does
the dataset have a digital object identifier (DOI)?
It has a GitHub repository and Hugging Face page. It has no DOI.

• When will the dataset be distributed?
Until June 5 2023, the dataset had been already distributed.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.
No.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.
There are no such restrictions.

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.
N/A.

• Any other comments?
No.

G.7 Maintenance
As with the questions in the previous section, dataset creators should provide answers to these
questions prior to distributing the dataset. The questions in this section are intended to encourage
dataset creators to plan for dataset maintenance and communicate this plan to dataset consumers.

• Who will be supporting/hosting/maintaining the dataset?
The authors of the paper will be supporting/hosting/maintaining the dataset.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Please reach out to mtaesiri@gmail.com and anh.ng8@gmail.com.
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• Is there an erratum? If so, please provide a link or other access point.
No, there is no erratum.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated
to dataset consumers (e.g., mailing list, GitHub)?
Yes, we anticipate either correcting the labels or removing some images entirely to reduce
the noise in the dataset. We manage the versioning through the Hugging Face Dataset
platform.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.
N/A

• Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
dataset consumers.
No, the older versions will not be updated. Users are encouraged to use the latest version.

• If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to dataset consumers? If so, please provide
a description.
Please reach out to mtaesiri@gmail.com or anhng8@gmail.com.

• Any other comments?
No.
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