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Abstract

Topological data analysis (TDA) is an area of data science that focuses on using
invariants from algebraic topology to provide multiscale shape descriptors for
geometric data sets, such as graphs and point clouds. One of the most important
such descriptors is persistent homology, which encodes the change in shape as a
filtration parameter changes; a typical parameter is the feature scale. For many data
sets, it is useful to simultaneously vary multiple filtration parameters, for example
feature scale and density. While the theoretical properties of single parameter
persistent homology are well understood, less is known about the multiparameter
case. In particular, a central question is the problem of representing multiparameter
persistent homology by elements of a vector space for integration with standard
machine learning algorithms. Existing approaches to this problem either ignore
most of the multiparameter information to reduce to the one-parameter case or
are heuristic and potentially unstable in the face of noise. In this article, we
introduce a new general representation framework that leverages recent results on
decompositions of multiparameter persistent homology. This framework is rich in
information, fast to compute, and encompasses previous approaches. Moreover, we
establish theoretical stability guarantees under this framework as well as efficient
algorithms for practical computation, making this framework an applicable and
versatile tool for analyzing geometric data. We validate our stability results and
algorithms with numerical experiments that demonstrate statistical convergence,
prediction accuracy, and fast running times on several real data sets.

1 Introduction

Topological Data Analysis (TDA) [8] is a methodology for analyzing data sets using multiscale shape
descriptors coming from algebraic topology. There has been intense interest in the field in the last
decade, since topological features promise to allow practitioners to compute and encode information
that classical approaches do not capture. Moreover, TDA rests on solid theoretical grounds, with
guarantees accompanying many of its methods and descriptors. TDA has proved useful in a wide
variety of application areas, including computer graphics [13, 33], computational biology [34], and
material science [6, 35], among many others.

The main tool of TDA is persistent homology. In its most standard form, one is given a finite
metric space X (e.g., a finite set of points and their pairwise distances) and a continuous function
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f : X → R. This function usually represents a parameter of interest (such as, e.g., scale or density
for point clouds, marker genes for single-cell data, etc), and the goal of persistent homology is to
characterize the topological variations of this function on the data at all possible scales. Of course,
the idea of considering multiscale representations of geometric data is not new [14, 32, 41]; the
contribution of persistent homology is to obtain a novel and theoretically tractable multiscale shape
descriptor. More formally, persistent homology is achieved by computing the so-called persistence
barcode of f , which is obtained by looking at all sublevel sets of the form {f−1((−∞, α])}α∈R,
also called filtration induced by f , and by computing a decomposition of this filtration, that is, by
recording the appearances and disappearances of topological features (connected components, loops,
enclosed spheres, etc) in these sets. When such a feature appears (resp. disappears), e.g., in a sublevel
set f−1((−∞, αb]), we call the corresponding threshold αb (resp. αd) the birth time (resp. death
time) of the topological feature, and we summarize this information in a set of intervals, or bars,
called the persistence barcode D(f) := {(αb, αd)}α∈A ⊂ R× R ∪ {∞}. Moreover, the bar length
αd − αb often serves as a proxy for the statistical significance of the corresponding feature.

However, an inherent limitation of the formulation of persistent homology is that it can handle only a
single filtration parameter f . However, in practice it is common that one has to deal with multiple
parameters. This translates into multiple filtration functions: a standard example is when one aims
at obtaining meaningful topological representation of a noisy point cloud. In this case, both feature
scale and density functions are necessary (see Appendix A). An extension of persistent homology
to several filtration functions is called multiparameter persistent homology [3, 9], and studies the
topological variations of a continuous multiparameter function f : X → Rn with n ∈ N∗. This
setting is notoriously difficult to analyze theoretically as there is no result ensuring the existence of
an analogue of persistence barcodes, i.e., a decomposition into subsets of Rn, each representing the
lifespan of a topological feature.

Still, it remains possible to define weaker topological invariants in this setting. The most common one
is the so-called rank invariant (as well as its variations, such as the generalized rank invariant [24],
and its decompositions, such as the signed barcodes [4]), which describes how the topological features
associated to any pair of sublevel sets {x ∈ X : f(x) ≤ α} and {x ∈ X : f(x) ≤ β} such that
α ≤ β (w.r.t. the partial order in Rn), are connected. The rank invariant is a construction in abstract
algebra, and so the task of finding appropriate representations of this invariant, i.e., embeddings into
Hilbert spaces, is critical. Hence, a number of such representations have been defined, which first
approximate the rank invariant by computing persistence barcodes from several linear combinations of
filtrations, a procedure often referenced as the fibered barcode (see Appendix E), and then aggregate
known single-parameter representations for them [17, 18, 39]. Adequate representations of the
generalized rank invariant have also been investigated recently for n = 2 [42].

However, the rank invariant, and its associated representations, are known to be much less informative
than decompositions (when they exist): many functions have different decompositions yet the same
rank invariants. Therefore, the aforementioned representations can encode only limited multiparam-
eter topological information. Instead, in this work, we focus on candidate decompositions of the
function, in order to create descriptors that are strictly more powerful than the rank invariant. Indeed,
while there is no general decomposition theorem, there is recent work that constructs candidate
decompositions in terms of simple pieces [1, 7, 29] that always exist but do not necessarily suffice to
reconstruct all of the multiparameter information. Nonetheless, they are strictly more informative
than the rank invariant under mild conditions, are stable, and approximate the true decomposition
when it exists1. For instance, in Figure 2, we present a bifiltration of a noisy point cloud with scale
and density (left), and a corresponding candidate decomposition comprised of subsets of R2, each
representing a topological feature (middle). One can see that there is a large green subset in the
decomposition that represents the circle formed by the points that are not outliers (also highlighted in
green in the bifiltration).

1Although multiparameter persistent homology can always be decomposed as a sum of indecomposable
pieces ([3, Theorem 4.2], [20]), these decompositions are prohibitively difficult to interpret and work with.
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Figure 1: Common pipelines for the use of multiparameter persistent homology in data science—our
work provides new contributions to the arrow highlighted in red.

Unfortunately, while more informative, candidate decompositions suffer from the same problem than
the rank invariant; they also need appropriate representations in order to be processed by standard
data science methods. In this work, we bridge this gap by providing new representations designed for
candidate decompositions. See Figure 1 for a summarizing figure.

Figure 2: (left) Bi-filtration of a noisy point cloud induced by both feature scale (using unions of
balls with increasing radii) and sublevel sets of codensity. The cycle highlighted in the green zone
can be detected as a large subset in the corresponding candidate decomposition computed by the MMA
method [29] (middle), and in our representation of it (right).

Contributions. Our contributions in this work are listed below:

• We provide a general framework that parametrizes representations of multiparameter persis-
tent homology decompositions (Definition 1) and which encompasses previous approaches
in the literature. These representations take the form of a parametrized family of continuous
functions on Rn that can be binned into images for visualization and data science.

• We identify parameters in this framework that result in representations that have stability
guarantees while still encoding more information than the rank invariant (see Theorem 1).

• We illustrate the performance of our framework with numerical experiments: (1) We
demonstrate the practical consequences of the stability theorem by measuring the statistical
convergence of our representations. (2) We achieve the best performance with the lowest
runtime on several classification tasks on public data sets (see Sections 4.1 and 4.2).

Related work. Closely related to our method is the recent contribution [10], which also proposes a
representation for decompositions. However, their approach, while being efficient in practice, is a
heuristic with no corresponding mathematical guarantees. In particular, it is known to be unstable:
similar decompositions can lead to very different representations, as shown in Appendix B. Our
approach can be understood as a subsequent generalization of the work of [10], with new mathematical
guarantees that allow to derive, e.g., statistical rates of convergence.

Outline. Our work is organized as follows. In Section 2, we recall the basics of multiparameter
persistent homology. Next, in Section 3 we present our general framework and state our associated
stability result. Finally, we showcase the numerical performances of our representations in Section 4,
and we conclude in Section 5.
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2 Background

In this section, we briefly recall the basics of single and multiparameter persistent homology, and
refer the reader to Appendix C, Appendix D, and [31, 34] for a more complete treatment.

Persistent homology. The basic brick of persistent homology is a filtered topological space X ,
by which we mean a topological space X together with a function f : X → R (for instance, in
Figure 5, X = R2 and f = fP ). Then, given α > 0, we call F (α) := f−1((−∞, α]) ⊆ X the
sublevel set of f at level α. Given levels α1 ≤ · · · ≤ αN , the corresponding sublevel sets are
nested w.r.t. inclusion, i.e., one has F (α1) ⊆ F (α2) ⊆ . . . ⊆ F (αi) ⊆ . . . ⊆ F (αN ). This
system is an example of filtration of X , where a filtration is generally defined as a sequence of
nested subspaces X1 ⊆ . . . ⊆ Xi ⊆ . . . ⊆ X . Then, the core idea of persistent homology is
to apply the kth homology functor Hk on each F (αi). We do not define the homology functor
explicitly here, but simply recall that each Hk(F (αi)) is a vector space, whose basis elements
represent the kth dimensional topological features of F (αi) (connected components for k = 0,
loops for k = 1, spheres for k = 2, etc). Moreover, the inclusions F (αi) ⊆ F (αi+1) translate
into linear maps Hk(F (αi)) → Hk(F (αi+1)), which connect the features of F (αi) and F (αi+1)
together. This allows to keep track of the topological features in the filtration, and record their
levels, often called times, of appearance and disappearance. More formally, such a sequence of
vector spaces connected with linear maps M = H∗(F (α1)) → · · · → H∗(F (αN )) is called a
persistence module, and the standard decomposition theorem [15, Theorem 2.8] states that this
module can always be decomposed as M = ⊕m

i=1I[αbi , αdi
], where I[αbi , αdi

] stands for a module of
dimension 1 (i.e., that represents a single topological feature) between αbi and αdi

, and dimension
0 (i.e., that represents no feature) elsewhere. It is thus convenient to summarize such a module
with its persistence barcode D(M) = {[αbi , αdi

]}1≤i≤m. Note that in practice, one is only given a
sampling of the topological space X , which is usually unknown. In that case, persistence barcodes
are computed using combinatorial models of X computed from the data, called simplicial complexes.
See Appendix C.

Multiparameter persistent homology. The persistence modules defined above extend straight-
forwardly when there are multiple filtration functions. An n-filtration, or multifiltration, in-
duced by a function f : X → Rn, is the family of sublevel sets F = {F (α)}α∈Rn , where
F (α) := {x ∈ X : f(x) ≤ α} and ≤ denotes the partial order of Rn. Again, applying the
homology functor Hk on the multifiltration F induces a multiparameter persistence module M. How-
ever, contrary to the single-parameter case, the algebraic structure of such a module is very intricate,
and there is no general decomposition into modules of dimension at most 1, and thus no analogue of
the persistence barcode. Instead, the rank invariant has been introduced as a weaker invariant: it is
defined, for a module M, as the function RI : (α, β) 7→ rank(M(α)→ M(β)) for any α ≤ β, but is
also known to miss a lot of structural properties of M. To remedy this, several methods have been
developed to compute candidate decompositions for M [1, 7, 29], where a candidate decomposition is
a module M̃ that can be decomposed as M̃ ≃ ⊕m

i=1Mi, where each Mi is an interval module, i.e., its
dimension is at most 1, and its support supp (Mi) := {α ∈ Rn : dim(Mi(α)) = 1} is an interval of
Rn (see Appendix D). In particular, when M does decompose into intervals, candidate decompositions
must agree with the true decomposition. One also often asks candidate decompositions to preserve
the rank invariant.

Distances. Finally, multiparameter persistence modules can be compared with two standard dis-
tances: the interleaving and bottleneck (or ℓ∞) distances. Their explicit definitions are technical
and not necessary for our main exposition, so we refer the reader to, e.g., [3, Sections 6.1, 6.4] and
Appendix D for more details. The stability theorem [27, Theorem 5.3] states that multiparameter per-
sistence modules are stable: dI(M,M′) ≤ ∥f − f ′∥∞ , where f and f ′ are continuous multiparameter
functions associated to M and M′ respectively.

3 T-CDR: a template for representations of candidate decompositions

Even though candidate decompositions of multiparameter persistence modules are known to encode
useful data information, their algebraic definitions make them not suitable for subsequent data
science and machine learning purposes. Hence, in this section, we introduce the Template Candidate
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Decomposition Representation (T-CDR): a general framework and template system for representations
of candidate decompositions, i.e., maps defined on the space of candidate decompositions and taking
values in an (implicit or explicit) Hilbert space.

3.1 T-CDR definition

Notations. In this article, by a slight abuse of notation, we will make no difference in the notations
between an interval module and its support, and we will denote the restriction of an interval support
M to a given line ℓ as M

∣∣
ℓ
.

Definition 1. Let M = ⊕m
i=1Mi be a candidate decomposition, and letM be the space of interval

modules. The Template Candidate Decomposition Representation (T-CDR) of M is:

Vop,w,ϕ(M) = op({w(Mi) · ϕ(Mi)}mi=1), (1)

where op is a permutation invariant operation (sum, max, min, mean, etc), w :M→ R is a weight
function, and ϕ :M→H sends any interval module to a vector in a Hilbert spaceH.

The general definition of T-CDR is inspired from a similar framework that was introduced for
single-parameter persistence with the automatic representation method PersLay [11].

Relation to previous work. Interestingly, whenever applied on candidate decompositions that
preserve the rank invariant, specific choices of op, w and ϕ reproduce previous representations:

• Using w : Mi 7→ 1, ϕ : Mi 7→
{

Rn → R
x 7→ Λ(x,Mi

∣∣
ℓx
) and op = kth maximum, where

lx is the diagonal line crossing x, and Λ(·, ℓ) denotes the tent function associated to any
segment ℓ ⊂ Rn, induces the kth multiparameter persistence landscape (MPL) [39].

• Using w : Mi 7→ 1, ϕ : Mi 7→
{

Rn × Rn → Rd

p, q 7→ w′(Mi ∩ [p, q]) · ϕ′(Mi ∩ [p, q])
and

op = op′, where op′, w′ and ϕ′ are the parameters of any persistence diagram representation
from Perslay, induces the multiparameter persistence kernel (MPK) [17].

• Using w : Mi 7→ vol(Mi), ϕ : Mi 7→
{

Rn → R
x 7→ exp(−minℓ∈Ld(x,Mi

∣∣
ℓ
)2/σ2)

and

op =
∑

, where L is a set of (pre-defined) diagonal lines, induces the multiparameter
persistence image (MPI) [10].

Recall that the first two approaches are built from fibered barcodes and rank invariants, and that it is
easy to find persistence modules that are different yet share the same rank invariant (see [38, Figure
3]). On the other hand, the third approach uses more information about the candidate decomposition,
but is known to be unstable (see Appendix B). Hence, in the next section, we focus on specific choices
for the T-CDR parameters that induce stable yet informative representations.

3.2 Metric properties

In this section, we study specific parameters for T-CDR (see Definition 1) that induce representations
with associated robustness properties. We call this subset of representations Stable Candidate
Decomposition Representations (S-CDR), and define them below.
Definition 2. The S-CDR parameters are:

1. the weight function w : M 7→ sup{ε > 0 : ∃y ∈ Rn s.t. ℓy,ε ⊂ supp (M)},where ℓy,ε is
the segment between y − ε · [1, . . . , 1] and y + ε · [1, . . . , 1],

2. the individual interval representations ϕδ(M) : Rn → R:

(a) ϕδ(M)(x) = 1
δw(supp (M) ∩Rx,δ), (b) ϕδ(M)(x) = 1

(2δ)n vol (supp (M) ∩Rx,δ),

(c) ϕδ(M)(x) = 1
(2δ)n supx′,δ′ {vol(Rx′,δ′) : Rx′,δ′ ⊆ supp (M) ∩Rx,δ},

where Rx,δ is the hypersquare {y ∈ Rn : x− δ ≤ y ≤ x+ δ} ⊆ Rn, δ := δ · [1, . . . , 1] ∈
Rn for any δ > 0, and vol denotes the volume of a set in Rn.
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3. the permutation invariant operators op =
∑

and op = sup.

Intuitively, the S-CDR weight function is the length of the largest diagonal segment one can fit inside
supp (M), and the S-CDR interval representations (a), (b) and (c) are the largest normalized diagonal
length, volume, and hypersquare volume that one can fit inside supp (M)∩Rx,δ , respectively. These
S-CDR interval representations allow for some trade-off between computational cost and the amount
of information that is kept: (a) and (c) are very easy to compute, but (b) encodes more information
about interval shapes. See Figure 2 (right) for visualizations.

Equipped with these S-CDR parameters, we can now define the two following S-CDRs, that can be
applied on any candidate decomposition M = ⊕m

i=1Mi:

Vp,δ(M) :=

m∑
i=1

w(Mi)
p∑m

j=1 w(Mj)p
ϕδ(Mi), (2) V∞,δ(M) := sup

1≤i≤m
ϕδ(Mi). (3)

Stability. The main motivation for introducing S-CDR parameters is that the corresponding S-CDRs
are stable in the interleaving and bottleneck distances, as stated in the following theorem.

Theorem 1. Let M = ⊕m
i=1Mi and M′ = ⊕m′

j=1M
′
j be two candidate decompositions. Assume that

we have 1
m

∑
i w(Mi),

1
m′

∑
j w(M

′
j) ≥ C, for some C > 0. Then for any δ > 0, one has

∥V0,δ(M)− V0,δ(M′)∥∞ ≤ 2(dB(M,M
′) ∧ δ)/δ, (4)

∥V1,δ(M)− V1,δ(M′)∥∞ ≤
[
4 +

2

C

]
(dB(M,M

′) ∧ δ)/δ, (5)

∥V∞,δ(M)− V∞,δ(M
′)∥∞ ≤ (dI(M,M

′) ∧ δ)/δ, (6)

where ∧ stands for minimum.

A proof of Theorem 1 can be found in Appendix F.

These results are the main theoretical contribution in this work, as the only other decomposition-based
representation in the literature [10] has no such guarantees. The other representations [17, 18, 39, 42]
enjoy similar guarantees than ours, but are computed from the rank invariant and do not exploit the
information contained in decompositions. Theorem 1 shows that S-CDRs bring the best of both
worlds: these representations are richer than the rank invariant and stable at the same time. We
also provide an additional stability result with a similar, yet more complicated representation in
Appendix G, whose upper bound does not involve taking minimum.
Remark 1. S-CDRs are injective representations: if the support of two interval modules are different,
then their corresponding S-CDRs (evaluated on a point that belongs to the support of one interval but
not on the support of the other) will differ, provided that δ is sufficiently small.

4 Numerical Experiments

In this section, we illustrate the efficiency of our S-CDRs with numerical experiments. First, we
explore the stability theorem in Section 4.1 by studying the convergence rates, both theoretically
and empirically, of S-CDRs on various data sets. Then, we showcase the efficiency of S-CDRs on
classification tasks in Section 4.2, and we investigate their running times in Section 4.3. Our code for
computing S-CDRs is based on the MMA [29] and Gudhi [36] libraries for computing candidate
decompositions2. It is publicly available at https://github.com/DavidLapous/multipers and
will be merged as a module of the Gudhi library. We also provide pseudo-code in Appendix H.

4.1 Convergence rates

In this section, we study the convergence rate of S-CDRs with respect to the number of sampled points,
when computed from specific bifiltrations. Similar to the single parameter persistence setting [16],
these rates are derived from Theorem 1. Indeed, since concentration inequalities for multiparameter

2Several different approaches can be used for computing decompositions [1, 7]. In our experiments, we used
MMA [29] (with a family of 1000 diagonal lines) because of its simplicity and rapidity.
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persistence modules have already been described in the literature, these concentration inequalities
can transfer to our representations. Note that while Equations (7) and (8), which provide such rates,
are stated for the S-CDR in (3), they also hold for the S-CDR in (2).

Measure bifiltration. Let µ be a compactly supported probability measure of RD, and let µn

be the discrete measure associated to a sampling of n points from µ. The measure bifiltration
associated to µ and µn is defined as Fµ

r,t := {x ∈ RD : µ(B(x, r)) ≤ t}, where B(x, r) denotes the
Euclidean ball centered on x with radius r. Now, let M and Mn be the multiparameter persistence
modules obtained from applying the homology functor on top of the measure bifiltrations Fµ and
Fµn . These modules are known to enjoy the following stability result [2, Theorem 3.1, Proposition
2.23 (i)]: dI(M,Mn) ≤ dPr(µ, µn) ≤ min(dpW (µ, µn)

1
2 , dpW (µ, µn)

p
p+1 ), where dpW and dPr stand

for the p-Wasserstein and Prokhorov distances between probability measures. Combining these
inequalities with Theorem 1, then taking expectations and applying the concentration inequalities of
the Wasserstein distance (see [26, Theorem 3.1] and [21, Theorem 1]) lead to:

δE
[
∥V∞,δ(M)− V∞,δ(Mn)∥∞

]
≤

(
cp,qE (|X|q)n−(

1
2p∨d )∧

1
p−

1
q logα/q n

) p
p+1

, (7)

where ∨ stands for maximum, α = 2 if 2p = q = d, α = 1 if d ̸= 2p and q = dp/(d− p) ∧ 2p or
q > d = 2p and α = 0 otherwise, cp,q is a constant that depends on p and q, and X is a random
variable of law µ.

Čech complex and density. A limitation of the measure bifiltration is that it can be difficult to
compute. Hence, we now focus on another, easier to compute bifiltration. LetX be a smooth compact
d-submanifold of RD (d ≤ D), and µ be a measure on X with density f with respect to the uniform
measure on X . We now define the bifiltration FC,f with:

FC,f
u,v := Čech(u) ∩ f−1([v,∞)) =

{
x ∈ RD : d(x,X) ≤ u, f(x) ≥ v

}
.

Moreover, given a set Xn of n points sampled from µ, we also consider the approximate bifiltration
FC,fn , where fn : X → R is an estimation of f (such as, e.g., a kernel density estimator). Let M and
Mn be the multiparameter persistence modules associated to FC,f and FC,fn . Then, the stability of
the interleaving distance [27, Theorem 5.3] ensures:

dI(M,Mn) ≤ ∥f − fn∥∞ ∨ dH(X,Xn),

where dH stands for the Hausdorff distance. Moreover, concentration inequalities for the Hausdorff
distance and kernel density estimators are also available in the literature (see [16, Theorem 4] and
[23, Corollary 15]). More precisely, when the density f is L-Lipschitz and bounded from above and
from below, i.e., when 0 < fmin ≤ f ≤ fmax <∞, and when fn is a kernel density estimator of f
with associated kernel k, one has:

E(dH(X,Xn)) ≲

(
log n

n

) 1
d

and E(∥f − fn∥∞) ≲ Lhn +

√
log(1/hn)

nhdn
,

where hn is the (adaptive) bandwidth of the kernel k . In particular, if µ is a measure comparable
to the uniform measure of a d = 2-manifold, then for any stationary sequence hn := h > 0, and
considering a Gaussian kernel k, one has:

δE
[
∥V∞,δ(M)− V∞,δ(Mn)∥∞

]
≲

√
log n

n
+ Lh. (8)

Empirical convergence rates. Now that we have established the theoretical convergence rates of
S-CDRs, we estimate and validate them empirically on data sets. We will first study a synthetic data
set and then a real data set of point clouds obtained with immunohistochemistry. We also illustrate
how the stability of S-CDRs (stated in Theorem 1) is critical for obtaining such convergence in
Appendix B, where we show that our main competitor, the multiparameter persistence image [11], is
unstable and thus cannot achieve convergence, both theoretically and numerically.

Annulus with non-uniform density. In this synthetic example, we generate an annulus of 25,000 points
in R2 with a non-uniform density, displayed in Figure 3a. Then, we compute the bifiltration FC,fn

corresponding to the Alpha filtration and the sublevel set filtration of a kernel density estimator, with

7



bandwidth parameter h = 0.1, on the complete Alpha simplicial complex. Finally, we compute
the candidate decompositions and associated S-CDRs of the associated multiparameter module (in
homology dimension 1), and their normalized distances to the target representation, using either ∥·∥22
or ∥·∥∞. The corresponding distances for various number of sample points are displayed in log-log
plots in Figure 3b. One can see that the empirical rate is roughly consistent with the theoretical one
(−1/2 for ∥·∥∞ and −1 for ∥·∥2), even when p ̸=∞ (in which case our S-CDRs are stable for dB
but theoretically not for dI).

(a) Scatter plot of the synthetic
data set colored by a kernel den-
sity estimator.

(b) (left) ∥·∥22 and (right) ∥·∥∞ between the target representation and
the empirical one w.r.t. n.

Figure 3: Convergence rate of synthetic data set.

Immunohistochemistry data. In our second experiment, we consider a point cloud representing cells,
taken from [40], see Figure 4a. These cells are given with biological markers, which are typically
used to assess, e.g., cell types and functions. In this experiment, we first triangulate the point cloud by
placing a 100×100 grid on top of it. Then, we filter this grid using the sublevel set filtrations of kernel
density estimators (with Gaussian kernel and bandwidth h = 1) associated to the CD8 and CD68
biological markers for immune cells. Finally, we compute the associated candidate decompositions
of the multiparameter modules in homology dimensions 0 and 1, and we compute and concatenate
their corresponding S-CDRs. Similar to the previous experiment, the theoretical convergence rate of
our representations is upper bounded by the one for kernel density estimators with the∞-norm. The
convergence rates are displayed in Figure 4b. Again, one can see that the observed and theoretical
convergence rates are consistent.

(a) Point cloud of cells colored by
CD8 (red) and CD68 (black).

(b) (left) ∥·∥22 and (right) ∥·∥∞ distances between the target representa-
tion and the empirical one w.r.t. n.

Figure 4: Convergence rate of immunohistochemistry data set.

4.2 Classification

In this section, we illustrate the efficiency of S-CDRs by using them for classification purposes. We
show that they perform comparably or better than existing topological representations as well as
standard baselines on several UCR benchmark data sets, graph data sets, and on the immunohisto-
chemistry data set. Concerning UCR, we work with point clouds obtained from time delay embedding
applied on the UCR time series, following the procedure of [10], and we produce S-CDRs with
bifiltrations coming from combining either the Rips filtration with sublevel sets of a kernel density
estimator (as in Section 4.1), or the Alpha filtration with the sublevel sets of the distance-to-measure
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with parameterm = 0.1 (as in [10] and the baselines therein). Concerning graph datasets, we produce
S-CDRs by filtering the graphs themselves directly using Heat Kernel Signature with parameter
t = 10, Ricci curvature and node degree (similarly to what is used in the literature [11, 22, 45]).
In all tasks, every point cloud or graph has a label (corresponding to the type of its cells in the

immunohistochemistry data set, and to pre-defined labels in the UCR and graph data sets), and our
goal is to check whether we can predict these labels by training classifiers on the corresponding
S-CDRs.

For point clouds (immunohistochemistry and UCR), we compare the performances of our S-CDRs
(evaluated on a 50 × 50 grid) to the one of the multiparameter persistence landscape (MPL) [39],
kernel (MPK) [17] and images (MPI) [10], as well as their single-parameter counterparts (P-L, P-I
and PSS-K) 3. We also compare to some non-topological baselines: we used the standard Ripley
function evaluated on 100 evenly spaced samples in [0, 1] for the immunohistochemistry data set, and
k-NN classifiers with three difference distances for the UCR time series (denoted by B1, B2, B3), as
suggested in [19]. For graps, we compare S-CDRs to the Euler characteristic based multiparameter
persistence methods ECP, RT, and HTn, introduced in [22]. In order to also include non topological
baselines, we also compare against the state-of-the-art graph classification methods RetGK [44],
FGSD [37], and GIN [43].

All scores on the immunohistochemistry data set were computed after cross-validating a few classifiers
(random forests, support vector machines and xgboost, with their default Scikit-Learn parameters)
with 5 folds. For the time series data, our accuracy scores were obtained after also cross-validating
the following S-CDR parameters; p ∈ {0, 1}, op ∈ {sum,mean}, δ ∈ {0.01, 0.1, 0.5, 1}, h ∈
{0.1, 0.5, 1, 1.5} with homology dimensions 0 and 1, and the following bandwidth parameters for
kernel density esimation: b ∈ {0.1%, 1%, 10%, 20%, 30%}, which are percentages of the diameters
of the point clouds. with 5 folds. Parameters and results on graph data sets were cross-validated
and averaged over 10 folds, following the pipelines of [22]. All results can be found in Table 1
(immunohistochemistry and UCR—UCR acronyms are provided in Appendix I) and Table 2. Bold
indicates best accuracy and underline indicates best accuracy among topological methods. Note that
there are no variances for UCR data sets since pre-defined train/test splits were provided. One can
see that S-CDR almost always outperform topological baselines and are comparable to the standard
baselines on the UCR benchmarks. Most notably, S-CDRs radically outperform the standard baseline
and competing topological measures on the immunohistochemistry data set. For graph data sets,
results are competitive with both topological and non-topological baselines; S-CDRs perform even
slightly better on COX2.

Dataset B1 B2 B3 PSS-K P-I P-L MPK MPL MPI S-CDR
(Rips + KDE)

S-CDR
(Alpha + DTM)

DPOAG 62.6 62.6 77.0 76.9 69.8 70.5 67.6 70.5 71.9 71.9 71.9
DPOC 71.7 72.5 71.7 47.5 67.4 66.3 74.6 69.6 71.7 73.8 74.6
PPOAG 78.5 78.5 80.5 75.9 82.0 78.0 78.0 78.5 81.0 81.9 84.9
PPOC 80.8 79.0 78.4 78.4 72.2 72.5 78.7 78.7 81.8 79.4 83.2
PPTW 70.7 75.6 75.6 61.4 72.2 73.7 79.5 73.2 76.1 75.6 75.1
IPD 95.5 95.5 95.0 - 64.7 61.1 80.7 78.6 71.9 81.2 77.2
GP 91.3 91.3 90.7 90.6 84.7 80.0 88.7 94.0 90.7 96.3 92.7

GPAS 89.9 96.5 91.8 - 84.5 87.0 93.0 85.1 90.5 88.0 93.7
GPMVF 97.5 97.5 99.7 - 88.3 87.3 96.8 88.3 95.9 95.3 95.9
PC 93.3 92.2 87.8 - 83.4 76.7 85.6 84.4 86.7 93.1 90.0

Ripley P MPL S-CDR
Immuno 67.2(2.3) 60.7(4.2) 65.3(3.0) 91.4(1.6)

Table 1: Accuracy scores for UCR and immunohistochemistry data sets.

3Note that the sizes of the point clouds in the immunohistochemistry data set were too large for MPK and
MPI using the code provided in https://github.com/MathieuCarriere/multipers, and that all three
single-parameter representations had roughly the same performance, so we only display one, denoted as P.
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Dataset RetGK FGSD GIN ECP RT HT nD S-CDR
COX2 81.4(0.6) - - 80.3(0.4) 79.7(0.4) 80.6(0.4) 82.0(0.2)
DHFR 81.5(0.9) - - 82.0(0.4) 81.3(0.4) 83.1(0.5) 81.6(0.2)

IMDB-B 71.9(1.0) 73.6 75.1(5.1) 73.3(0.4) 74.0(0.5) 74.7(0.5) 73.5(0.2)
IMDB-M 47.7(0.3) 52.4 52.3(2.8) 48.7(0.4) 50.2(0.4) 49.9(0.4) 49.5(0.2)
MUTAG 90.3(1.1) 92.1 90(8.8) 90.0(0.8) 87.3(0.6) 89.4(0.7) 88.4(0.3)

PROTEINS 78.0(0.3) 73.4 76.2(2.6) 75.0(0.3) 75.4(0.4) 75.4(0.4) 73.9(0.2)

Table 2: Accuracy scores on graph datasets.

4.3 Running time comparisons

In this section, we provide running time comparisons between S-CDRs and the MPI and MPL
representations, in which we measured the time needed to compute all the train and test S-CDRs
and baselines of the previous data sets, averaged over the folds (again, note that since UCR data
sets already provide the train/test splits, there is no variance in the corresponding results). All
representations are evaluated on grids of sizes 50× 50 and 100× 100, and we provide the maximum
running time over p ∈ {0, 1,∞}. All computations were done using a Ryzen 4800 laptop CPU, with
16GB of RAM. We provide results in Table 3, where it can be seen that S-CDRs (computed on the
pinched annulus and immunohistochemistry data sets) can be computed much faster than the other
representations, by a factor of at least 25. As for UCR data sets, which contain only small time series
and corresponding point clouds, it can still be observed that S-CDRs can be computed faster than
the baselines. Interestingly, this sparse and fast implementation based on corners can also be used
to improve on the running time of the multiparameter persistence landscapes (MPL), as one can
see from Algorithm 4 in Appendix H (which retrieves the persistence barcode of a multiparameter
persistence module along a given line; this is enough to compute the MPL) and from Table 3.

Annulus Immuno PPTW GP
Ours (S-CDR) 250ms(2ms) 275ms(9.8ms) 33.0ms(3.99ms) 45.6ms(5.74ms)
Ours (MPL) 36.9ms(0.8ms) 65.9ms(0.9ms) 22.4ms(2.15ms) 31.8ms(2.95ms)

MPI (50) 6.43s(25ms) 5.67s(23.3ms) 65.2ms(12.9ms) 208ms(16.3ms)
MPL (50) 17s(39ms) 15.6s(14ms) 154ms(27.9ms) 630ms(30.0ms)
MPI (100) 13.1s(125ms) 11.65s(7.9ms) 289ms(75.0ms) 1.69s(77.7ms)
MPL (100) 35s(193ms) 31.3s(23.3ms) 843ms(200ms) 4.43s(186ms)

Table 3: Running times for S-CDRs and competitors.

5 Conclusion

In this article, we study the general question of representing decompositions of multiparameter persis-
tence modules in Topological Data Analysis. We first introduce T-CDR: a general template framework
including specific representations (called S-CDR) that are provably stable. Our experiments show
that S-CDR is superior to the state of the art.

Limitations. (1) Our current T-CDR parameter selection is currently done through cross-validation,
which can be very time consuming and limits the number of parameters to choose from. (2) Our
classification experiments were mostly illustrative. In particular, it would be useful to investigate
more thoroughly on the influence of the T-CDR and S-CDR parameters, as well as the number
of filtrations, on the classification scores. (3) In order to generate finite-dimensional vectors, we
evaluated T-CDR and S-CDR on finite grids, which limited their discriminative powers when fine
grids were too costly to compute.

Future work. (1) Since T-CDR is similar to the PersLay framework of single parameter persis-
tence [11] and since, in this work, each of the framework parameter was optimized by a neural
network, it is thus natural to investigate whether one can optimize T-CDR parameters in a data-driven
way as well, so as to be able to avoid cross-validation. (2) In our numerical applications, we focused
on representations computed off of MMA decompositions [29]. In the future, we plan to investigate
whether working with other decomposition methods [1, 7] lead to better numerical performance when
combined with our representation framework.
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A Limitation of single-parameter persistent homology

A standard example of single-parameter filtration for point clouds, called the Čech filtration, is to
consider f : x 7→ dP (x) := minp∈P ∥x− p∥, where P is a point cloud. The sublevel sets of this
function are balls centered on the points in P with growing radii, and the corresponding persistence
barcode contains the topological features formed by P . See Figure 5a. When the radius of the balls is
small, they form three connected components (upper left), identified as the three long red bars in
the barcode (lower). When this radius is moderate, a cycle is formed (upper middle), identified as
the long blue bar in the barcode (lower). Finally, when the radius is large, the balls cover the whole
Euclidean plane, and no topological features are left, except for one connected component, that never
dies (upper right).

(a) Persistence barcode obtained from growing balls
on a clean point cloud.

(b) Persistence barcode obtained from growing balls
on a noisy point cloud.

Figure 5: Example of persistence barcode construction for point clouds using Čech filtration. In the
middle sublevel sets, we highlight the topological cycles in blue.

The limitation of the Čech filtration alone for noisy point cloud is illustrated in Figure 5b, where
only feature scale is used, and the presence of three outlier points messes up the persistence barcode
entirely, since they induce the appearance of two cycles instead of one. In order to remedy this, one
could remove points whose density is smaller than a given threshold, and then process the trimmed
point cloud as before, but this requires using an arbitrary threshold choice to decide which points
should be considered outliers or not.

B Unstability of MPI

In this section, we provide theoretical and experimental evidence that the multiparameter persistence
image (MPI) [10], which is another decomposition-based representation from the literature, suffers
from lack of stability as it does not enjoy guarantees such as the ones of S-CDRs (see Theorem 1).
There are two main sources of instability in the MPI. The first one is due to the discretization induced
by the lines: since it is obtained by placing Gaussian functions on top of slices of the intervals in the
decompositions, if the Gaussian bandwidth σ (see previous work, third item in Section 3.1) is too
small w.r.t. the distance between consecutive lines in L, discretization effects can arise, as illustrated
in Figure 6, in which the intervals do not appear as continuous shapes.

The second problem comes from the weight function: it is easy to build decompositions that are
close in the interleaving distance, yet whose interval volumes are very different. See [5, Figure 15],
and Figure 7, in which we show a family of modules Mϵ (left) made of a single interval built from
connecting two squares with a bridge of diameter ϵ > 0. We also show the distances between Mϵ

and the limit module M made of two squares with no bridge, through their MPI and S-CDRs (right).
Even though the interleaving distance between Mϵ and M goes to zero as ϵ goes to zero, the distances
between MPI representations converge to a positive constant, whereas the distances between S-CDRs
goes effectively to zero.

We also show that this lack of stability can even prevent convergence. In Figure 8, we repeated the
setup of Section 4.1 on a synthetic data set sampled from a noisy annulus in the Euclidean plane. As
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Figure 6: Examples of numerical artifacts occurring when the number of lines is too small w.r.t. the
Gaussian bandwidth, for two different families of lines.

Figure 7: Example of unstability of MPI.

one can clearly see, convergence does not happen for MPI as the Euclidean distance to the limit MPI
representation associated to the maximal number of subsample points suddenly drops to zero after an
erratic behavior, while S-CDRs exhibit a gradual decrease in agreement with Theorem 1.

Figure 8: Example of lack of convergence for MPI.

C Simplicial homology

In this section, we recall the basics of simplicial homology with coefficients in Z/2Z, which we use
for practical computations. A more detailed presentation can be found in [30, Chapter 1]. The basic
bricks of simplicial (persistent) homology are simplicial complexes, which are combinatorial models
of topological spaces that can be stored and processed numerically.

Definition 3. Given a set of points Xn := {x1, . . . , xn} sampled in a topological space X , an
abstract simplicial complex built from Xn is a family S(Xn) of subsets of Xn such that:
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• if τ ∈ S(Xn) and σ ⊆ τ , then σ ∈ S(Xn), and

• if σ, τ ∈ S(Xn), then either σ ∩ τ ∈ S(Xn) or σ ∩ τ = ∅.

Each element σ ∈ S(Xn) is called a simplex of S(Xn), and the dimension of a simplex is defined as
dim(σ) := card(σ)− 1. Simplices of dimension 0 are called vertices.

An important linear operator on simplices is the so-called boundary operator. Roughly speaking, it
turns a simplex into the chain of its faces, where a chain is a formal sum of simplices. The set of
chains has a group structure, denoted by Z∗(S(Xn)).

Definition 4. Given a simplex σ := [xi1 , . . . , xip ], the boundary operator ∂ is defined as

∂(σ) :=

p∑
j=1

[xi1 , . . . , xij−1
, xij+1

, . . . , xip ].

In other words, it is the chain constructed from σ by removing one vertex at a time. This operator ∂
can then be extended straightforwardly to chains by linearity.

Given a simplicial complex, a topological feature is defined as a cycle, i.e., a chain such that each
simplex in its boundary appears an even number of times. In order to formalize this property, we
remove a simplex in a chain every time it appears twice, and we let a cycle be a chain c s.t. ∂(c) = 0.

Now, one can easily check that ∂ ◦ ∂(c) = 0 for any chain c, i.e., the boundary of a cycle is always a
cycle. Hence, one wants to exclude cycles that are boundaries, since they correspond somehow to
trivial cycles. Again, such boundaries form a group that is denoted by B∗(S(Xn)).

Definition 5. The homology group in dimension k is the quotient group

Hk(S(Xn)) :=
Zk(S(Xn)

Bk(S(Xn))
.

In other words, it is the group (one can actually show it is a vector space) of cycles made of simplices
of dimension k that are not boundaries.

See Figure 9 for an illustration of these definitions. Finally, given a filtered simplicial complex (with
a filtration defined as in Section 2), computing its associated persistence barcode using the simplicial
homology functor can be done with several softwares, such as, e.g., Gudhi [36].

v2

v3

v4

v5

v6

v7

v0

v1

Figure 9: Example of simplicial complex S built from eight points, and made of eight vertices
(simplices of dimension 0), fourteen edges (simplices of dimension 1) and six triangles (simplices
of dimension 2). The purple path is a cycle; indeed ∂([v1, v7] + [v7, v4] + [v4, v6] + [v6, v1]) =
[v1]+ [v7]+ [v7]+ [v4]+ [v4]+ [v6]+ [v6]+ [v1] = 0 since every vertex appears twice. Similarly, the
blue path is a cycle as well. However, both paths represent the same topological feature, in the sense
that they belong to the same equivalence class of H1(S), since their sum is exactly the boundary
of the 2-chain comprised of the six triangles of the complex, i.e., they differ only by a trivial cycle.
Hence, the dimension of H1(S) is 1.

16



D Modules, interleaving and bottleneck distances

In this section, we provide a more formalized version of multiparameter persistence modules and
their associated distances. Strictly speaking, multiparameter persistence modules are nothing but a
parametrized family of vector spaces obtained from applying the homology functor to a multifiltration,
as explained in Section 2.
Definition 6. A multiparameter persistence module M is a family of vector spaces {M(α) : α ∈ Rn},
together with linear transformations, also called transition maps, φβ

α : M(α)→ M(β) for any α ≤ β
(where ≤ denotes the partial order of Rn), that satisfy φγ

α = φγ
β ◦ φβ

α for any α ≤ β ≤ γ.

Of particular interest are interval modules, since they are easier to work with.
Definition 7. An interval module M is a multiparameter persistence module such that:

• its dimension is at most 1: dim(M(α)) ≤ 1 for any α ∈ Rn, and

• its support supp(M) := {α ∈ Rn : dim(M(α)) = 1} is an interval of Rn,

where an interval of Rn is a subset of I ⊆ Rn that satisfy:

• (convexity) if p, q ∈ I and p ≤ r ≤ q then r ∈ I , and

• (connectivity) if p, q ∈ I , then there exists a finite sequence r1, r2, . . . , rm ∈ I, for some
m ∈ N, such that p ∼ r1 ∼ r2 ∼ · · · ∼ rm ∼ q, where ∼ can be either ≤ or ≥.

In the main body of this article, we study representations for candidate decompositions of modules,
i.e., direct sums4 of interval modules that approximate the original modules.

Multiparameter persistence modules can be compared with the interleaving distance [27].
Definition 8 (Interleaving distance). Given ε > 0, two multiparameter persistence modules M
and M′ are ε-interleaved if there exist two morphisms f : M → M′

ε and g : M′ → Mε such that
g·+ε ◦ f· = φ·+2ε

· and f·+ε ◦ g· = ψ·+2ε
· , where Mε is the shifted module {M(x + ε)}x∈Rn , ε =

(ε, . . . , ε) ∈ Rn, and φ and ψ are the transition maps of M and M′ respectively. The interleaving
distance between two multiparameter persistence modules M and M′ is then defined as dI(M,M′) :=
inf {ε ≥ 0 : M and M′ are ε-interleaved} .

The main property of this distance is that it is stable for multi-filtrations that are obtained from the
sublevel sets of functions. More precisely, given two continuous functions f, g : S → Rn defined on
a simplicial complex S, let M(f),M(g) denote the multiparameter persistence modules obtained from
the corresponding multifiltrations {Sf

x := {σ ∈ S : f(σ) ≤ x}}x∈Rn and {Sg
x := {σ ∈ S : g(σ) ≤

x}}x∈Rn . Then, one has [27, Theorem 5.3]:

dI(M(f),M(g)) ≤ ∥f − g∥∞ . (9)

Another usual distance is the bottleneck distance [5, Section 2.3]. Intuitively, it relies on decompo-
sitions of the modules into direct sums of indecomposable summands5 (which are not necessarily
intervals), and is defined as the largest interleaving distance between summands that are matched
under some matching.
Definition 9 (Bottleneck distance). Given two multisets A and B, µ : A ̸→ B is called a matching
if there exist A′ ⊆ A and B′ ⊆ B such that µ : A′ → B′ is a bijection. The subset A′ := coim(µ)
(resp. B′ := im(µ)) is called the coimage (resp. image) of µ.

Let M ∼=
⊕

i∈I Mi and M′ ∼=
⊕

j∈J M
′
j be two multiparameter persistence modules. Given ε ≥ 0,

the modules M and M′ are ε-matched if there exists a matching µ : I ̸→ J such that Mi and M ′
µ(i)

are ε-interleaved for all i ∈ coim(µ), and Mi (resp. M ′
j) is ε-interleaved with the null module 0 for

all i ∈ I\coim(µ) (resp. j ∈ J \im(µ)).

The bottleneck distance between two multiparameter persistence modules M and M′ is then defined as
dB(M,M′) := inf {ε ≥ 0 : M and M′ are ε-matched} .

4Since multiparameter persistence modules are essentially families of vector spaces connected by transition
maps, they admit direct sum decompositions, pretty much like usual vector spaces do.

5Recall that a module M is indecomposable if M ∼= A⊕B ⇒ M ≃ A or M ≃ B .
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Since a matching between the decompositions of two multiparameter persistence modules induces an
interleaving between the modules themselves, it follows that dI ≤ dB. Note also that dB can actually
be arbitrarily larger than dI, as showcased in [5, Section 9].

E The fibered barcode and its properties

Definition 10. Let n ∈ N∗ and F = {F (1), . . . , F (n)} be a multifiltration on a topological space X .
Let e, b ∈ Rn, and ℓe,b : R→ Rn be the line in Rn defined with ℓe,b(t) = t·e+b, that is, ℓe,b is the line
of direction e passing through b. Let Fe,b : R→ P(X) defined with Fe,b(t) =

⋂n
i=1 F

(i)([ℓe,b(t)]i),
where [·]i denotes the i-th coordinate. Then, each Fe,b is a single-parameter filtration and has a
corresponding persistence barcode Be,b. The set B(F ) = {Be,b : e, b ∈ Rn} is called the fibered
barcode of F .

The two following lemmas from [25] describe two useful properties of the fibered barcode.
Lemma 1 (Lemma 1 in [25]). Let e, b ∈ Rn and ℓe,b be the corresponding line. Let ê = mini[e]i.
Let F, F ′ be two multi-filtrations, M,M′ be the corresponding persistence modules and Be,b ∈ B(F )
and B′

e,b ∈ B(F ′) be the corresponding barcodes in the fibered barcodes of F and F ′. Then, the
following stability property holds:

dB(Be,b, B
′
e,b) ≤

dI(M,M′)

ê
. (10)

Lemma 2 (Lemma 2 in [25]). Let e, e′, b, b′ ∈ Rn and ℓe,b, ℓe′,b′ be the corresponding lines. Let ê =
mini[e]i and ê′ = mini[e

′]i. Let F be a multi-filtration, M be the corresponding persistence module
and Be,b, Be′,b′ ∈ B(F ) be the corresponding barcodes in the fibered barcode of F . Assume M is
decomposable M = ⊕m

i=1Mi, and let K > 0 such that Mi ⊆ B∞(0,K) := {x ∈ Rn : ∥x∥∞ ≤ K}
for all i ∈ J1,mK. Then, the following stability property holds:

dB(Be,b, Be′,b′) ≤
(K +max{∥b∥∞ , ∥b′∥∞}) · ∥e− e′∥∞ + ∥b− b′∥∞

ê · ê′
. (11)

F Proof of Theorem 1

Our proof is based on several lemmas. In the first one, we focus on the S-CDR weight function w as
defined in Definition 2.
Lemma 3. Let M and M ′ be two interval modules with compact support. Then, one has

dI(M, 0) =
1

2
sup

b,d∈supp(M)

min
j

(dj − bj)+ = w(M). (12)

Furthermore, one has the equality

|w(M)− w(M ′)| ≤ dI(M,M ′). (13)

Proof. We first show Equation (12) with two inequalities.

First inequality: ≤ Let M be an interval module. If dI(M, 0) = 0, then the inequality is trivial,
so we now assume that dI(M, 0) > 0. Let δ > 0 such that δ < dI(M, 0). By definition of dI, the
identity morphism M →M2δ cannot be factorized by 0. This implies the existence of some b ∈ Rn

such that rank(M(b)→M(b+ 2δ)) > 0; in particular, b, b+ 2δ ∈ supp (M). Making δ converge
to dI(M, 0) yields the desired inequality.

Second inequality: ≥ Let (Kn)n∈N be a compact interval exhaustion of supp (M), and bn, dn ∈ Kn

be two points that achieve the maximum in

1

2
sup

b,d∈Kn

min
j

(dj − bj)+.

Now, by functoriality of persistence modules, we can assume without loss of generality that bn
and dn are on the same diagonal line (indeed, if they are not, it is possible to transform dn into
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d̃n such that bn and d̃n are on the same diagonal line and also achieve the supremum). Thus,
rank(M(bn)→M(dn)) > 0, and dI(M, 0) ≥ 1

2 ∥dn − bn∥∞. Taking the limit over n ∈ N leads to
the desired inequality.

Inequality (13) follows directly from the triangle inequality applied on dI.

In the following lemma, we rewrite volumes of interval module supports using interleaving distances.

Lemma 4. Let M be an interval module, and R ⊆ Rn be a compact rectangle, with n ≥ 2. Then,
one has:

vol (supp (M) ∩R) = 2

∫
{y∈Rn:yn=0}

dI

(
M

∣∣
ly∩R

, 0
)
dλn−1(y)

where ly is the diagonal line crossing y, and λn−1 denotes the Lebesgue measure in Rn−1.

Proof. Using the change of variables yi = xi − xn and t = xn (which has a trivial Jacobian) yields
the following inequalities:

vol(supp (M) ∩R) =
∫
supp(M)∩R

dλn(x)

=

∫
{y∈Rn:yn=0}

∫
t∈R

1supp(M)∩R(y + t) dtdλn−1(y)

=

∫
{y∈Rn:yn=0}

diam∥·∥∞
(supp (M) ∩ ly ∩R) dλn−1(y)

where ly is the diagonal line passing through y. Now, since M is an interval module, one has
diam∥·∥∞

(supp (M) ∩ ly ∩R) = 2dI(M
∣∣
ly∩R

, 0), which concludes the proof.

In the following proposition, we provide stability bounds for single interval modules.
Proposition 1. If M and M ′ are two interval modules, then for any δ > 0 and S-CDR parameter ϕδ
in Definition 2, one has:

1. 0 ≤ ϕδ(M)(x) ≤ w(M)
δ ∧ 1, for any x ∈ Rn,

2. ∥ϕδ(M)− ϕδ(M ′)∥∞ ≤ 2(dI(M,M ′) ∧ δ)/δ.

Proof. Claim 1. is a simple consequence of Equation (12).

Claim 2. for S-CDR parameter (a) is a simple consequence of the triangle inequality.

Let us prove Claim 2. for (b). Let x ∈ Rn and δ > 0. One has:

|ϕδ(M)(x)− ϕδ(M ′)(x)| ≤ 2

(2δ)n

∫
{y:yn=0}

|dI
(
M

∣∣
ly∩Rx,δ

, 0
)
− dI

(
M ′∣∣

ly∩Rx,δ
, 0
)
|dλn−1(y)

≤ 2

(2δ)n

∫
{y:yn=0}

dI

(
M

∣∣
ly∩Rx,δ

,M ′∣∣
ly∩Rx,δ

)
dλn−1(y)

≤ 2(dI(M,M ′) ∧ δ)/δ,
where the first inequality comes from Lemma 4, the second inequality is an application of the triangle
inequality, and the third inequality comes from Lemma 1.

Finally, let us prove Claim 2. for (c). Let x ∈ Rn and δ > 0. Let b ≤ d ∈ supp (M)∩Rx,δ . Let also
γ > 0. Then, using Lemma 4, one has:

1

(2δ)n
vol(supp (M) ∩Rb,d) =

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
∣∣
Rb,d∩ly

, 0) dλn−1(y)

≤ 2

δ
γ +

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
∣∣
Rb+γ,d−γ∩ly

, 0) dλn−1(y),
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using the convention Ra,b = ∅ if a ̸≤ b. Now, set γ := dI(M
∣∣
Rx,δ

,M ′
∣∣
Rx,δ

). If b + γ or

d− γ ̸∈ supp (M ′) then dI(M
∣∣
Rx,δ

,M ′
∣∣
Rx,δ

) = γ > dI(M,M ′) which is impossible. Thus,

1

(2δ)n
vol(Rb,d) ≤ 2dI(M

∣∣
Rx,δ

,M ′∣∣
Rx,δ

)/δ

+ sup
a,c∈Rx,δ∩supp(M ′)

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
∣∣
Ra,c∩ly

, 0) dλn−1(y)

= 2dI(M
∣∣
Rx,δ

,M ′∣∣
Rx,δ

)/δ + ϕδ(M
′)(x)

Finally, taking the supremum on b ≤ d ∈ supp (M) ∩Rx,δ yields

ϕδ(M)(x)− ϕδ(M ′)(x) ≤ 2dI(M
∣∣
Rx,δ

,M ′∣∣
Rx,δ

)/δ ≤ 2 (dI(M,M ′) ∧ δ) /δ.

The desired inequality follows by symmetry on M and M ′.

Equipped with these results, we can finally prove Theorem 1.

Proof. Theorem 1.

Let M = ⊕m
i=1Mi and M′ = ⊕m′

j=1M
′
j be two modules that are decomposable into interval modules

and x ∈ Rn.

Inequality 5. To simplify notations, we define the following: wi := w(Mi), ϕi,x := ϕδ(Mi)(x) and
w′

j := w(M ′
j), ϕ

′
j,x := ϕδ(x,M

′
j). Let us also assume without loss of generality that the indices

are consistent with a matching achieving the bottleneck distance. In other words, the bottleneck
distance is achieved for a matching that matches Mi with M ′

i for every i (up to adding 0 modules
in the decompositions of M and M′ so that m = m′). Finally, assume without loss of generality that∑

i w
′
i ≥

∑
i wi. Then, one has:

|V1,δ(M)(x)− V1,δ(M′)(x)| =

∣∣∣∣∣ 1∑
i wi

∑
i

wiϕi,x −
1∑
i w

′
i

∑
i

w′
iϕ

′
i,x

∣∣∣∣∣
≤ 1∑

i w
′
i

∣∣∣∣∣∑
i

wiϕi,x −
∑
i

w′
iϕ

′
i,x

∣∣∣∣∣+
∣∣∣∣ 1∑

i wi
− 1∑

i w
′
i

∣∣∣∣
∣∣∣∣∣∑

i

wiϕi,x

∣∣∣∣∣ .
Now, for any index i, since dI(Mi,M

′
i) ≤ dB(M,M′) and |wi − w′

i| ≤ dI(Mi,M
′
i) ≤ dB(M,M′) by

Lemma 3, Proposition 1 ensures that:

|wiϕi,x − w′
iϕ

′
i,x| ≤ |wi − w′

i|ϕi,x + w′
i|ϕi,x − ϕ′i,x| ≤ 2(wi + w′

i)(dB(M,M
′) ∧ δ)/δ

and ∣∣∣∣ 1∑
i wi
− 1∑

i w
′
i

∣∣∣∣ ≤ 1∑
i w

′
i

∣∣∣∣∑i w
′
i − wi∑
i wi

∣∣∣∣ ≤ mdB(M,M′)

(
∑

i w
′
i)(

∑
i wi)

.

Finally,

|V1,δ(M)(x)− V1,δ(M′)(x)| ≤
[∑

i wi + w′
i∑

i w
′
i

+

∑
i wi

1
m (

∑
i wi)(

∑
i w

′
i)

]
2(dB(M,M

′) ∧ δ)/δ

≤
[
4 +

2

C

]
(dB(M,M

′) ∧ δ)/δ.

Inequality 4 can be proved using the proof of Inequality 5 by replacing every wi by 1.
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Inequality 6. Let us prove the inequality for (b). Let R := Rx−δ,x+δ . One has:
V∞,δ(M)(x)− V∞,δ(M

′)(x) =

sup
i

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(Mi

∣∣
ly∩R

, 0) dλn−1(y)

− sup
j

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
′
j

∣∣
ly∩R

, 0) dλn−1(y)

(for any index j) ≤ sup
i

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(Mi

∣∣
ly∩R

, 0)− dI(M ′
j

∣∣
ly∩R

, 0) dλn−1(y)

≤ 2

(2δ)n

∫
{y∈Rn:yn=0}

sup
i

inf
j
dI(Mi

∣∣
ly∩R

,M ′
j

∣∣
ly∩R

) dλn−1(y)

Now, as the interleaving distance is equal to the bottleneck distance for single parameter persistence
[15, Theorem 5.14], one has:
sup
i

inf
j
dI(Mi

∣∣
ly∩R

,M ′
j

∣∣
ly∩R

) ≤ dB(M
∣∣
ly∩R

,M′∣∣
ly∩R

) = dI(M
∣∣
ly∩R

,M′∣∣
ly∩R

) ≤ dI(M,M′) ∧ δ

which leads to the desired inequality. The proofs for (a) and (c) follow the same lines (upper bound
the suprema in the right hand term with either infima or appropriate choices in order to reduce to the
single parameter case).

G An additional stability theorem

In this section, we define a new S-CDR, with a slightly different type of upper bound. It relies on the
fibered barcode introduced in Appendix E. We also slightly abuse notations and use Mi to denote
both an interval module and its support.
Proposition 2. Let M ≃ ⊕m

i=1Mi be a multiparameter persistence module that can be decomposed
into interval modules. Let σ > 0, and let 0 ≤ δ ≤ δ(M), where
δ(M) := inf{δ ≥ 0 : ΓM achieves dB(Be∆,x, Be∆,x+δu) for all x,u s.t. ∥u∥∞ = 1, ⟨e∆,u⟩ = 0},
where ΓM is the partial matching induced by the decomposition of M. LetN (x, σ) denote the function

N (x, σ) :

{
Rn → R

p 7→ exp
(
−∥p−x∥2

2σ2

) and let

Vδ,σ(M) :

{
Rn → R
x 7→ max1≤i≤m maxf∈C(x,δ,Mi) ∥N (x, σ) · f∥1

(14)

where C(x, δ,Mi) stands for the set of interval functions from Rn to {0, 1} whose support is Tδ(ℓ) ∩
Mi, where ℓ is a connecting component of im(ℓe∆,x) ∩Mi and e∆ = [1, . . . , 1] ∈ Rn, and where
Tδ(ℓ) is the δ-thickening of the line L(ℓ) induced by ℓ: Tδ(ℓ) = {x ∈ Rk : ∥x, L(ℓ)∥∞ ≤ δ}.
Then, Vδ,σ satisfies the following stability property:

∥Vδ,σ(M)− Vδ,σ(M′)∥∞ ≤ (
√
πσ)n ·

√
2n+1δn−1dI(M,M′) + Cn(δ), (15)

where Cn(·) is a continuous function such that Cn(δ)→ 0 when δ → 0.

Proof. Let M = ⊕m
i=1Mi and M′ = ⊕m′

j=1M
′
j be two persistence modules that are decomposable into

intervals, let x ∈ Rk and let 0 ≤ δ ≤ min{δ(M), δ(M′)}.

Notations. We first introduce some notations. Let N (resp. N ′) be the number of bars in Be∆,x

(resp. B′
e∆,x), and assume without loss of generality that N ≤ N ′. Let Γ be the partial matching

achieving dB(Be∆,x, B
′
e∆,x). Let N1 (resp. N2) be the number of bars in Be∆,x that are matched

(resp. not matched) to a bar in B′
e∆,x under Γ, so that N = N1 +N2. Finally, note that Be∆,x =

{ℓ : ∃i such that ℓ ∈ C(im(ℓe∆,x) ∩Mi) and im(ℓe∆,x) ∩Mi ̸= ∅}, where C stands for the set
of connected components (and similarly for B′

e∆,x), and let FΓ : Be∆,x → B′
e∆,x be a function

defined on all bars of Be∆,x that coincides with Γ on the N1 bars of Be∆,x that have an associated
bar in B′

e∆,x, and that maps the N2 remaining bars of Be∆,x to some arbitrary bars in the (N ′ −N1)
remaining bars of B′

e∆,x.
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A reformulation of the problem with vectors. We now derive vectors that allow to reformulate
the problem in a useful way. Let V̂ be the sorted vector of dimension N containing all weights
∥N (x, σ) · f∥1, where f is the interval function whose support is Tδ(ℓ) ∩Mi for some Mi, where
ℓ ∈ Be∆,x is a connected component of im(ℓe∆,x) ∩Mi. Now, let V̂ ′ be the vector of dimension N ′

obtained by concatenating the two following vectors:

• the vector V̂ ′
1 of dimension N whose ith coordinate is ∥N (x, σ) · f ′∥1, where f ′ is the

interval function whose support is Tδ(ℓ′) ∩M ′
j for some M ′

j , and ℓ′ ∈ B′
e∆,x is the image

under Γ of the bar ℓ ∈ Be∆,x corresponding to the ith coordinate of V̂ , i.e., ℓ′ = FΓ(ℓ)

where [V̂ ]i = ∥N (x, σ) · f∥1 and f is the interval function whose support is Tδ(ℓ) ∩Mi0

for some Mi0 . In other words, V̂ ′
1 is the (not necessarily sorted) vector of weights computed

on the bars of B′
e∆,x that are images (under the partial matching Γ achieving the bottleneck

distance) of the bars of Be∆,x that were used to generate the (sorted) vector V̂ .

• the vector V̂ ′
2 of dimension (N ′ −N) whose jth coordinate is ∥N (x, σ) · f ′∥1, where f ′ is

an interval function whose support is Tδ(ℓ′) ∩M ′
j for some M ′

j , and ℓ′ ∈ B′
e∆,x satisfies

ℓ′ ̸∈ im(FΓ). In other words, V̂ ′
2 is the vector of weights computed on the bars of B′

e∆,x (in
an arbitrary order) that are not images of bars of Be∆,x under Γ.

Finally, we let V be the vector of dimension N ′ obtained by filling V̂ (whose dimension is N ≤ N ′)
with null values until its dimension becomes N ′, and we let V ′ = sort(V̂ ′) be the vector obtained
after sorting the coordinates of V̂ ′. Observe that:

|Vδ,σ(M)(x)− Vδ,σ(M′)(x)| = [V − V ′]1 = [V − sort(V̂ ′)]1 (16)

An upper bound. We now upper bound
∥∥∥V − V̂ ′

∥∥∥
∞

. Let q ∈ J1, N ′K. Then, one has [V ]q =

∥N (x, σ) · f∥1, where f is an interval function whose support is Tδ(ℓ) ∩Mi for some Mi with
ℓ ∈ Be∆,x if q ≤ N and ℓ = ∅ otherwise; and similarly [V̂ ′]q = ∥N (x, σ) · f ′∥1, where f ′ is an
interval function whose support is Tδ(ℓ′) ∩M ′

j for some M ′
j with ℓ′ ∈ B′

e∆,x. Thus, one has:

[V − V̂ ′]q = | ∥N (x, σ) · f∥1 − ∥N (x, σ) · f ′∥1 |
≤ ∥N (x, σ) · f −N (x, σ) · f ′∥1 by the reverse triangle inequality

= ∥N (x, σ) · (f − f ′)∥1 by linearity

≤ ∥N (x, σ)∥2 · ∥f − f
′∥2 by Hölder’s inequality

= (
√
πσ)k · ∥f − f ′∥2

Since (f − f ′) is an interval function whose support is (Tδ(ℓ) ∩ Mi)△(Tδ(ℓ
′) ∩ M ′

j), one has

∥f − f ′∥2 =
√
|(Tδ(ℓ) ∩Mi)△(Tδ(ℓ′) ∩M ′

j)|. Given a segment ℓ and a vector u, we let ℓu denote
the segment u+ ℓ, and we let ℓu denote the (infinite) line induced by ℓu. More precisely:

∥f − f ′∥22 = |(Tδ(ℓ) ∩Mi)△(Tδ(ℓ
′) ∩M ′

j)|

= |
⋃
u

(ℓu ∩Mi)△
⋃
u

((ℓ′)u ∩M ′
j)|

where u ranges over the vectors such that ∥u∥∞ ≤ δ, ⟨u, e∆⟩ = 0

≤
∫
u

|(ℓu ∩Mi)△((ℓ′)u ∩M ′
j)|du

≤
∫
u

|(ℓu ∩Mi)△(ℓ ∩Mi)u|+ |(ℓ ∩Mi)u△(ℓ′ ∩M ′
j)u|+ |(ℓ′ ∩M ′

j)u△((ℓ′)u ∩M ′
j)|du

≤
∫
u

4dB(Be∆,x, Be∆,x+u) + 4dB(Be∆,x, B
′
e∆,x) + 4dB(B

′
e∆,x, B

′
e∆,x+u)du (17)

≤ 4

∫
u

∥u∥∞ + dI(M,M
′) + ∥u∥∞ du by Lemma 1 and 2
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Inequality (17) comes from the fact that the symmetric difference between two bars (in two different
barcodes) that are both matched (or unmatched) by the optimal partial matching is upper bounded
by four times the bottleneck distance between the barcodes, and that (by assumption) the partial
matchings achieving dB(Be∆,x, Be∆,x+u) and dB(B′

e∆,x, B
′
e∆,x+u) are induced by M and M′.

Conclusion. Finally, one has

|Vδ,σ(M)(x)− Vδ,σ(M′)(x)| = [V − V ′]1 = [V − sort(V̂ ′)]1 from Equation (16)

≤ ∥V − V ′∥∞
≤ (
√
πσ)k ·

√
2n+1δn−1dI(M,M′) + Cn(δ), (18)

with Cn(δ) = 8
∫
u
∥u∥∞ du→ 0 when δ → 0. Inequality (18) comes from the fact that any upper

bound for the norm of the difference between a given vector V̂ ′ and a sorted vector V , is also an
upper bound for the norm of the difference between the sorted version V ′ of V̂ ′ and the same vector
V (see Lemma 3.9 in [12]).

While the stability constant is not upper bounded by δ, Vδ,σ is more difficult to compute than the
S-CDRs presented in Definition 2.

H Pseudo-code for S-CDRs

In this section, we briefly present the pseudo-code that we use to compute S-CDRs. Our code is based
on implicit descriptions of the candidate decompositions of multiparameter persistence modules
(which are the inputs of S-CDRs) through their so-called birth and death corners. These corners can
be obtained with, e.g., the public softwares MMA [29] and Rivet [28].

In order to compute our S-CDRs, we implement the following procedures:

1. Given an interval module M and a rectangle R ⊂ Rn, compute the restriction M
∣∣
R

.

2. Given an interval module M (or M
∣∣
R

), compute dI(M, 0). This allows to compute our
weight function and first interval representation in Definition 2.

3. Given an interval module restricted to a rectangle, compute the volume of the biggest rectan-
gle in the support of this module. This allows to compute the third interval representation in
Definition 2.

For the first point, Algorithm 1 works by "pushing" the corners of the interval on the given rectangle
in order to obtain the updated corners.
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Algorithm 1: Restriction of an interval module to a rectangle
Data: birth and death corners of an interval module M , rectangle R = {z ∈ Rn : m ≤ z ≤M}
Result: new_interval_corners, the birth and death corners of M

∣∣
R

.
for interval = {interval_birth_corners, interval_death_corners} in M do

new_birth_list← [ ];
for b in interval_birth_corners do

if b ≤M then
b′ = {max(bi,mi) for i ∈ J1, nK};
Append b′ to new_birth_list;

end
end
new_death_list← [ ];
for d in interval_death_corners do

if d ≥ m then
d′ = {min(di,Mi) for i ∈ J1, nK};
Append d′ to new_death_list;

end
end
new_interval_corners← [new_birth_list, new_death_list];

end

For the second point, we proved in Lemma 3 that our S-CDR weight function is equal to dI(M, 0)
and has a closed-form formula with corners, that we implement in Algorithm 2.

Algorithm 2: S-CDR weight function
Data: birth and death corners of an interval module M
Result: distance, the interleaving distance dI(M, 0).
distance← 0;
for b in M_birth_corners do

for d in M_death_corners do
distance← max

(
result, 12 mini(di − bi)+

)
;

end
end

The third point also has a closed-form formula with corners, leading to Algorithm 3.

Algorithm 3: S-CDR interval representation
Data: birth and death corners of an interval module M
Result: volume, the volume of the biggest rectangle fitting in supp (M)
volume← 0;
for b in M_birth_corners do

for d in M_death_corners do
volume← max (result,Πi(di − bi)+);

end
end

Finally, we show how to get the persistence barcodes corresponding to slices of an interval module
solely from the corners of the interval module.
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Algorithm 4: Restriction of an interval module to a line
Data: birth and death corners of an interval module M , a diagonal line l
Result: barcode, the persistence barcode associated to M

∣∣
l

barcode← [ ];
y ← an arbitrary point in l;
for interval = {interval_birth_corners, interval_death_corners} in M do

birth← y + 1×minb∈interval_birth_corners maxi bi − yi;
death← y + 1×maxd∈interval_death_corners mini di − yi;
bar← [birth,death];
Append bar to barcode;

end

I UCR acronyms

Dataset Acronym
DistalPhalanxOutlineAgeGroup DPOAG
DistalPhalanxOutlineCorrect DPOC

ProximalPhalanxOutlineAgeGroup PPOAG
ProximalPhalanxOutlineCorrect PPOC

ProximalPhalanxTW PPTW
ItalyPowerDemand IPD

GunPoint GP
GunPointAgeSpan GPAS

GunPointMaleVersusFemale GPMVF
PowerCons PC
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