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1 Datasets and Evaluation1

RD-Suite releases the teacher scores and retrieved document ids (on MSMARCO and NQ) for each2

query, to hide the potentially expensive teacher model inference and retrieval from ranking distillation3

research (D4) while guaranteeing fairness (D5, Q3).4

1.1 Link5

RD-Suite is hosted at https://github.com/tensorflow/ranking/tree/master/6

tensorflow_ranking/datasets/rd_suite.7

1.2 Dataset format8

The website hosts the datasets in TREC format, which is standard in information retrieval literature.9

More specifically we have two files for each dataset. For trec_run.txt, each role looks like:10

1101282 Q0 8007514 1 3.5860724449157715 msmarco_dev_teacher11

Q0, 1, and msmarco_dev_teacher are just placeholder strings, which existing (public) TREC tools12

require, though they do not provide any meaningful information. The other three fields are query_id,13

document_id, and teacher_score.14

For trec_qrel.txt, each row looks like15

1101282 0 8007514 116

0 is again a placeholder meaning nothing. The last number is the label field. public TREC tools will17

automatically join these two files using the query and document ids.18

1.3 Evaluation Colab19

We provide an evaluation colab to produce different ranking metrics using the same criterion in the20

paper. The evaluation colab is implemented using open-source operation, one should be easy to run21

the script end-to-end by following the instructions.22

1.4 Dataset sources23

All datasets in RD-Suite are popular public datasets. For text ranking, we use MSMARCO [1] and24

NQ [3], two of the most popular datasets for text ranking. Both datasets have large document corpus25

and require a retrieval stage before ranking. We leverage recent neural retrievers [4] to retrieve the26

top 50 candidates for each query.27

For tabular ranking, we use Web30K [5] and Istella [2], two of the most popular datasets for28

tabular ranking. Retrieval is not needed for these datasets. They can be easily accessed via29
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TF dataset (https://www.tensorflow.org/datasets/catalog/mslr_web and https://www.30

tensorflow.org/datasets/catalog/istella).31

1.5 Teacher score distribution32

We report statistics of the teacher scores for each dataset and configuration in Tbl. 1. We can see the33

teacher scores can have wide ranges in different configurations.34

Table 1: The statistics of teacher ranker scores for each configuration used in RD-Suite. The 3rd row
has Dataset as NQ and Teacher as MSMARCO, and corresponds to the distillation transfer setting.
x% means percentile.

Dataset Teacher Mean Std Min 25% 50% 75% Max

MSMARCO MSMARCO -4.07 5.43 -20.09 -8.12 -3.41 0.40 6.36
NQ NQ -24.74 22.27 -63.08 -43.32 -28.84 -9.18 84.36
NQ MSMARCO -7.29 5.10 -19.30 -11.23 -7.48 -3.54 5.82
Web30K Web30K -0.33 0.91 -8.57 -0.66 -0.17 0.04 11.86
Istella Istella -17.26 15.84 -181.54 -21.87 -12.38 -7.56 18.63

2 Additional Experimental Results35

2.1 Sensitivity on the loss weight α36

We examine ranking performance sensitivity on the loss weight α. For clarity, we pick MSE, PairMSE,37

Softmax (one from pointwise, pairwise, and listwise losses each), and RankDistil. We plot MRR@1038

on MSMARCO and NQ ranking distillation tasks (T1) with varying α in Fig. 1. In general the39

comparative performance is robust among methods. It is interesting to see different behaviors of40

different methods. For example, RankDistil seems to suffer without relevance information (α = 0)41

but can still help when both relevance and distillation objectives are used. In most cases, best42

performance is achieved when both objectives are active, except for Softmax on MSMARCO.43
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Figure 1: The ranking distillation performance on MSMARCO and NQ (T1) for different methods
after varying the loss weights α.

2.2 Performance with Softmax transformation on and off44

In section The Role of Softmax Transformation, we briefly discussed whether Softmax teacher score45

transformation was selected in the parameter sweep for each method. Here we provide more details.46

The results on T1 are reported in Tbl. 2. We do not include RD and PairLog since they are indifferent47

to transformations. We do not include RankDistil either because Softmax transformation is always48

on by design. As we discussed in main text, different methods show different behaviors, and the49

difference made by turning teacher score transformation on and off can be huge.50

2.3 Discussion on Large Language Model Rankers51

Recently there is a strong interest in ranking models using Large Language Models (LLMs) [6]. This52

line of research is highly relevant to ranking distillation as the giant LLMs rankers usually need to53
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Table 2: Ranking distillation results on the MSMARCO and NQ datasets, measured by MRR@10,
with Softmax teacher score transformation on and off. Rank means the actual rank (if this configura-
tion is actually selected) or the hypothetical rank (if this configuration were selected) of the method
in Table 2. Higher numbers (those were selected) are bolded.

Models MSMARCO NQ
On Off On Off

MRR@10 Rank MRR@10 Rank MRR@10 Rank MRR@10 Rank

MSE 40.03 8 42.06 4 54.87 8 58.49 3
PairMSE 40.03 8 42.27 3 55.61 7 58.34 5
GumbelNDCG 41.85 6 40.30 7 57.90 6 53.06 8
Softmax 42.37 1 40.03 8 59.08 1 52.67 8
LambdaLoss 42.30 2 41.87 6 58.36 4 56.52 7

be distilled to a servable ranker. One future direction is to extend RD-Suite to consider LLM based54

ranking teachers. We believe there are several unique research directions on ranking distillation meets55

LLMs. For example, given the strong performance and generality of LLM rankers and the rapid56

development of powerful LLMs, it could be a good timing to revisit the false negative issue on certain57

datasets (e.g., MSMARCO).58
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