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Abstract

In video analysis, an important challenge is insufficient annotated data due to the
rare occurrence of the critical patterns, and we need to provide discriminative
frame-level representation with limited annotation in some applications. Multiple
Instance Learning (MIL) is suitable for this scenario. However, many MIL models
paid attention to analyzing the relationships between instance representations and
aggregating them, but neglecting the critical information from the MIL problem
itself, which causes difficultly achieving ideal instance-level performance compared
with the supervised model. To address this issue, we propose the Regressor-Guided
MIL network (RGMIL), which effectively produces discriminative instance-level
representations in a multi-classification scenario. In the proposed method, we make
full use of the regressor through our newly introduced aggregator, Regressor-
Guided Pooling (RGP). RGP focuses on simulating the correct inference process of
humans while facing similar problems without introducing new parameters, and the
MIL problem can be accurately described through the critical information from the
regressor in our method. In experiments, RGP shows dominance on more than 20
MIL benchmark datasets, with the average bag-level classification accuracy close to
1. We also perform a series of comprehensive experiments on the MMNIST dataset.
Experimental results illustrate that our aggregator outperforms existing methods
under different challenging circumstances. Instance-level predictions are even
possible under the guidance of RGP information table in a long sequence. RGMIL
also presents comparable instance-level performance with S-O-T-A supervised
models in complicated applications. Statistical results demonstrate the assumption
that a MIL model can compete with a supervised model at the instance level, as
long as a structure that accurately describes the MIL problem is provided. The
codes are available on https://github.com/LMBDA-design/RGMIL.

1 Introduction

Multiple-instance learning (MIL) [3][33] is commonly used for the binary classification tasks in
which instances lack individual labels and are grouped into bags. In MIL, a bag is labeled as positive
if it contains at least one positive instance, otherwise, it is negative. Its goal is to learn the patterns
that characterize positive bags. The models of MIL have been widely applied in various applications,
such as anomaly detection [16, 13], pathology diagnosis [24, 4], etc.

At present, many deep MIL models adopt attention-based modules [12] to solve the MIL problems,
which aggregate instance-level representations in various ways. Such approaches work during the
stage of aggregating instance-level representations and perform well when the given instance-level
representations are with good discriminability. However, in some applications, such as facial pain
estimation, we face a scenario where there are no discriminative instance-level representations or the
instance-level representations need to be explicitly learned. For them, simply learning the aggregation
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process is far from enough when the instance-level performance is important. Most of the current
methods fail to achieve satisfying instance-level performance in this case.

To address this issue, we propose a new model of multiple-instance learning based on the guidance of
regressor, named as Regressor-Guided MIL network (RGMIL), which achieves promising instance-
level performance. Compared with existing methods, our contributions are listed as follows:

• RGMIL can address the general multi-class classification problem in MIL scenarios by
learning discriminative instance-level features. RGMIL accurately describes the MIL
problem through the newly introduced aggregator, Regressor-Guided Pooling (RGP). With a
accurate description of the MIL problem, we can fully transfer the learning process into the
direct learning of instance-level representations, without the requirement for increasingly
complicated aggregation processes.

• RGMIL demonstrates outstanding performance and expected functionality on public datasets,
showcasing the essential role of RGP. Indicators show that RGP performs well under
different challenging circumstances, and instance-level predictions are even possible with
the guidance of RGP information in a long sequence. Experimental results validate that
the regressor guidance possibly brings similar instance-level performance to a supervised
model.

• Excepted the simulated data (MMNIST), the effectiveness of RGMIL is also validated on a
real pain estimation dataset (UNBC). Specifically, from the perspective of pain estimation,
RGMIL can be as effective as supervised learning models.

2 Related Works

2.1 The General Models of MIL

In the classical case of Multi-Instance Learning (MIL), a binary-classification problem is built and
solved based on bags, and each bag is formed by several instances. In general, a bag is defined as
X = [x1,x2, . . . ,xt], and its label is formulated by

Y = max
k

{yk} , k ∈ [1, t]. (1)

Each bag includes t instances (Xi ∈ RD×t) and one label (Yi ∈ {0, 1}). The task of MIL is to
recognize what type of instances-level representation in the bag Xi could make the bag label Yi

be one (positive). Classical MIL also assumes that there are neither ordering nor dependency of
instances within a bag. There are two main architectures in the frameworks of MIL, shown as follows.

Architecture 1: Instance-level Backbone + Regressor + Aggregator

In this architecture, the MIL model generally takes an instance-level backbone to obtain the instance-
level representations (fs = [f1, ..., ft]) which involves each instance in a bag (X = [x1, ..,xt]), where
fi is corresponding to xi, fi ∈ Rc, i ∈ [1, t]. Then, the instance-level representations (fs) are fed
into the regressor to predict the score or possibility (pi) of categories for each instance. Finally, the
aggregator is used to aggregate the predicted scores (P = [p1, ...,pt]) and obtain the final bag-score
pbag. Suppose ρ express the aggregation function, the aggregator is formulated as pbag = ρ (P),
and ρ should follow the permutation-invariant restriction:

ρ (P) = ρ (PT) , (2)
where T expresses a arbitrary permutation matrix with appropriate dimension. In this architecture,
the max pooling and average pooling are two most widely used aggregators. The max pooling (MXP)
takes the highest value in P to produce pbag, while the average pooling takes the average value in P,
and both of them comply with Equation (2).

Architecture 2.: Instance-level Backbone + Aggregator + Regressor

In this architecture, the MIL model produces the bag-level representation (F) directly via a back-
bone+aggregator structure. For example, in a image classification problem, a 2D-CNN backbone is
used to get instance-level representation matrix fs ∈ Rc×t and then aggregator ρ is applied to get
the bag-level representation F = ρ (fs). The function ρ still satisfy Equation (2). Then, each bag is
predicted by the regressor based on the bag-level representation F ∈ Rc. In this architecture, the
most widely used aggregators are attention-based pooling (ABP) [12], gated attention-based pooling
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(G-ABP) [12], and their variations [15][30][32]. Compared with Architecture 1, Wang et al.[27]
advocates Architecture 2 which produce the bag-level representation F, since they often perform
better in terms of the bag-level classification.

2.2 Attention-based Pooling Series

At present, Attention-Based Pooling (ABP) and its variations are widely adopted in many mainstream
methods of MIL. Generally, ABP is formulated as

F =

t∑
k=1

akfk, ak =
exp

{
w⊤ tanh

(
Vf⊤k

)}∑t
j=1 exp

{
w⊤ tanh

(
Vf⊤j

)} (3)

where w ∈ Rt and V ∈ Rt×c are both parameters to be trained. fk ∈ Rc is the kth instance
representation in a bag. ABP provides the bag representation by weighted sum of representations
of different instances. Moreover, many variations of ABP has been proposed, such as Dual-Stream
MIL(2021) [15], DTFD-MIL(2022) [30], GAMIL(2023) [32]. Dual-Stream MIL [15] (DSP) used
MXP and an MXP-guided ABP as two streams to aggregate representations and obtained the S-O-T-A
level performance on MIL benchmarks. DTFD-MIL [30] divided a bag into several pseudo-bags
when the bag size was really large and applied ABP on every pseudo-bag twice in a two-stage manner.
They still follow the main idea of ABP: weights should rely on representations.

In many applications, such as the whole slide image based pathology diagnosis [9], there is no strong
requirement for sufficiently discriminative instance-level representations. The model is provided with
bags with the bag length t over large, and is asked to make accurate bag-level predictions. Most of
the current models like ABP variations introduced above would only focus in learning of aggregation
process or limit the analysis process between instances given the instance-level representations fixed.

2.3 Pain or No Pain

In some real-world applications, it is excepted to obtain the accurate instance-level prediction or
representation, such as pain estimation. Most studies of pain estimation based on facial expression
[6],[7],[18] rely on the Facial Action Coding System (FACS) [5], which is a rating system that
distinguishes 44 facial movements, called Action Units (AU). Painful expressions are associated with
some of these AUs. Earlier, Prkachin et al. [19] developed the Prkachin and Solomon Pain Intensity
(PSPI) index based on these AUs, which is a 17-point scale reflecting the degree of pain, where 0
indicates no pain and 16 indicates extreme pain. Whereas, due to the imbalanced distribution of the
PSPI index, researchers redefined the pain intensity based on the PSPI index. In general, the pain
intensity are divided into four categories based PSPI: no pain (0), mild pain (1 to 2), severe pain (3
to 5), and extreme pain (the above 5). At present, there are some existing MIL algorithms, such as
MI-DORF[22], MIR[31], but it is difficult for a pure MIL algorithm to provide ideal instance-level
performance when compared with supervised deep models.

3 The Proposed Method

3.1 Assumptions

In this paper, we design the model (RGML) with the guidance of two assumptions shown as follows.

Assumption 1 It is realistic for a MIL model to achieve the performance similar to a supervised
model at the instance level, as long as it has a well-designed architecture.

When facing MIL problems, we start from the Architecture 2 given in section 2.1. Compared to the
fully supervised model, a new component aggregator is added. Here we would not focus on whether
the data is in the form of bags or instances. From the perspective of bags, it is still fully supervised.
But, it is simply another model with an additional component, and the problem to be solved is not
even ambiguous. When a MIL problem is treated in this way, there is reason to make this assumption.

Assumption 2 Performance bottleneck of the current MIL model is the aggregator function ρ.
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Figure 1: Overview of Regressor-Guided multiple-instance Learning Network (RGMIL)

Compared to the supervised learning, the available information obtained by MIL is limited. Therefore,
the instance-level performance limit of MIL should be equivalent to the fully supervised mode. Two
main architectures introduced above differ from the fully supervised ones only on the presence of the
aggregator. We argue that the inability of MIL to achieve the performance of the fully supervised
mode is due to the limitation of the learning stage of the new component (aggregator).

So what makes a good aggregator? We assume that if we could describe the key differences between
a MIL problem and a supervised problem in ρ well enough, we could get an accurate MIL model.
Recall what CNN does. Early in computer vision, representations were provided as fixed to train a
pure regressor. CNN took a step forward by its accurate description, which makes it possible to train
the backbone+regressor at the same time, and get even better performance. The main task of the new
component ρ would also be to provide accurate description.

3.2 Introduction of RGMIL

RGMIL is proposed for a multi-classification scenario, as shown in Fig.1. It is achieved by N
branches, each of which learns to distinguish one corresponding non-negative class (with non-zero
label). Thus N -branch RGMIL is suitable to solve an (N + 1)-class classification problem. To solve
the pain estimation problem, it requires only a sequence of frames and the highest pain intensity level
(0 to N , discrete) of the sequence as input.

During each training step, a bag composed of t images is fed into the model, denoted as X =
[x1,x2, . . . ,xt],X ∈ RD×t, with a bag label Ybag ∈ [0, N ] which indicates the max instance
label in the bag. We convert Ybag to a special vector Y, similar to but not the same as one-hot
encoding:

Y ∈ RN ;Yi =

{
1, iff Ybag = i
0, otherwise (i ∈ [1, N ]). (4)

Then, the backbone will produce the instance-level representations fs = [f1, f2, . . . , ft] ∈ Rc×t

corresponding to each image in this bag. The representations fs are fed into all the branches at
the same time. For each branch Bi, we have a corresponding linear regressor with parameters
Wi ∈ Rc×2 and bi ∈ R2(i ∈ [1, N ]). Parameters in both the RGP and the regressor will be NOT
involved in the gradient descent. To be clear, since our goal is to produce discriminative instance-level
representations, only the backbone component (instance-level feature extractor) needs to be trained.
For the RGP and regressor components, they are just a means of describing the MIL problem. They
describe the MIL problem through specific structures, and as long as the structure is clear enough to
provide an accurate description, it would be sufficient.

In the branch Bi, given the instance-level representation matrix fs ∈ Rc×t, the RGP works as follows:

H = fs⊤;Pk = W⊤
i Hk + bi; (k ∈ [1, t],P ∈ Rt×2) (5)

P̂ = P⊤;p = P̂2 − P̂1; (p ∈ Rt) (6)

w =
p− E[p]√
Var(p) + ϵ

; (w ∈ Rt, ϵ → 0) (7)

α⃗ ∈ Rt; α⃗k =
exp(wk)∑t
j=1 exp(wj)

; (α⃗k ∈ (0, 1)) (8)

4



Fi =

t∑
k=1

α⃗kHk; (Fi ∈ Rc) (9)

Instance classification logits are provided in Equation 5. Difference values are then calculated to
indicate the importance of instances in Equation 6. Normalization like Equation 7 is adopted to
prevent the gradient vanishing in Equation 8. Use Equation 8 and 9 to get the final bag representation
Fi. In a MIL problem, we obey the inference rule that if there are positive instance-level patterns,
the bag is positive. That is to say, there is consistency between the discrimination of critical instance-
level patterns and the bag representation. We argue that this is a key element to describe a MIL
problem, and we use a shared regressor to express this consistency between them. In summary,
the RGP asks for the current result of the regressor, and always tries to aggregate the instance
representations based on the current judgments made by the regressor, then dynamically adjusts
current judgments in the training process —— Much like what humans would do.

Return to the process of forward propagation. For the branch Bi, given the bag representation
Fi ∈ Rc , the corresponding regressor parameters will be used again to produce the prediction
Zi ∈ R2, which will be used to calculate the loss Li in this branch(i ∈ [1, N ]) , formulated as
follows:

Zi = W⊤
i Fi + bi; (Z

i ∈ R2) (10)

L =

N∑
i=1

Li; where Li =

 − log

{
exp(Zi

1+Yi
)

exp(Zi
1)+exp(Zi

2)

}
iff i ⩾ Ybag

0 otherwise
(11)

The loss value Li on the corresponding branch Bi is calculated as shown above. For a MIL problem,
the bag label Ybag is the maximum instance label in the bag. Based on this, we give the vector Y
that describes the presence of instances with different labels in this bag. Yi = 0 means no instance
with label i presented in this bag, while Yi = 1 means presence. Since Ybag is the maximum
instance label , some bits of Y would be reliable. For Yi where i ∈ [Ybag,N], it gives the correct
ground truth, while for Yi where i ∈ [1,Ybag − 1] it is not reliable. So for the branch Bi where
i ∈ [1,Ybag − 1], it is meaningless to calculate the loss since it may contain false information. We
set the loss on these branches to 0, as shown in Equation 11. For other reliable branches, we calculate
the cross-entropy loss respectively. The total loss L is the sum of the loss values on all branches.

During test, for the branch Bi, after we get the output Zi, we can get the indicator vector Ŷ:

Ŷ ∈ RN ; Ŷi = argmax
k

{
Zi
k

}
− 1; (k ∈ {1, 2}) (12)

The branch Bi finally produce a number of 0 or 1 based on Zi. When we get the number of 1 in the
branch Bi that indicates the presence of the corresponding label i, we say the model predicted that
there are instances with the label i in the bag. Hence, the indicator vector Ŷ describes whether the
bag contains different labels. And at last,

Ỹ = argmax
k

{
Ŷk

}
s.t. Ŷk = 1; k ∈ [1, N ]

(13)

When different branches output 1, we take the highest branch, because we need to know the maximum
label in the bag as shown in Equation 13. Above equations produce the final result Ỹ, Ỹ ∈ [0,N].

4 Experiments and Analyses

4.1 Bag-Level Performance: Evaluation on Benchmarks

With the branch number N = 1, five classic MIL benchmark datasets [3][1] are used to evaluate the
bag-level performance, and each provides the samples in form of bags, where the bag size t varies
widely, ranging from 1 to 1044. Experimental results are shown in Table 1. It is a comprehensive
test for the model under different conditions. From Table 1, it is obviously seen that our method
(RGMIL) obtains the highest accuracies for five datasets, especially for FOX dataset. More benchmark
performances are shown in Section B of our supplementary.
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Methods MUSK1 MUSK2 FOX TIGER ELEPHANT
MI-Net(2018) 0.887± 0.041 0.859± 0.046 0.622± 0.038 0.830± 0.032 0.862± 0.034
ABMIL(2018) 0.892± 0.040 0.858± 0.048 0.615± 0.043 0.839± 0.022 0.868± 0.022

Gated-ABMIL(2018) 0.900± 0.050 0.863± 0.042 0.603± 0.029 0.845± 0.018 0.857± 0.027
DP-MINN(2018) 0.907± 0.036 0.926± 0.043 0.655± 0.052 0.897± 0.028 0.894± 0.030
Non-Local(2018) 0.921± 0.017 0.910± 0.009 0.703± 0.035 0.857± 0.013 0.876± 0.011

Asymmetric Non-Local(2019) 0.912± 0.009 0.822± 0.084 0.643± 0.012 0.733± 0.068 0.883± 0.014
Dual-Stream MIL(2021)* 0.932± 0.023 0.930± 0.020 0.729± 0.018 0.869± 0.008 0.925± 0.007

BDR(2022) 0.926± 0.079 0.905± 0.092 0.629± 0.110 0.869± 0.066 0.908± 0.054
GAMIL(2023) 0.933± 0.065 0.910± 0.085 0.685± 0.093 0.894± 0.070 0.915± 0.058

RGMIL 0.968± 0.060 0.985± 0.039 0.954± 0.048 0.951± 0.045 0.965± 0.032

Table 1: The classification accuracy (mean ± std) of RGMIL and compared methods on five benchmark
datasets (*for S-O-T-A method). The results are the average of five independent experiments with a
10-fold cross-validation. Statistics collected from MI-Net[27], ABMIL[12], Gated-ABMIL [12], DP-
MINN[29], Non-Local[26], Asymmetric Non-Local[34], DSMIL[15], BDR[11] and GAMIL[32].

4.2 A Challenging Dataset for Demonstration

Since pain estimation is generally regarded as the classification problems with four classes, we need
to set the branch N to 3. It indicates that we construct a 3-branch RGMIL to meet the upcoming
challenges. Due to the extremely imbalance of label distribution, the pain data is not really a clear and
flexible enough choice to present a demonstration. Thus, we constructed a flexible MIL dataset based
on MNIST [14] and denoted it as MMNIST. In MMNIST, samples are presented in form of bags. A
bag is composed of t grayscale images (1,28,28) selected from the MNIST dataset. With N = 3, we
take the images with label 0 to 3 to form MMNIST bags. The bag label is assigned based on the label
with the largest count. The number of training bags for each bag label is approximately 1000. The
labels in the bag are uniformly distributed. For the test, we use a fixed number of 10000 test images.

4.3 Evaluation Methods on the Aggregator ρ

We introduce the error rate ϕ, and the distance γ to describe the aggregator ρ to figure out how good
the aggregator ρ describes a MIL problem.

To explain the indicators, we still need to start from a classical MIL binary-classification scenario.
Given the instance representations fs = [f1, f2, . . . , ft] ∈ Rc×t, the aggregator ρ, the classifier with
linear transformation A and the sigmoid function sigm(. . .) as the activate function, with the total N
bags with the bag label Y ∈ [0, 1] in the dataset. Suppose it be currently in the training phase, the
training phase is equivalent to a process that we try to find the solution to the system of N equations,
each with the following formula:

sigm(Aρ(fs)) = Y;Y ∈ {0, 1} (14)

Here, we assume that aggregator ρ can be represented in a special formula:

ρ(fs) =

t∑
k=1

αkfk; s.t.
t∑

k=1

αk = 1; αk ≥ 0 (15)

Then, we can transform the Equation 14 into the following formula:

Z =

t∑
k=1

αk · (Afk) =

{
+∞; if the given bag label is 1
−∞; otherwise

(16)

The detailed explanation of this transform are given in Section A of our supplementary. Then, we
consider the training process when we apply the gradient-descent algorithm here. Suppose the
corresponding weight αk of the kth instance in a positive bag be larger than others’, the absolute
value of ∂Z

∂(Afk)
would be larger than others’. Here we think the instance produces a large gradient.

We recognize that Afk is the classification score of the corresponding kth instance. What’s more, if
its instance label is consistent with the bag label, we call it a critical instance. Given αk greater than 0,
the gradient-descent algorithm would just push the parameters Afk to the right direction to produce
a correct instance-level prediction. The overall gradient of the parameters in the network will be the
sum of different gradients produced by different instances in this bag. In conclusion, if an instance in
a bag has a large corresponding weight α and it is a critical instance, then Equation 16 would be
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Aggregators 10/1 16/1 32/1 48/1 64 / 1 512 / 1 1/1(Full)
MXP 93.47 88.71 81.17 73.02 68.11 65.37
ABP 92.18 89.69 90.84 86.59 89.47 42.21
G-ABP 91.47 89.13 87.47 84.38 86.93 36.99 97.75
DSP 58.54 58.12 58.47 56.13 52.43 42.23
RGP 98.25 97.55 96.37 95.12 94.50 87.28

Table 2: Instance-level Average Test Accuracies for the first 30 Training Epochs on MMNIST. The
first row contains the different modes (M/N), and 1/1(Full) expresses the fully supervised case.

(a)  ↑ (10/1) (b)  ↑ (64/1) (c)  ↑ (512/1) (d)  φ ↓ (512/1) (e)  γ ↓ (512/1)

Figure 2: Detailed metric fluctuations of Table 2 under different modes (M/N).

likely to produce a right gradient-descent direction to achieve good performance on instance-level
prediction, and that is what we want. If the gradient-descent direction of the equation is beneficial
for the instance-level prediction, we call it a right equation, otherwise an erroneous equation. The
error rate ϕ is the percentage of erroneous equations to the total number N of equations. ϕ describes
the degree of deviation during the training phase. When ϕ > 0, gradient-descent accumulates errors
in the wrong direction. In practice, we approximate ϕ by following steps: In a positive bag, we
calculate the values of α for critical instances and take the average as β1, and the average value of
α for non-critical instances is denoted as β2. If β1 is smaller than β2, we consider this to be an
erroneous equation. We approximate ϕ by taking the ratio of the number of erroneous equations
and the total number of positive bags, and ϕ is evaluated once for every training epoch. For a fully
supervised model, it is easy to imagine that its ϕ is 0 from the beginning of train phase, since every
equation would produce a right gradient-descent direction. We argue that with a good aggregator ρ,
ϕ is supposed to be close enough to 0, to be similar enough to a fully supervised model.

Another indicator is the distance γ. Still imagine what human will do when facing the MIL problem.
To predict whether the bag is positive, we usually make decisions only based on the several critical
instances in this bag. A well-designed ρ should simulate this characteristic. γ is a metric that
measures the difference in weights between critical instances in a positive bag, which describes how
similar it is to human decision-making. In practice,we calculate γ as follows: For every positive bag,
we calculate the difference between the maximum and minimum weights α of the corresponding
critical instances, and take the average of these differences for all positive bags, denoted as γ. γ
is also evaluated once for every training epoch. For the max pooling, it is easy to imagine that its
distance γ could reach 1, but we do not want the distance to be large. We argue that with a good
aggregator ρ, γ is supposed to be close enough to 0, to be similar enough to how we make decisions.

Notice that ϕ and γ are introduced to describe the training process for demonstration, thus all
evaluated on the training set. Instance labels are known just when we evaluate ϕ and γ.

4.4 Instance-Level Evaluation on MMNIST: Why RGP Works?

When an experiment with the training bag size (M) and the testing bag size (N) is implemented,
we define it as the M/N mode. We give comprehensive experiments in different modes to test
the aggregators in Table 2. For some detail fluctuations see Fig. 2. Results show that RGP shows
dominance in different scenarios. As shown in Fig. 2 (d) and (e) under mode 512/1, with the
faster convergence of ϕ to 0 and the closer value of γ to 0, RGP exhibits a working logic that is
sufficiently similar to human thinking process and a supervised algorithm. For RGP, it represents the
consistency between instances and bags through specific structure, so that the learning process can
be easily transferred to instance level. Attention-based thoughts are valuable, but simply applying
more complicated attention modules to analyze the problem, as done in ABP series, may not lead to
breakthrough results on instance level because indicators show that they struggle to catch the points.
Another critical fact we found is that if we switch training bag size to 1, which would bring a fully
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Branch Ŷ
3 0.0151 0.0351 0.4981 0.1183 0.0220 0.0357 0.0365 0.0601 0.0313 0.1497 1
2 0.0132 0.0577 0.0841 0.3062 0.0185 0.1959 0.1977 0.0299 0.069 0.0360 1
1 0.0375 0.1889 0.0879 0.0479 0.0401 0.0793 0.0889 0.2001 0.1732 0.0563 1

Table 3: RGP Information Table (64/10) on MMNIST. The first row contains the 10 images of the
test bag. Indicator vector Ŷ is the model output. The remaining contents are all the weights of
corresponding instances from all the branches.

supervised scenario, the performance is lower than RGP in 10/1 mode. This clearly tells that RGP is
not a performance bottleneck, it would enhance the model when the bag size is relatively small.
With the guidance of regressor, RGP describes the MIL problem accurately, which make it similar
enough to a supervised case to produce discriminative instance-level representations from backbone.
We can also say that, when the number of data records(can be in form of bags or instances) is given
fixed, MIL model with RGP could even outperform a fully supervised one under some condition. That
verifies our Assumption 1.

We also provide a special experiment under mode 64/10, with the RGP information table presented in
Table 3. We see that not only we get a correct indicator vector Ŷ on bag level, we can also directly
provide instance-level predictions by combining weight-related information with the model output
Ŷ: try to take the maximum value in each column.

RGP strictly follows the expectation we gave it, which is a strong constraint inspired by the inference
rule. For a positive bag, according to the way RGP works, when we are in the training process,
the kth instance representation with a high classification score inside the bag MUST have a larger
value of weight αk . Referring to Equation 16 that explains ϕ and γ, the absolute value of its partial
derivative ∂Z

∂(Afk)
during the training process would be larger. The gradient descent algorithm will

increase the classification score, which promotes the increase of its weight αk because it explicitly
depends on the classification score in RGP. The gradient descent process produces instance-level
representations with large weights and high classification scores in positive bags. For negative
bags, the training process will lower the classification scores of all instance representations inside it,
but since there are no positive instances in it, the weights of the instance representations would be
random. The gradient descent process will uniformly decrease the classification scores of all instances
inside the negative bag. In the end of training process, RGMIL will converge to a solution where
all the training bags are predicted correctly. In this final state, there is a huge difference in
instance weights, and instance representations in positive bags with high classification scores
will have significantly larger weights. This final solution we get from RGMIL would comply with
our inference rule above. In a MIL problem, any solution that meets our inference rule is legal.

Since we have verified that the final convergence state of RGMIL is a legal solution to the MIL
problem, the convergence process implies an improvement in the model’s ability to distinguish critical
instances. But still, the speed of convergence is crucial to improve instance-level performance. We
must accelerate the speed at which the model generates discriminative instance-level representations
as much as possible, because when the loss value reaches or approaches 0, the model wouldn’t be
trained anymore, and too slow a speed can stop the model from reaching the final solution. With
low γ value, RGP is able to capture more critical instances, which brings a quicker improvement
in instance-level discriminative ability. Based on this, RGMIL could correct previous erroneous
inferences to reduce the ϕ value quickly and thus avoid the accumulation of errors on instance level.
That leads to a huge improvement on instance-level performance when compared with other methods.
After three epochs of training, RGMIL successfully lowered the ϕ-value to 0 in the fourth epoch
and maintained it till the end. Multiple experiments have shown that RGMIL can always adjust its
inference to lower the ϕ-value to 0 within the first seven training epochs in 512/1 mode.

4.5 Ablation Study of RGP

As shown above, we have provided the derivation of the feasibility of RGP using sigmoid as the
activation function, which we refer to as the original version. The derivation is built on the case
where there is no trouble in numerical computation or gradient descent. However, in the practical
implementation, we still need to explore a more practical way. Here, we still refer to the formula
of the RGP forward propagation process in the ith branch (Bi) mentioned in previous section. In
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this implement, we take the difference by using Equation 6, meanwhile using Equation 7 to achieve
the normalization for preventing gradient vanishing. Without the normalization equation, if we take
the value of the second bit of the softmax output instead of the difference, it would be similar to the
original version, which we refer to as the baseline version. The experimental results for different
versions are shown in Table 4. Obviously, it is seen that the performance based the different and the
normalization is superior to others. Without the training tricks from the equations, it is difficult to
reduce γ-value to a low level.

Aggregators 10/1 32/1 64 / 1 512 / 1
RGP (B) 94.60 82.64 62.75 66.54
RGP (B + N) 95.31 93.92 90.88 72.70
RGP (B + N + D) 98.25 96.37 94.50 87.28

Table 4: Instance-level Average Test Accuracies for first 30 Training Epochs on MMNIST, where ’B’
expresses Baseline Version, ’N’ expresses Normalization Formula, ’D’ expresses Difference Formula.

4.6 Comparison with Supervised Models in Pain Estimation

In this part, pain estimation is considered as a real application to validate the performance of RGMIL,
where the benchmark pain dataset (UNBC-McMaster Shoulder Pain dataset [17], UNBC) is used.
The UNBC dataset contains 200 video sequences with 48398 frames from 25 subjects, and all frames
are well-annotated. To compare with the existing supervised models, we follow the same experimental
settings with the S-O-T-A model MSRAN (ICBBT’21) [2]: using 25-fold cross-validation with a
leave-one-subject-out strategy and evaluating by four metrics. In experiment, all images are resized
as (3, 224, 224), and the training bag size is set as 64. An average of about 6000 bags is used as
training data during each fold validation, and ResNet18 [8] is used as backbone. Experimental results
are shown in Table 5. From Table 5, it is seen that RGMIL does gain comparable performance
to supervised methods. It indicates that current design is effective enough to be practical without
causing any performance degradation compared to supervised ones for pain estimation. More details
about metrics and settings are given in Section C of supplementary.

Methods MAE ⇓ MSE ⇓ PCC ⇑ ICC ⇑
Deep Pain(2017) 0.50 0.74 0.78 0.45

DSHF(2018) - 0.94 0.68 -
DBR(2018) - 0.69 0.81 -

Multistream CNN(2019) 0.47 0.53 0.70 0.55
MSRAN*(2021) 0.40 0.46 0.78 0.63

LIAN(2021) 0.45 0.66 0.81 0.61
RGMIL 0.31 0.42 0.77 0.62

Table 5: Instance-level Performance Comparison with Supervised Models (*:S-O-T-A model) on
UNBC pain dataset, where all results are the mean of 25-fold cross-validation and four metrics are
used: MAE, MSE, PCC and ICC. In this experiment, we take consecutive 64 frames in a video
as a training bag. To increase the amount of data, we used a sliding window approach with a step
size of 8 to produce training bags. Statistics collected from Deep Pain [21], DSHF [25], DBR [23],
Multistream CNN [10], MSRAN [2], LIAN [28].

4.7 Discussion for More General Scenarios and Limitations

To validate the performance of RGMIL on the general multi-class bag-level classification problems,
we test our model on SIVAL [20] dataset, where SIVAL consists of 25 classes of complex objects
photographed in different environments and each class contains 60 images. In this experiment,
each image is segmented into approximately 30 segments, and each segment is represented by a
30-dimensional feature vector that encodes information. The segments are labeled as containing the
object or the background. We separately select 1, 3 and 10 classes as positive classes, and randomly
sample from the other classes as the negative class. We set up three Linear+ReLU blocks as feature
extractors. The test scenario involves image classification problems ranging from binary to 11-class
classification. Here, each image is treated as a bag. Considering that the classes of SIVAL do not
have any ordering relationship, all bits of the output indicator vector are reliable, thus all branches
are involved to the computation of loss function. Continuing with the current version’s approach, the
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model’s output during test is still obtained by selecting the branch with the highest position among
all branches with an output of 1. Table 6 shows the bag-level performance on SIVAL dataset [20].
From Table 6, it is seen that RGP still obtains competitive results on the general bag-level problem.

# of positive classes 1 3 10
MXP 94.87 89.08 60.95
ABP 97.05 93.93 75.71
G-ABP 97.31 94.28 81.33
DSP 96.79 89.60 75.91
RGP 97.31 94.40 80.19

Table 6: Bag-level Results on the general multi-class image classification problem (the SIVAL
dataset), where 1, 3 and 10 express three different multi-classification problems in which 1, 3 and
10 classes are separately used as positive classes, respectively. The shown result is the average of
10-time test accuracy for each model after training convergence.

Moreover, we also validate RGMIL on the general multi-class instance-level classification problems.
In this experiment, we still use the 3-branch RGMIL, and adopt a different approach in constructing
the data: the images from classes (ranging from 0 to 6) in MMNIST are considered as the negative
instances, like the background class, and the images from classes (7, 8 and 9) in MMNIST are as three
different positive instances. Table 7 shows the instance-level performance of the constructed four
classes classification on MMNIST. Unlike the original MMNIST series, the convergence speed of
different methods varies much. Thus, we present the average of 10-time test accuracy for each model
after convergence or training after 100 epochs. Each positive class and the negative class account for
approximately 25% of the data. Within one positive bag, the number of images of positive class is
approximately 10%. The processing of loss value and output is the same as the SIVAL experiment
above. From Table 7, it is also seen that instance-level results are promising in a more general case.

Aggregators 10/1 16/1 32/1 64/1 256/1 512/1
MXP 76.09 71.78 57.49 58.15 38.63 32.48
ABP 71.76 75.17 71.81 68.33 69.09 62.43
G-ABP 73.12 75.04 72.21 64.58 69.20 60.56
DSP 62.81 69.29 63.75 67.04 59.77 52.91
RGP 88.79 85.73 85.02 83.19 82.50 81.46

Table 7: Instance-level Results on general 4-class problems constructed based MMNIST. The first
row contains the different modes (M/N). The shown result is the average of 10-time test accuracy for
each model after convergence or 100 epochs.

Although RGMIL is suitable to solve the general multi-classification problem in which class de-
pendencies or ordering need not be considered, the feasibility of training on instance-level with
an excessively large bag-length still need to be ensured. As shown in Table 1, it is seen that the
instance-performance decays with increasing bag lengths. Obviously, when the bag length is 512, the
accuracy is lowest and reduced by 11% than the minimum bag length. In addition, there is memory
limitation to handle the excessively large bags when the feature extractor is involved in training.

5 Conclusion

In this paper, we propose a new vision on MIL with a practical multi-classification MIL model
(RGMIL). RGMIL extends the classical binary to a multi-classification scenario via optimizing
several reliable equations simultaneously. More importantly, a key component (RGP) is introduced in
the MIL model. We argue that the difference between a supervised problem and MIL is deterministic
and clear: we may not need an over-complicated black box to simulate the difference. An accurate
description exists. We describe the characteristic of MIL problems through the structure of RGP,
and only the parameters in the feature extractor (backbone) need to be trained to provide the
discriminative instance-level representation. This is a method that has good interpretability and
conforms to the true inference rule of the MIL problem. We also validate RGMIL in real-world
application on the UNBC dataset. Suffice it to say that it is possible for a MIL model to achieve
even better instance-level performance than some supervised models. We expect RGP to become an
important component of future MIL network architectures and to provide some inspiration.
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