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Abstract

Problems involving geometric data arise in physics, chemistry, robotics, computer
vision, and many other fields. Such data can take numerous forms, for instance
points, direction vectors, translations, or rotations, but to date there is no single
architecture that can be applied to such a wide variety of geometric types while
respecting their symmetries. In this paper we introduce the Geometric Algebra
Transformer (GATr), a general-purpose architecture for geometric data. GATr
represents inputs, outputs, and hidden states in the projective geometric (or Clifford)
algebra, which offers an efficient 16-dimensional vector-space representation of
common geometric objects as well as operators acting on them. GATr is equivariant
with respect to E(3), the symmetry group of 3D Euclidean space. As a Transformer,
GATr is versatile, efficient, and scalable. We demonstrate GATr in problems
from n-body modeling to wall-shear-stress estimation on large arterial meshes to
robotic motion planning. GATr consistently outperforms both non-geometric and
equivariant baselines in terms of error, data efficiency, and scalability.

1 Introduction

From molecular dynamics to astrophysics, from material design to robotics, fields across science
and engineering deal with geometric data such as positions, shapes, orientations, or directions. The
geometric nature of data provides a rich structure: a notion of common operations between geometric
types (computing distances between points, applying rotations to orientations, etc.), a well-defined
behaviour of data under transformations of a system, and the independence of certain properties of
coordinate system choices. When learning from geometric data, incorporating this rich structure into
the architecture has the potential to improve the performance.

With this goal, we introduce the Geometric Algebra Transformer (GATr), a general-purpose network
architecture for geometric data. GATr brings together three key ideas.

Geometric algebra: To naturally describe both geometric objects as well as their transformations
in three-dimensional space, GATr represents data as multivectors of the projective geometric
algebra G3,0,1. Geometric (or Clifford) algebra is an principled yet practical mathematical
framework for geometrical computations. The particular algebra G3,0,1 extends the vector
space R3 to 16-dimensional multivectors, which can natively represent various geometric
types and E(3) poses. Unlike the O(3) representations popular in geometric deep learning,
this algebra can represent data that is not invariant to translations, such as absolute positions.

Equivariance: GATr is equivariant with respect to E(3), the symmetry group of three-dimensional
space. To this end, we develop several new E(3)-equivariant primitives mapping between
multivectors, including equivariant linear maps, an attention mechanism, nonlinearities, and
normalization layers.
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Transformer: Due to its favorable scaling properties, expressiveness, trainability, and versatility, the
Transformer architecture [50] has become the de-facto standard for a wide range of problems.
GATr is based on the Transformer architecture, in particular on dot-product attention, and
inherits these benefits.

GATr thus combines two lines of research: the representation of geometric objects with geometric
algebra [17, 18, 38], popular in computer graphics and physics and recently gaining traction in deep
learning [5, 41, 46], and the encoding of symmetries through equivariant deep learning [12]. The
result—to the best of our knowledge the first E(3)-equivariant architecture with internal geometric
algebra representations3—is a versatile network for problems involving geometric data.

We demonstrate GATr in three problems from entirely different fields. In an n-body modelling task,
we compare GATr to various baselines. We turn towards the task of predicting the wall shear stress in
human arteries, demonstrating that GATr scales to realistic problems with meshes of thousands of
nodes. Finally, experiment with robotic motion planning, using GATr as the backbone of an E(3)-
invariant diffusion model. In all cases, GATr substantially outperforms both non-geometric and
equivariant baselines.

Our implementation of GATr is available at https://github.com/qualcomm-ai-research/
geometric-algebra-transformer.

2 Background

Geometric algebra We begin with a brief overview of geometric algebra (GA); for more detail, see
e. g. Refs. [17, 18, 38, 41]. Whereas a plain vector space like R3 allows us to take linear combinations
of elements x and y (vectors), a geometric algebra additionally has a bilinear associative operation: the
geometric product, denoted simply by xy. By multiplying vectors, one obtains so-called multivectors,
which can represent both geometrical objects and operators. Like vectors, multivectors have a notion
of direction as well as magnitude and orientation (sign), and can be linearly combined.

Multivectors can be expanded on a multivector basis, consisting of products of basis vectors. For
example, in a 3D GA with orthogonal basis e1, e2, e3, a general multivector takes the form

x = xs + x1e1 + x2e2 + x3e3 + x12e1e2 + x13e1e3 + x23e2e3 + x123e1e2e3, (1)

with real coefficients (xs, x1, . . . , x123) ∈ R8. Thus, similar to how a complex number a+ bi is a
sum of a real scalar and an imaginary number,4 a general multivector is a sum of different kinds of
elements. These are characterized by their dimensionality (grade), such as scalars (grade 0), vectors
ei (grade 1), bivectors eiej (grade 2), all the way up to the pseudoscalar e1 · · · ed (grade d).

The geometric product is characterized by the fundamental equation vv = ⟨v, v⟩, where ⟨·, ·⟩ is an
inner product. In other words, we require that the square of a vector is its squared norm. In an
orthogonal basis, where ⟨ei, ej⟩ ∝ δij , one can deduce that the geometric product of two different
basis vectors is antisymmetric: eiej = −ejei5. Since reordering only produces a sign flip, we only
get one basis multivector per unordered subset of basis vectors, and so the total dimensionality of a
GA is

∑d
i=0

(
d
k

)
= 2d. Moreover, using bilinearity and the fundamental equation one can compute

the geometric product of arbitrary multivectors.

The symmetric and antisymmetric parts of the geometric product are called the interior and exterior
(wedge) product. For vectors x and y, these are defined as ⟨x, y⟩ = (xy + yx)/2 and x ∧ y ≡
(xy−yx)/2. The former is indeed equal to the inner product used to define the GA, whereas the latter
is new notation. Whereas the inner product computes the similarity, the exterior product constructs a
multivector (called a blade) representing the weighted and oriented subspace spanned by the vectors.
Both operations can be extended to general multivectors [18].

The final primitive of the GA that we will require is the dualization operator x 7→ x∗. It acts on basis
elements by swapping “empty” and “full” dimensions, e. g. sending e1 7→ e23.

3Concurrently to our work, a similar network architecture was studied by Ruhe et al. [40]; we comment on
similarities and differences in Sec. 5.

4Indeed the imaginary unit i can be thought of as the bivector e1e2 in a 2D GA.
5The antisymmetry can be derived by using v2 = ⟨v, v⟩ to show that eiej+ejei = (ei+ej)

2−e2i −e2j = 0.
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Object / operator Scalar Vector Bivector Trivector PS
1 e0 ei e0i eij e0ij e123 e0123

Scalar λ ∈ R λ 0 0 0 0 0 0 0
Plane w/ normal n ∈ R3, origin shift d ∈ R 0 d n 0 0 0 0 0
Line w/ direction n ∈ R3, orthogonal shift s ∈ R3 0 0 0 s n 0 0 0
Point p ∈ R3 0 0 0 0 0 p 1 0
Pseudoscalar µ ∈ R 0 0 0 0 0 0 0 µ

Reflection through plane w/ normal n ∈ R3, origin shift d ∈ R 0 d n 0 0 0 0 0
Translation t ∈ R3 1 0 0 1

2
t 0 0 0 0

Rotation expressed as quaternion q ∈ R4 q0 0 0 0 qi 0 0 0
Point reflection through p ∈ R3 0 0 0 0 0 p 1 0

Table 1: Embeddings of common geometric objects and transformations into the projective geometric algebra
G3,0,1. The columns show different components of the multivectors with the corresponding basis elements,
with i, j ∈ {1, 2, 3}, j ̸= i, i.e. ij ∈ {12, 13, 23}. For simplicity, we fix gauge ambiguities (the weight of the
multivectors) and leave out signs (which depend on the ordering of indices in the basis elements).

Projective geometric algebra In order to represent three-dimensional objects as well as arbitrary
rotations and translations acting on them, the 3D GA is not enough: as it turns out, its multivectors
can only represent linear subspaces passing through the origin as well as rotations around it. A
common trick to expand the range of objects and operators is to embed the space of interest (e.g. R3)
into a higher dimensional space whose multivectors represent more general objects and operators in
the original space.

In this paper we work with the projective geometric algebra G3,0,1 [17, 38, 41]. Here one adds a
fourth homogeneous coordinate x0e0 to the vector space, yielding a 24 = 16-dimensional geometric
algebra. The metric of G3,0,1 is such that e20 = 0 and e2i = 1 for i = 1, 2, 3. As we will explain in the
following, in this setup the 16-dimensional multivectors can represent 3D points, lines, and planes,
which need not pass through the origin, and arbitrary rotations, reflections, and translations in R3.

Representing transformations In geometric algebra, a vector u can act as an operator, reflecting
other elements in the hyperplane orthogonal to u. Since any orthogonal transformation is equal to a
sequence of reflections, this allows us to express any such transformation as a geometric product of
(unit) vectors, called a (unit) versor u = u1 · · ·uk. Furthermore, since the product of unit versors
is a unit versor, and unit vectors are their own inverse (u2 = 1), these form a group called the Pin
group associated with the metric. Similarly, products of an even number of reflections form the Spin
group. In the projective geometric algebra G3,0,1, these are the double cover6 of E(3) and SE(3),
respectively. We can thus represent any rotation, translation, and mirroring—the symmetries of three-
dimensional space—as G3,0,1 multivectors.

In order to apply a versor u to an arbitrary element x, one uses the sandwich product:

ρu(x) =

{
uxu−1 if u is even
ux̂u−1 if u is odd

(2)

Here x̂ is the grade involution, which flips the sign of odd-grade elements such as vectors and
trivectors, while leaving even-grade elements unchanged. Equation 2 thus gives us a linear action
(i. e. group representation) of the Pin and Spin groups on the 2d-dimensional space of multivectors.
The sandwich product is grade-preserving, so this representation splits into a direct sum of represen-
tations on each grade.

Representing 3D objects Following Refs. [17, 38, 41], we represent planes with vectors, and re-
quire that the intersection of two geometric objects is given by the wedge product of their representa-
tions. Lines (the intersection of two planes) are thus represented as bivectors, points (the intersection
of three planes) as trivectors. This leads to a duality between objects and operators, where objects
are represented like transformations that leave them invariant. Table 1 provides a dictionary of these
embeddings. It is easy to check that this representation is consistent with using the sandwich product
for transformations.

6This means that for each element of E(3) there are two elements of Pin(3, 0, 1), e. g. both the vector v and
−v represent the same reflection.
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Equivariance We construct network layers that are equivariant with respect to E(3), or equivalently
its double cover Pin(3, 0, 1). A function f : G3,0,1 → G3,0,1 is Pin(3, 0, 1)-equivariant with respect
to the representation ρ (or Pin(3, 0, 1)-equivariant for short) if

f(ρu(x)) = ρu(f(x)) (3)

for any u ∈ Pin(3, 0, 1) and x ∈ G3,0,1, where ρu(x) is the sandwich product defined in Eq. (2).

3 The Geometric Algebra Transformer

3.1 Design principles and architecture overview

Geometric inductive bias through geometric algebra representations GATr is designed to
provide a strong inductive bias for geometric data. It should be able to represent different geometric
objects and their transformations, for instance points, lines, planes, translations, rotations, and so on.
In addition, it should be able to represent common interactions between these types with few layers,
and be able to identify them from little data (while maintaining the low bias of large transformer
models). Examples of such common patterns include computing the relative distances between points,
applying geometric transformations to objects, or computing the intersections of planes and lines.

Following a body of research in computer graphics, we propose that geometric algebra gives us a
language that is well-suited to this task. We use the projective geometric algebra G3,0,1 and use the
plane-based representation of geometric structure outlined in the previous section.

Symmetry awareness through E(3) equivariance Our architecture should respect the symmetries
of 3D space. Therefore we design GATr to be equivariant with respect to the symmetry group E(3)
of translations, rotations, and reflections.

Note that the projective geometric algebra naturally offers a faithful representation of E(3), including
translations. We can thus represent objects that transform arbitrarily under E(3), including with
respect to translations of the inputs. This is in stark contrast with most E(3)-equivariant architectures,
which only use O(3) representations and whose features only transform under rotation and are
invariant under translations—and hence can not represent absolute positions like GATr can. Those
architectures must handle points in hand-crafted ways, like by canonicalizing w. r. t. the center of
mass or by treating the difference between points as a translation-invariant vector.

Many systems will not exhibit the full E(3) symmetry group. The direction of gravity, for instance,
often breaks it down to the smaller E(2) group. To maximize the versatility of GATr, we choose to
develop a E(3)-equivariant architecture and to include symmetry-breaking as part of the network
inputs, similar to how position embeddings break permutation equivariance in transformers.

Scalability and flexibility through dot-product attention Finally, GATr should be expressive,
easy to train, efficient, and scalable to large systems. It should also be as flexible as possible,
supporting variable geometric inputs and both static scenes and time series.

These desiderata motivate us to implement GATr as a transformer [50], based on attention over
multiple objects (similar to tokens in MLP or image patches in computer vision). This choice makes
GATr equivariant also with respect to permutations along the object dimension. As in standard
transformers, we can break this equivariance when desired (in particular, along time dimensions)
through positional embedding.

Like a vanilla transformer, GATr is based on a dot-product attention mechanism, for which heavily
optimized implementations exist [14, 32, 37]. We will demonstrate later that this allows us to scale
GATr to problems with many thousands of tokens, much further than equivariant architectures based
on graph neural networks and message-passing algorithms.

Architecture overview We sketch GATr in Fig. 1. In the top row, we sketch the overall workflow.
If necessary, raw inputs are first preprocessed into geometric types. The geometric objects are then
embedded into multivectors of the geometric algebra G3,0,1, following the recipe described in Tbl. 1.

The multivector-valued data are processed with a GATr network. We show this architecture in
more detail in the bottom row of Fig. 1. GATr consists of N transformer blocks, each consisting
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Figure 1: Overview over the GATr architecture. Boxes with solid lines are learnable components, those with
dashed lines are fixed.

of an equivariant multivector LayerNorm, an equivariant multivector self-attention mechanism, a
residual connection, another equivariant LayerNorm, an equivariant multivector MLP with geometric
bilinear interactions, and another residual connection. The architecture is thus similar to a typical
transformer [50] with pre-layer normalization [2, 54], but adapted to correctly handle multivector
data and be E(3) equivariant. We describe the individual layers below.

Finally, from the outputs of the GATr network we extract the target variables, again following the
mapping given in Tbl. 1.

3.2 GATr primitives

Linear layers We begin with linear layers between multivectors. In Appendix A, we show that the
equivariance condition of Eq. (3) severely constrains them:

Proposition 1. Any linear map ϕ : Gd,0,1 → Gd,0,1 that is equivariant to Pin(d, 0, 1) is of the form

ϕ(x) =

d+1∑
k=0

wk⟨x⟩k +

d∑
k=0

vke0⟨x⟩k (4)

for parameters w ∈ Rd+2, v ∈ Rd+1. Here ⟨x⟩k is the blade projection of a multivector, which sets
all non-grade-k elements to zero.

Thus, E(3)-equivariant linear maps between G3,0,1 multivectors can be parameterized with nine
coefficients, five of which are the grade projections and four include a multiplication with the
homogeneous basis vector e0. We thus parameterize affine layers between multivector-valued arrays
with Eq. (4), with learnable coefficients wk and vk for each combination of input channel and output
channel. In addition, there is a learnable bias term for the scalar components of the outputs (biases
for the other components are not equivariant).

Geometric bilinears Equivariant linear maps are not sufficient to build expressive networks. The
reason is that these operations allow for only very limited grade mixing, as shown in Prop. 1. For the
network to be able to construct new geometric features from existing ones, such as the translation
vector between two points, two additional primitives are essential.

The first is the geometric product x, y 7→ xy, the fundamental bilinear operation of geometric algebra.
It allows for substantial mixing between grades: for instance, the geometric product of vectors
consists of scalars and bivector components. The geometric product is equivariant (Appendix A).

The second geometric primitive we use is derived from the so-called join7 x, y 7→ (x∗ ∧ y∗)∗. This
map may appear complicated, but it plays a simple role in our architecture: an equivariant map that
involves the dual x 7→ x∗. Including the dual in an architecture is essential for expressivity: in G3,0,1,
without any dualization it is impossible to represent even simple functions such as the Euclidean

7Technically, the join has an anti-dual, not the dual, in the output. We leave this detail out for notational
simplicity. In our network architecture, it makes no difference for equivariance nor for expressivity whether the
anti-dual or dual is used, as any equivariant linear layer can transform between the two.
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distance between two points [17]; we show this in Appendix A. While the dual itself is not Pin(3, 0, 1)-
equivariant (w. r. t. ρ), the join operation is equivariant to even (non-mirror) transformations. To
make the join equivariant to mirrorings as well, we multiply its output with a pseudoscalar derived
from the network inputs: x, y, z 7→ EquiJoin(x, y; z) = z0123(x

∗ ∧ y∗)∗, where z0123 ∈ R is the
pseudoscalar component of a reference multivector z (see Appendix B).

We define a geometric bilinear layer that combines the geometric product and the join of the two
inputs as Geometric(x, y; z) = Concatenatechannels(xy,EquiJoin(x, y; z)). In GATr, this layer is
included in the MLP.

Nonlinearities and normalization We use scalar-gated GELU nonlinearities [23]
GatedGELU(x) = GELU(x1)x, where x1 is the scalar component of the multivector x. More-
over, we define an E(3)-equivariant LayerNorm operation for multivectors as LayerNorm(x) =

x/
√
Ec⟨x, x⟩, where the expectation goes over channels and we use the invariant inner product ⟨·, ·⟩

of G3,0,1.

Attention Given multivector-valued query, key, and value tensors, each consisting of ni items (or
tokens) and nc channels (key length), we define the E(3)-equivariant multivector attention as

Attention(q, k, v)i′c′ =
∑
i

Softmaxi

(∑
c⟨qi′c, kic⟩√

8nc

)
vic′ . (5)

Here the indices i, i′ label items, c, c′ label channels, and ⟨·, ·⟩ is the invariant inner product of the
geometric algebra. Just as in the original transformer [50], we thus compute scalar attention weights
with a scaled dot product; the difference is that we use the inner product of G3,0,1, which is the regular
R8 dot product on 8 of the 16 dimensions, ignoring the dimensions containing e0.8 We compute the
attention using highly efficient implementations of conventional dot-product attention [14, 32, 37].
As we will demonstrate later, this allows us to scale GATr to systems with many thousands of tokens.
We extend this attention mechanism to multi-head self-attention in the usual way.

3.3 Extensions

Auxiliary scalar representations While multivectors are well-suited to model geometric data,
many problems contain non-geometric information as well. Such scalar information may be high-
dimensional, for instance in sinusoidal positional encoding schemes. Rather than embedding into the
scalar components of the multivectors, we add an auxiliary scalar representation to the hidden states
of GATr. Each layer thus has both scalar and multivector inputs and outputs. They have the same
batch dimension and item dimension, but may have different number of channels.

This additional scalar information interacts with the multivector data in two ways. In linear layers,
we allow the auxiliary scalars to mix with the scalar component of the multivectors. In the attention
layer, we compute attention weights both from the multivectors, as given in Eq. (5), and from the
auxiliary scalars, using a regular scaled dot-product attention. The two attention maps are summed
before computing the softmax, and the normalizing factor is adapted. In all other layers, the scalar
information is processed separately from the multivector information, using the unrestricted form
of the multivector map. For instance, nonlinearities transform multivectors with equivariant gated
GELUs and auxiliary scalars with regular GELU functions. We describe the scalar path of our
architecture in more detail in Appendix B.

Distance-aware dot-product attention The dot-product attention in Eq. (5) ignores the 8 di-
mensions involving the basis element e0. These dimensions vary under translations, and thus their
straightforward Euclidean inner product violates equivariance. We can, however, extend the atten-
tion mechanism to incorporate more components, while still maintaining E(3) equivariance and
the computational efficiency of dot-product attention. To this end, we define certain auxiliary, non-
linear query features ϕ(q) and key features ψ(k) and extend the attention weights in Eq. (5) as
⟨qi′c, kic⟩ → ⟨qi′c, kic⟩+ ϕ(qi′c) · ψ(kic), adapting the normalization appropriately. We define these
nonlinear features in Appendix B.

8We also experimented with attention mechanisms that use the geometric product rather than the dot product,
but found a worse performance in practice.
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Figure 2: n-body dynamics experiments. We show the error in predicting future positions of planets as a function
of the training dataset size. Out of five independent training runs, the mean and standard error are shown. Left:
Evaluating without distribution shift. GATr ( )is more sample efficient than the equivariant SEGNN [6]
( ) and SE(3)-Transformer [20] ( ) and clearly outperforms non-equivariant baselines ( , , ).
Middle: Evaluating on systems with more planets than trained on. Transformer architectures generalize well to
different object counts. GCA-GNN has larger errors than the visible range. Right: Evaluating on translated data.
Because GATr is E(3) equivariant, it generalizes under this domain shift.

Our choice of these nonlinear features not only maintains equivariance, but has a straightforward
geometric interpretation. When the trivector components of queries and keys represent 3D points
(see Tbl. 1), ψ(q) · ϕ(k) is proportional to the pairwise negative squared Euclidean distance. GATr’s
attention mechanism is therefore directly sensitive to Euclidean distance, while still respecting the
highly efficient dot-product attention format.

Positional embeddings GATr assumes the data can be described as a set of items (or tokens).
If these items are distinguishable and form a sequence, we encode their position using “rotary
positional”9 embeddings [47] in the auxiliary scalar variables.10

Axial attention The architecture is flexible about the structure of the data. In some use cases, there
will be a single dimension along which objects are organized, for instance when describing a static
scene or the time evolution of a single object. But GATr also supports the organization of a problem
along multiple axes, for example with one dimension describing objects and another time steps. In
this case, we follow an axial transformer layout [24], alternating between transformer blocks that
attend over different dimensions. (The not-attended dimensions in each block are treated like a batch
dimension.)

4 Experiments

4.1 n-body dynamics

We start our empirical demonstration of GATr with an n-body dynamics problem, on which we
compare GATr to a wide range of baselines. Given the masses, initial positions, and velocities of
a star and a few planets, the goal is to predict the final position after the system has evolved under
Newtonian gravity for 1000 Euler integration time steps. We compare GATr to a Transformer and
an MLP, the equivariant SEGNN [6] and SE(3)-Transformer [20], as well as the geometric-algebra-
based—but not equivariant—GCA-GNN [41]. The experiment is described in detail in Appendix C.1.

In the left panel of Fig. 2 we show the prediction error as a function of the number of training samples
used. GATr clearly outperforms all non-equivariant baselines, including the geometric-algebra-based
GCA-GNN. Compared to the equivariant SEGNN and SE(3)-Transformer, GATr is more sample-

9This terminology, which stems from non-geometric transformers, can be confusing. “Position” here means
position in a sequence, not geometric position in 3D. “Rotary” does not refer a rotation of 3D space, but rather
to how the position in a sequence is embedded via sinusoids in the scalar channels of keys and queries. Using
positional encoding thus does not affect E(3) equivariance.

10Since auxiliary scalar representations and multivectors mix in the attention mechanism, the positional
embeddings also affect the multivector processing.
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efficient, while all three methods reach the same prediction error when trained on enough data. This
provides evidence for the usefulness of geometric algebra representations as an inductive bias.

GATr also generalizes robustly out of domain, as we show in the middle and right panels of Fig. 1.
When evaluating on a larger number of bodies than trained on, methods that use a softmax over
attention weights (GATr, Transformer, SE(3)-Transformer) generalize best. Finally, the performance
of the E(3)-equivariant GATr, SEGNN, and SE(3)-Transformer does not drop when evaluated on
spatially translated data, while the non-equivariant baselines fail in this setting.

4.2 Wall-shear-stress estimation on large meshes of human arteries
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Figure 3: Arterial wall-shear-stress estimation [48]. We
show the mean approximation error (lower is better) as a
function of training dataset size, reporting results both on
randomly oriented training and test samples (solid mark-
ers) and on a version of the dataset in which all artery
meshes are canonically oriented (hollow markers). With-
out canonicalization, GATr ( ) predicts wall shear
stress more precisely and is more sample-efficient than
the baselines.

Next, we turn towards a realistic experiment in-
volving more complex geometric objects. We
study the prediction of the wall shear stress ex-
erted by the blood flow on the arterial wall, an
important predictor of aneurysms. While the
wall shear stress can be computed with computa-
tional fluid dynamics, simulating a single artery
can take many hours, and efficient neural sur-
rogates can have substantial impact. However,
training such neural surrogates is challenging,
as meshes are large (around 7000 nodes in our
data) and datasets typically small (we work with
1600 training meshes).

We train GATr on a dataset of arterial meshes
and simulated wall shear stress published by
Suk et al. [48]. They are compared to a Trans-
former and to the results reported by Suk et al.
[48], including the equivariant GEM-CNN [15]
and the non-equivariant PointNet++ [36].11 See
Appendix C.2 for experiment details.

The results are shown in Fig. 3. On non-
canonicalized data, with randomly rotated
meshes, GATr improves upon all previous meth-
ods and sets a new state of the art.

We also experiment with canonicalization: rotat-
ing the arteries such that blood always flows in the same direction. This helps the Transformer to
be almost competitive with GATr. However, canonicalization is only feasible for relatively straight
arteries as in this dataset, not in more complex scenarios with branching and turning arteries. We find
it likely that GATr will be more robust in such scenarios.

4.3 Robotic planning through invariant diffusion

In our third experiment, we show how GATr defines an E(3)-invariant diffusion model, that it can be
used for model-based reinforcement learning and planning, and that this combination is well-suited
to solve robotics problems. We follow Janner et al. [27], who propose to treat learning a world model
and planning within that model as a unified generative modeling problem. After training a diffusion
model [45] on offline trajectories, one can use it in a planning loop, sampling from it conditional on
the current state, desired future states, or to maximize a given reward, as needed.

We use a GATr model as the denoising network in a diffusion model and to use it for planning. We
call this combination GATr-Diffuser. Combining the equivariant GATr with an invariant base density
defines an E(3)× Sn-invariant diffusion model [29].

GATr-Diffuser is demonstrated on the problem of a Kuka robotic gripper stacking blocks using the
“unconditional” environment introduced by Janner et al. [27]. We train GATr-Diffuser on the offline

11We also tried to run SEGNN [5] and SE(3)-Transformer [20] as additional baselines, but were not able to
fit them into memory on this task.
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Figure 4: Diffusion-based robotic planning. We show
normalized rewards (higher is better) as a function of
training dataset size. GATr ( ) is more successful
at block stacking and more sample-efficient than the
baselines, including the original Diffuser [27] ( ) and
our modification of it based on a Transformer ( ). In
grey, we show results reported by Brehmer et al. [7] and
Janner et al. [27].

trajectory dataset published with that paper and
then use it for planning, following the setup
of Janner et al. [27]. We compare our GATr-
Diffuser model to a reproduction of the origi-
nal Diffuser model and a new Transformer back-
bone for the Diffuser model. In addition, we
show the published results of Diffuser [27], the
equivariant EDGI [7], and the offline RL algo-
rithms CQL [30] and BCQ [21] as published in
Ref. [27]. The problem and hyperparameters are
described in detail in Appendix C.3.

As shown in Fig. 4, GATr-Diffuser solves the
block-stacking task better than all baselines. It is
also clearly more sample-efficient, matching the
performance of a Diffuser model or Transformer
trained on the full dataset even when training
only on 1% of the trajectories.

4.4 Scaling

Finally, we study GATr’s computational require-
ments and scaling. We measure the memory
usage and compute time of forward and back-
ward passes on synthetic data as a function of
the number of items. GATr is compared to a
Transformer, to SEGNN [6] in the official implementation, and to the SE(3)-Transformer [20]; for
the latter we use the highly optimized implementation by Milesi [35]. We choose hyperparameters
for the four architectures such that they have the same depth and width and require that the methods
allow all items to interact at each step (i. e. fully connected graphs). Because of the fundamental dif-
ferences between the architectures, it is impossible to find fully equivalent settings; our results should
thus be interpreted with care. The details of our experiment are described in Appendix C.4.

We show the results in Fig. 5. For few tokens, GATr is slower than a Transformer. However, this
difference is partially due to the low utilization of the GPUs in this test; GATr is closer to the
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Figure 5: Computational cost and scaling. We measure
peak GPU memory usage (top) and wall time (bottom)
per combined forward and backward pass as a func-
tion of the number of items in synthetic data. Despite
some compute overhead, GATr ( ) scales just like the
Transformer ( ) and orders of magnitude more favor-
ably than the equivariant baselines ( , ).

Transformer when using larger batch sizes or
when pre-compiling the computation graph.

For larger problems, compute and memory are
dominated by the pairwise interactions in the at-
tention mechanism. Here GATr and the base-
line Transformer perform on par, as they use the
same efficient implementation of dot-product at-
tention. In terms of memory, both scale linearly
in the number of tokens, while the equivariant
baselines scale quadratically. In terms of time,
all methods scale quadratically, but the equivari-
ant baselines have a worse prefactor than GATr
and the Transformer. All in all, we can easily
scale GATr to tens of thousands of tokens, while
the equivariant baselines run out of memory two
orders of magnitude earlier.

5 Related work

Geometric algebra Geometric (or Clifford)
algebra was first conceived in the 19th century
[10, 22] and has been used widely in quantum
physics [16, 34]. Recently, it has found new pop-
ularity in computer graphics [18]. In particular,

9



the projective geometric algebra used in this work [17, 38] and a conformal model [18] are suitable
for 3D computations.

Geometric algebras have been used in machine learning in various ways. Spellings [46] use G3,0,0

geometric products to compute rotation-invariant features from small point clouds. Unlike us, they
do not learn internal geometric representations.

Our work was inspired by Brandstetter et al. [5] and Ruhe et al. [41]. These works also use
multivector features (the latter even of the same G3,0,1), and process them with operations such as
the geometric / sandwich product, Clifford Fourier transforms and Clifford convolutions. The main
difference to our work is that GATr is E(3) equivariant, while both of these works are not. We
compare to the GCA-GNN network from Ref. [41] in our experiments.

Concurrently to this publication, Ruhe et al. [40] also study equivariant, geometric algebra–based
architectures. While some of our and their findings overlap, there are several differences: They
develop theory for generic geometric algebras of the form Gp,q,r, while we focus on the projective
algebra G3,0,1 with its faithful E(3) representations, with our theory also applicable to the groupE(n)
and the algebras Gn,0,0 and Gn,0,1. Ruhe et al. [40] also finds the linear maps of Eq. (4), but does not
discuss the join or distance-aware dot-product, which we found to be essential for performance in the
projective algebra. Moreover, they propose an MLP-like architecture and use it in a message-passing
graph network, while our GATr is a Transformer.

Equivariant deep learning Equivariance to symmetries [11] is the primary design principle in
modern geometric deep learning [8]. Equivariant networks have been applied successfully in areas
such as medical imaging [31, 53] and robotics [7, 26, 44, 51, 52, 55], and are ubiquitous in applications
of machine learning to physics and chemistry [1, 3, 4, 19, 28, 33].

In recent years, a number of works have investigated equivariant Transformer and message-passing
architectures [3, 4, 6, 19, 20, 39, 42, 49]. These works are generally more limited in terms of the
types of geometric quantities they can process compared to our multivector features. Furthermore,
our architecture is equivariant to the full group of Euclidean transformations, whereas previous works
focus on SO(3) equivariance.

6 Discussion

We introduced the Geometric Algebra Transformer (GATr), a general-purpose architecture for geo-
metric data, and implemented it at https://github.com/qualcomm-ai-research/geometric-
algebra-transformer. We argued and demonstrated that GATr effectively combines structure and
scalability.

GATr incorporates geometric structure by representing data in projective geometric algebra, as well
as through E(3) equivariance. Unlike most equivariant architectures, GATr features faithful E(3)
representations, including absolute positions and equivariance with respect to translations. Empiri-
cally, GATr outperforms non-geometric, equivariant, and geometric algebra–based non-equivariant
baselines across three experiments.

At the same time, GATr scales much better than most geometric networks. This is because GATr is a
Transformer and computes pairwise interactions through dot-product attention. Using recent efficient
attention implementations, we demonstrated that we can scale GATr to systems with many thousands
of tokens and fully connected interactions. For few tokens and small batch sizes, GATr has some
computational overhead, which we hope to address in future implementations.

One drawback of our approach is that since geometric algebra is not widely known yet, it may present
an obstacle to understanding the details of the method. However, given a dictionary for embeddings of
common objects and a library of primitives that act on them, using this framework is no more difficult
than using typical neural network layers grounded in linear algebra. Another potential downside is that
GATr is not yet shown to be a universal approximator, which is an interesting direction for future work.

Given the promising results presented in this work, we look forward to further study the potential of
Geometric Algebra Transformers in problems from molecular dynamics to robotics.
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A Theoretical results

In this section, we state or prove several properties of equivariant maps between geometric algebras
that we use in the construction of GATr.

The grade involution is a linear involutive bijection ·̂ : Gn,0,r : Gn,0,r, which sends a k-blade
x to x̂ = (−1)kx. Note that this is an algebra automorphism x̂y = x̂ŷ, and also an ∧-algebra
automorphism. The reversal in a linear involutive bijection ·̃ : Gn,0,r : Gn,0,r which sends a k-blade
x = x1∧x2∧...∧xk to the reverse: x̃ = xk∧...∧x2∧x1 = ±xwith +x if k ∈ {0, 1, 4, 5, ..., 8, 9, ...}
and −x otherwise. Note that this is an anti-automorphism (contravariant functor): x̃y = ỹx̃.

Here we denote the sandwich action of u ∈ Pin(n, 0, r) on a multivector x not as ρu(x), but
as u[x]. For odd u, u[x] = ux̂u−1, while for even u, u[x] = uxu−1. The sandwich action is
linear by linearity of the ·̂ and bilinearity of the geometric product. Furthermore, note that for any
particular u ∈ Pin(n, 0, r), the action is a geometric algebra homomorphism: u[ab] = uâbu−1 =

uâu−1ub̂u−1 = u[a]u[b]. By linearity and a symmetrization argument [18, Sec 7.1], one can show
that it also a ∧-algebra homomorphism (outermorphism): u[a ∧ b] = u[a] ∧ u[b].
Let l ≥ k. Given a k-vector a and l-vector b, define the left contraction as a⌋b := ⟨ab⟩l−k, which is a
l − k-vector. For k = 1, and b a blade b = b1 ∧ ... ∧ bl. Geometrically, a⌋b is the projection of a to
the space spanned by the vectors bi. Thus we have that a⌋b = 0 ⇐⇒ ∀i, ⟨a, bi⟩ = 0 [18, Sec 3.2.3],
in which case we define a and b to be orthogonal. In particular, two vectors a, b are orthogonal if
their inner product is zero. Futhermore, we define a vector a to be tangential to blade b if a ∧ b = 0.

In the projective algebra, a blade x is defined to be ideal if it can be written as x = e0 ∧ y for another
blade y.

A.1 Linear maps

We begin with Pin-equivariant linear maps. After some technical lemmata, we prove the most general
form of linear equivariant maps in the Euclidean geometric algebra Gn,0,0, and then also in projective
geometric algebra Gn,0,1.

Proposition 2. The grade projection ⟨·⟩k is equivariant [18, Sec 13.2.3].

Proof. Choose an l-blade x = a1 ∧ a2 ∧ ... ∧ al. Let u be a 1-versor. As the action u is an
outermorphism, u[x] = u[a1] ∧ ... ∧ u[al] is an l-blade. Now if l ̸= k, then ⟨x⟩k = 0 and thus
u[⟨x⟩k] = ⟨u[x]⟩k. If l = k, then ⟨x⟩k = x and thus u[⟨x⟩k] = ⟨u[x]⟩k. As the grade projection is
linear, equivariance extends to any multivector.

Proposition 3. The following map is equivariant: ϕ : G3,0,1 → G3,0,1 : x 7→ e0x.

Proof. Let u be a 1-versor, then u acts on a multivector as x 7→ u[x] = ux̂u−1, where x̂ is the grade
involution. Note that e0 is invariant: u[e0] = −ue0u−1 = e0uu

−1 = e0, where ue0 = −e0u because
u and e0 are orthogonal: ue0 = ⟨u, e0⟩ + u ∧ e0 = −e0 ∧ u = −e0 ∧ u. Then ϕ is equivariant,
as the action is an algebra homomorphism: u[ϕ(x)] = u[e0x] = uê0xu

−1 = uê0u
−1ux̂u−1 =

u[e0]u[x] = e0u[x] = ϕ(u[x]). It follows that ϕ is also equivariant to any product of vectors, i.e. any
versor u.

Euclidean geometric algebra Before constructing the most general equivariant linear map between
multivectors in projective geometric algebra, we begin with the Euclidean case Gn,0,0.

Theorem 1 (Cartan-Dieuodonné). Every orthogonal transformation of an n-dimensional space can
be decomposed into at most n reflections in hyperplanes.

Proof. This theorem is proven in Roelfs and De Keninck [38].

Lemma 1. In the n-dimensional Euclidean geometric algebra Gn,0,0, the group Pin(n, 0, 0) acts
transitively on the space of k-blades of norm λ ∈ R>0.
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Proof. As the Pin group preserves norm, choose λ = 1 without loss of generality. Any k-blade x
of unit norm can be written by Gram-Schmidt factorization as the wedge product of k orthogonal
vectors of unit norm x = v1 ∧ v2 ∧ ... ∧ vk. Consider another k-blade y = w1 ∧ w2 ∧ ... ∧ wk with
wi orthonormal. We’ll construct a u ∈ Pin(n, 0, 0) such that u[x] = y.

Choose n − k additional orthonormal vectors vk+1, ..., vn and wk+1, .., .wn to form orthonormal
bases. Then, there exists a unique orthogonal transformation Rn → Rn that maps vi into wi for all
i ∈ {1, ..., n}. By the Cartan-Dieuodonné theorem 1, this orthogonal transformation can be expressed
as the product of reflections, thus there exists a u ∈ Pin(n, 0, 0) such that u[vi] = wi. As the u
action is a ∧-algebra homomorphism (u[a ∧ b] = u[a] ∧ u[b], for any multivectors a, b), we have that
u[x] = y.

Lemma 2. In the Euclidean (r = 0) or projective (r = 1) geometric algebra Gn,0,r, let x be a k-
blade. Let u be a 1-versor. Then u[x] = x ⇐⇒ u⌋x = 0 and u[x] = −x ⇐⇒ u ∧ x = 0.

Proof. Let x be a k-blade and u a vector of unit norm. We can decompose u into u = t + v with
t∧x = 0 (the part tangential to the subspace of x) and v⌋x = 0 (the normal part). This decomposition
is unique unless x is ideal in the projective GA, in which case the e0 component of u is both normal
and tangential, and we choose t Euclidean.

In either case, note the following equalities: xt = (−1)k−1tx;xv = (−1)kvx; vt = −tv and note
∄λ ̸= 0 such that vtx = λx, which can be shown e.g. by picking a basis. Then:

u[x] = (−1)k(t+ v)x(t+ v) = (t+ v)(−t+ v)x = (−∥t∥2 + ∥v∥2)x− 2vtx

We have u[x] ∝ x ⇐⇒ vtx = 0. If x is not ideal, this implies that either v = 0 (thus u ∧ x = 0
and u[x] = −x) or t = 0 (thus u⌋x = 0 and u[x] = x). If x is ideal, this implies that either v ∝ e0
(thus u ∧ x = 0 and u[x] = −x) or t = 0 (thus u⌋x = 0 and u[x] = x).

Lemma 3. Let r ∈ {0, 1}. Any linear Pin(n, 0, r)-equivariant map ϕ : Gn,0,r → Gn,0,r can be
decomposed into a sum of equivariant maps ϕ =

∑
lkm ϕlkm, with ϕlkm equivariantly mapping k-

blades to l-blades. If r = 0 (Euclidean algebra) or k < n+ 1, such a map ϕlkm is defined by the
image of any one non-ideal k-blade, like e12...k. Instead, if r = 1 (projective algebra) and k = n+1,
then such a map is defined by the image of a pseudoscalar, like e01...n.

Proof. The Pin(n, 0, r) group action maps k-vectors to k-vectors. Therefore, ϕ can be decomposed
into equivariant maps from grade k to grade l: ϕ(x) =

∑
lk ϕlk(⟨x⟩k), with ϕlk having l-vectors as

image, and all k′-vectors in the kernel, for k′ ̸= k. Let x be an non-ideal k-blade (or pseudoscalar if
k = n+ 1). By lemmas 1 and 4, in both Euclidean and projective GA, the span of the k-vectors in
the orbit of x contains any k-vector. So ϕlk is defined by the l-vector y = ϕlk(x). Any l-vector can
be decomposed as a finite sum of l-blades: y = y1 + ...yM . We can define ϕlkm(x) = ym, extended
to all l-vectors by equivariance, and note that ϕlk =

∑
m ϕlkm.

Proposition 4. For an n-dimensional Euclidean geometric algebra Gn,0,0, any linear endomorphism
ϕ : Gn,0,0 → Gn,0,0 that is equivariant to the Pin(n, 0, 0) group (equivalently to O(n)) is of the
type ϕ(x) =

∑n
k=0 wk⟨x⟩k, for parameters w ∈ Rn+1.

Proof. By decomposition of Lemma 3, let ϕ map from k-blades to l-blades. Let x be a k-blade.
Let u be a 1-versor. By Lemma 2, if u is orthogonal to x, u[ϕ(x)] = ϕ(u[x]) = ϕ(x) and u is also
orthogonal to ϕ(x). If u∧x = 0, then u[ϕ(x)] = ϕ(u[x]) = ϕ(−x) = −ϕ(x) and u∧ϕ(x) = 0. Thus
any vector in x is in ϕ(x) and any vector orthogonal to x is orthogonal to ϕ(x), this implies ϕ(x) =
wkx, for some wk ∈ R. By Lemma 3, we can extend ϕ to ϕ(y) = wky for any k-vector y.

Projective geometric algebra How about equivariant linear maps in projective geometric algebra?
The degenerate metric makes the derivation more involved, but in the end we will arrive at a result
that is only slightly more general.

Lemma 4. The Pin group of the projective geometric algebra, Pin(n, 0, 1), acts transitively on the
space of k-blades with positive norm ∥x∥ = λ > 0. Additionally, the group acts transitively on the
space of zero-norm k-blades of the form x = e0 ∧ y (called ideal blades), with ∥y∥ = κ.
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Proof. Let x = x1 ∧ ... ∧ xk be a k-blade with positive norm λ. All vectors xi can be written as
xi = vi + δie0, for a nonzero Euclidean vector vi (meaning with no e0 component) and δi ∈ R,
because if vi = 0, the norm of x would have been 0. Orthogonalize them as x′2 = x2 − ⟨x1, x2⟩x1,
etc., resulting in x = x′1 ∧ · · · ∧ x′k with x′i = v′i + δ′ie0 with orthogonal v′i.

Define the translation t = 1 + 1
2

∑
i δ

′
ie0 ∧ v′i, which makes x′ Euclidean: t[x′] = v′1 ∧ ... ∧ v′k. By

Lemma 1, the Euclidean Pin group Pin(n, 0, 0), which is a subgroup of Pin(n, 0, 1), acts transitively
on Euclidean k-blades of a given norm. Thus, in the projective geometric algebra Pin(n, 0, 1), any
two k-blades of equal positive norm λ are related by a translation to the origin and then a Pin(n, 0, 0)
transformation.

For the ideal blades, let x = e0 ∧ y, with ∥y∥ = κ. We take y to be Euclidean without loss of
generality. For any g ∈ Pin(n, 0, 1), g[e0] = e0, so g[x] = e0 ∧ g[y]. Consider another x′ = e0 ∧ y′
with ∥y′∥ = κ and taking y′ Euclidean. As Pin(n, 0, 0) acts transitively on Euclidean (k− 1)-blades
with norm κ, let g ∈ Pin(n, 0, 0) such that g[y] = y′. Then g[x] = x′.

We can now construct the most general equivariant linear map between projective geometric algebras,
a key ingredient for GATr:
Proposition 5. For the projective geometric algebra Gn,0,1, any linear endomorphism ϕ : Gn,0,1 →
Gn,0,1 that is equivariant to the group Pin(n, 0, r) (equivalently to E(n)) is of the type ϕ(x) =∑n+1

k=0 wk⟨x⟩k +
∑n

k=0 vke0⟨x⟩k, for parameters w ∈ Rn+2, v ∈ Rn+1.

Proof. Following Lemma 3, decompose ϕ into a linear equivariant map from k-blades to l-blades.
For k < n+1, let x = e12...k. Then following Lemma 2, for any 1 ≤ i ≤ k, ei ∧ x = 0, ei[x] = −x,
and ei[ϕ(x)] = ϕ(ei[x]) = ϕ(−x) = −ϕ(x) and thus ei ∧ ϕ(x) = 0. Therefore, we can write
ϕ(x) = x ∧ y1 ∧ ... ∧ yl−k, for l − k vectors yj orthogonal to x.

Also, again using Lemma 2, for k < i ≤ n, ei⌋x = 0 =⇒ ei[ϕ(x)] = ϕ(x) =⇒ ei⌋ϕ(x) =
0 =⇒ ∀i, ⟨ei, yj⟩ = 0. Thus, yj is orthogonal to all ei with 1 ≤ i ≤ n. Hence, l = k or l = k + 1
and y1 ∝ e0.

For k = n+ 1, let x = e012...k. By a similar argument, all invertible vectors u tangent to x must be
tangent to ϕ(x), thus we find that ϕ(x) = x∧ y for some blade y. For any non-zero ϕ(x), y ∝ 1, and
thus ϕ(x) ∝ x. By Lemma 3, by equivariance and linearity, this fully defines ϕ.

A.2 Bilinear maps

Next, we turn towards bilinear operations. In particular, we show that the geometric product and the
join are equivariant.

For the geometric product, equivariance is straightforward: Any transformation u ∈ Pin(n, 0, r),
gives a homomorphism of the geometric algebra, as for any multivectors x, y, u[xy] = ux̂yu−1 =
ux̂ŷu−1 = ux̂u−1uŷu−1 = u[x]u[y]. The geometric product is thus equivariant.

Dual and join in Euclidean algebra For the join and the closely related dual, we again begin with
the Euclidean geometric algebra, before turning to the projective case later.

The role of the dual is to have a bijection ·∗ : Gn,0,0 → Gn,0,0 that maps k-vectors to (n−k)-vectors.
For the Euclidean algebra, with a choice of pseudoscalar I, we can define a dual as:

x∗ = xI−1 = xĨ (6)

This dual is bijective, and involutive up to a sign: (y∗)∗ = yĨĨ = ±y, with +y = 1 for n ∈
{1, 4, 5, 8, 9, ...} and −y for n ∈ {2, 3, 6, 7, ...}. We choose Ĩ instead of I in the definition of the
dual so that given n vectors x1, ..., xn, the dual of the multivector x = x1 ∧ ...xn, is given by the
scalar of the oriented volume spanned by the vector. We denote the inverse of the dual as x−∗ = xI.
Expressed in a basis, the dual yields the complementary indices and a sign. For example, for n = 3
and I = e123, we have (e1)

∗ = −e23, (e12)∗ = e3.

Via the dual, we can define the bilinear join operation, for multivectors x, y:

x ∨ y := (x∗ ∧ y∗)−⋆ = ((xĨ) ∧ (yĨ))I .
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Lemma 5. In Euclidean algebra Gn,0,0, the join is Spin(n, 0, 0) equivariant. Furthermore, it is
Pin(n, 0, 0) equivariant if and only if n is even.

Proof. The join is equivariant to the transformations from the group Spin(n, 0, 0), which consists of
the product of an even amount of unit vectors, because such transformations leave the pseudoscalar I
invariant, and the operation consists otherwise of equivariant geometric and wedge products.

However, let e12...n = I ∈ Pin(n, 0, 0) be the point reflection, which negates vectors of odd grades
by the grade involution: I[x] = x̂. Let x be a k-vector and y an l-vector. Then x ∨ y is a vector of
grade n− ((n− k) + (n− l)) = k + l − n (and zero if k + l < n). Given that the join is bilinear,
the inputs transform as (−1)k+l under the point reflection, while the transformed output gets a sign
(−1)k+l−n. Thus for odd n, the join is not Pin(n, 0, 0) equivariant.

To address this, given a pseudoscalar z = λI, we can create an equivariant Euclidean join via:

EquiJoin(x, y, z = λI) := λ(x ∨ y) = λ(x∗ ∧ y∗)−∗ . (7)

Proposition 6. In Euclidean algebra Gn,0,0, the equivariant join EquiJoin is Pin(n, 0, 0) equivari-
ant.

Proof. The EquiJoin is a multilinear operation, so for k-vector x and l-vector y, under a point
reflection, the input gets a sign (−1)k+l+n while the output is still a k + l − n vector and gets sign
(−1)k+l−n. These signs differ by even (−1)2n = 1 and thus EquiJoin is Pin(n, 0, 1)-equivariant.

We prove two equalities of the Euclidean join which we use later.
Lemma 6. In the algebra Gn,0,0, let v be a vector and x, y be multivectors. Then

v⌋(x ∨ y) = (v⌋x) ∨ y (8)

and
x ∨ (v⌋y) = −(−1)nv̂⌋x ∨ y . (9)

Proof. For the first statement, let a be a k-vector and b an l-vector. Then note the following two
identities:

a ∨ b = ⟨a∗bĨ⟩2n−k−lI = ⟨a∗b⟩n−(2n−k−l)ĨI = ⟨a∗b⟩k+l−n = a∗⌋b ,
(v⌋a)∗ = ⟨va⟩k−1Ĩ = ⟨vaĨ⟩n−k+1 = ⟨va∗⟩n−k+1 = v⌋(a∗) .

Combining these and the associativity of ⌋ gives:

(v⌋a) ∨ b = (v⌋a)∗⌋b = v⌋(a∗)⌋b = v⌋(a ∨ b)

For the second statement, swapping k-vector a and l-vector b incurs a ∨ b = (a∗ ∧ b∗)−∗ =
(−1)(n−k)(n−l)(b∗ ∧ a∗)−∗ = (−1)(n−k)(n−l)(b ∨ a). Then we get:

a ∨ (v⌋b) = (−1)(n−k)(n−l−1)(v⌋b) ∨ a
= (−1)(n−k)(n−l−1)v⌋(b ∨ a)
= (−1)(n−k)(n−l−1)+(n−k)(n−l)v⌋(a ∨ b)
= (−1)(n−k)(n−l−1)+(n−k)(n−l)(v⌋a) ∨ b
= (−1)(n−k)(2n−2l−1)(v⌋a) ∨ b
= (−1)k−n(v⌋a) ∨ b
= −(−1)k−1−n(v⌋a) ∨ b

= −(−1)n(̂v⌋a) ∨ b .

This generalizes to multivectors x, y by linearity.
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Dual and join in projective algebra For the projective algebra Gn,0,1 with its degenerate inner
product, the dual definition of Eq. 6 unfortunately does not yield a bijective dual. For example,
e0ẽ012...n = 0. For a bijective dual that yields the complementary indices on basis elements, a
different definition is needed. Following Dorst [17], we use the right complement. This involves
choosing an orthogonal basis and then for a basis k-vector x to define the dual x∗ to be the basis
n+ 1− k-vector such that x ∧ x∗ = I, for pseudoscalar I = e012...n. For example, this gives dual
e∗01 = e23, so that e01 ∧ e23 = e0123.

This dual is still easy to compute numerically, but it can no longer be constructed solely from
operations available to us in the geometric algebra. This makes it more difficult to reason about
equivariance.
Proposition 7. In the algebra Gn,0,1, the join a ∨ b = (a∗ ∧ b∗)−∗ is equivariant to Spin(n, 0, 1).

Proof. Even though the dual is not a Gn,0,1 operation, we can express the join in the algebra as
follows. We decompose a k-vector x as x = tx + e0px into a Euclidean k-vector tx and a Euclidean
(k − 1)-vector px. Then Dorst [17, Eq (35)] computes the following expression

(tx + e0px) ∨ (ty + e0py) = ((tx + e0px)
∗ ∧ (ty + e0py)

∗)−∗

= tx ∨Euc py + (−1)np̂x ∨Euc ty + e0(px ∨Euc py) , (10)

where the Euclidean join of vectors a, b in the projective algebra is defined to equal the join of the
corresponding vectors in the Euclidean algebra:

a ∨Euc b := ((a ẽ12...n) ∧ (b ẽ12...n))e12...n

The operation a ∨Euc b is Spin(n, 0, 0) equivariant, as discussed in Lemma 5. For any rotation
r ∈ Spin(n, 0, 1) (which is Euclidean), we thus have r[a ∨Euc b] = r[a] ∨Euc r[b]. This makes the
PGA dual in Eq. (10) equivariant to the rotational subgroup Spin(n, 0, 0) ⊂ Spin(n, 0, 1).

We also need to show equivariance to translations. Let v be a Euclidean vector and τ = 1− e0v/2 a
translation. Translations act by shifting with e0 times a contraction: τ [x] = x− e0(v⌋x). This acts
on the decomposed x in the following way: τ [tx + e0px] = τ [tx] + e0px = tx + e0(px − v⌋tx).
We thus get:

τ [x] ∨ τ [y] = (τ [tx] + e0px) ∨ (τ [ty] + e0py)

= (tx + e0(px − v⌋t)) ∨ (ty + e0(py − v⌋ty))

= x ∨ y − tx ∨Euc (v⌋ty)− (−1)nv̂⌋tx ∨Euc ty
− e0 (px ∨Euc (v⌋ty) + (v⌋tx) ∨Euc py) Used (10) & linearity

= x ∨ y − e0 (px ∨Euc (v⌋ty) + (v⌋tx) ∨Euc py) Used (9)

= x ∨ y − e0

(
−(−1)nv̂⌋px ∨Euc ty + (v⌋tx) ∨Euc py

)
Used (9)

= x ∨ y − e0 ((−1)n(v⌋p̂x) ∨Euc ty + (v⌋tx) ∨Euc py)

= x ∨ y − e0 (v⌋ {(−1)np̂x ∨Euc ty + tx ∨Euc py}) Used (8)
= τ [x ∨ y]

The join is thus equivariant 12 to translations and rotations and is therefore Spin(n, 0, 1) equivariant.

Similar to the Euclidean case, we obtain full Pin(n, 0, 1) equivariance via multiplication with a
pseudoscalar. We thus also use the EquiJoin from Eq. (7) in the projective case.

A.3 Expressivity

As also noted in Ref. [17], in the projective algebra, the geometric product itself is unable to compute
many quantities. It is thus insufficient to build expressive networks. This follows from the fact that
the geometric product preserves norms.

12The authors agree with the reader that there must be an easier way to prove this.
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Lemma 7. For the algebra Gn,0,r, for multivectors x, y, we have ∥xy∥ = ∥x∥ ∥y∥.

Proof. ∥xy∥2 = xyx̃y = xyỹx̃ = x∥y∥2x̃ = xx̃∥y∥2 = ∥x∥2∥y∥2

Hence, any null vector in the algebra can never be mapped to a non-null vector, including scalars.
The projective algebra can have substantial information encoded as null vector, such as the position
of points. This information can never influence scalars or null vectors. For example, there is no
way to compute the distance (a scalar) between points just using the projective algebra. In the GATr
architecture, the input to the MLPs that operate on the scalars, or the attention weights, thus could
not be affected by the null information, had we only used the geometric product on multivectors.

To address this limitation, we use besides the geometric product also the join. The join is able to
compute such quantities. For example, given the Euclidean vector e12...n, we can map a null vector
x = e012...k to a non-null vector x ∨ e12...n ∝ e12...k.

B Architecture

Equivariant join One of the primitives in GATr is the equivariant join EquiJoin(x, y; z), which
we define in Eq. (7). For x and y, we use hidden states of the neural network after the previous layer.
The nature of z is different: it is a reference multivector and only necessary to ensure that the function
correctly changes sign under mirrorings of the inputs. We find it beneficial to choose this reference
multivector z based on the input data rather than the hidden representations, and choose it as the
mean of all inputs to the network.

Auxiliary scalars In addition to multivector representations, GATr supports auxiliary scalar repre-
sentations, for instance to describe non-geometric side information such as positional encodings or
diffusion time embeddings. In most layers, these scalar variables are processed like in a standard
Transformer, with two exceptions. In linear layers, we allow for the scalar components of multivectors
and the auxiliary scalars to freely mix. In the attention operation, we compute attention weights as

Softmaxi

(∑
c⟨qMV

i′c , kMV
ic ⟩+

∑
c q

s
i′ck

s
ic√

8nMV + ns

)
, (11)

where qMV and kMV are query and key multivector representations, qs and ks are query and key
scalar representations, nMV is the number of multivector channels, and ns is the number of scalar
channels.

Distance-aware dot-product attention As we argue in Sec. 3.3, it can be beneficial to extend
queries and keys with nonlinear features. We use the following choice:

ϕ(q) = ω(q\0)


q2\0∑
i q

2
\i

q\0 q\1
q\0 q\2
q\0 q\3

 and ψ(k) = ω(k\0)


−
∑

i k
2
\i

−k2\0
2k\0 k\1
2k\0 k\2
2k\0 k\3

 with ω(x) =
x

x2 + ϵ
.

Here the index \i denotes the trivector component with all indices but i. Then

ϕ(q) · ψ(k) = −ω(q\0)ω(k\0)∥k\0 q⃗ − q\0 k⃗∥2R3 ,

where we use the shorthand x⃗ = (x\1, x\2, x\3)
T . When the trivector components of queries and

keys represent 3D points, with q\0 = k\0 = 1, it becomes proportional to the pairwise negative
squared Euclidean distance between the points.

In this notation, a trivector q = (q\0, q⃗) transforms under rotation R ∈ O(3) and translation t⃗ ∈ R3
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as (q\0, q⃗) 7→ (q\0, Rq⃗ + q\0t⃗). It is easy to see that the inner product is invariant:

ϕ(q) · ψ(k) 7→ −ω(q\0)ω(k\0)∥k\0 (Rq⃗ + q\0t⃗)− q\0 (Rk⃗ + k\0t⃗)∥2R3

= −ω(q\0)ω(k\0)∥R(k\0 q⃗ − q\0 k⃗) + q\0k\0t⃗− q\0k\0t⃗∥2R3

= −ω(q\0)ω(k\0)∥k\0 q⃗ − q\0 k⃗∥2R3

= ϕ(q) · ψ(k) .

The normalization function ω could have been chosen as ω(x) = 1, but this would make the attention
logit a fourth-order polynomial of the keys and queries, which tends to lead to instabilities when
taking the exponential in the softmax. The choice above makes the attention logit a quadratic function
for larger values of the keys and queries, just like regular dot-product attention.

For the interested reader, we’d like to note that the above inner product is closely related to the inner
product in another geometric algebra, the conformal geometric algebra. We plan on exploring this
connection in future work.

With this final piece, GATr’s attention mechanism computes attention weights from three sources:
the G3,0,1 inner product of the multivector queries and keys ⟨q, k⟩, the distance-aware inner product
of the nonlinear features ϕ(q) · ψ(k), and the Euclidean inner product of the auxiliary scalars qs · ks.

We find it beneficial to add learnable weights as prefactors to each of these three terms. The attention
weights are then given by

Softmaxi

(
α
∑

c⟨qMV
i′c , kMV

ic ⟩+ β
∑

c ϕ(q
MV
i′c ) · ψ(kMV

ic ) + γ
∑

c q
s
i′ck

s
ic√

13nMV + ns

)
with learnable, head-specific α, β, γ > 0.

This may look complicated, but all terms can be summarized in a single Euclidean dot product
between query features and key features. We can therefore use efficient implementations of dot-
product attention to compute GATr’s attention.

Multi-query attention To reduce memory use, we also consider a version of GATr that uses multi-
query attention [43] instead of multi-head attention, sharing the keys and values among attention
heads.

C Experiments

C.1 n-body dynamics

Dataset We generate a synthetic n-body dataset for n objects by following these steps for each
sample:

1. The masses of n objects are sampled from log-uniform distributions. For one object (the
star), we use m0 ∈ [1, 10]; for the remaining objects (the planets), we use mi ∈ [0.01, 0.1].
(Following common practice in theoretical physics, we use dimensionless quantities such
that the gravitational constant is 1.)

2. The initial positions of all bodies are sampled. We first use a heliocentric reference frame.
Here the initial positions of all bodies are sampled. The star is set to the origin, while the
planets are sampled uniformly on a plane within a distance ri ∈ [0.1, 1.0] from the star.

3. The initial velocities are sampled. In the heliocentric reference frame, the star is at rest.
The planet velocities are determined by computing the velocity of a stable circular orbit
corresponding to the initial positions and masses, and then adding isotropic Gaussian noise
(with standard deviation 0.01) to it.

4. We transform the positions and velocities from the heliocentric reference frame to a global
reference frame by applying a random translation and rotation to it. The translation is
sampled from a multivariate Gaussian with standard deviation 20 and zero mean (except
for the domain generalization evaluation set, where we use a mean of (200, 0, 0)T ). The
rotation is sampled from the Haar measure on SO(3). In addition, we apply a random
permutation of the bodies.
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5. We compute the final state of the system by evolving it under Newton’s equations of motion,
using Euler’s method and 100 time steps with a time interval of 10−4 each.

6. Finally, samples in which any bodies have traveled more than a distance of 2 (the diamater
of the solar system) are rejected. (Otherwise, rare gravitational slingshot effects dominate
the regression loss and all methods become unreliable.)

We generate training datasets with n = 4 and between 100 and 105 samples; a validation dataset
with n = 4 and 5000 samples; a regular evaluation set with n = 4 and 5000 samples; a number-
generalization evaluation set with n = 6 and 5000 samples; and a E(3) generalization set with n = 4,
an additional translation (see step 4 above), and 5000 samples.

All models are tasked with predicting the final object positions given the initial positions, initial
velocities, and masses.

Models For the GATr model, we embed object masses as scalars, positions as trivectors, and
velocities (like translation vectors) as bivectors. We use 10 attention blocks, 16 multivector and 128
scalar channels, and 8 attention heads, resulting in 1.9 million parameters. We use multi-head attention
and do not use the distance-aware attention mechanism (as it led to similar results in a short test).

For the Transformer baseline, we follow a pre-layer normalization [2, 54] architecture with GELU
activations [23] in the MLP block. We use 10 attention blocks, 384 channels, and 8 attention heads,
resulting in 11.8 million parameters.

We also compare to a simple MLP with GELU activations. We test models with 2, 5, and 10 layers,
each with 384 channels. We report results for the best-performing 2-layer MLP, which has 0.2 million
parameters.

Next, we compare GATr to the geometric-algebra-based, but not equivariant, GCA-GNN [41]. We
follow the hyperparameters reported by Ruhe et al. [41] for their Tetris experiment, arriving at an
architecture with 1.5 million parameters. We also experiment with the GCA-MLP architecture [41],
but find worse results.

Finally, we compare to two equivariant baselines: SEGNN [6] and the SE(3)-Transformer [20]. In
both cases we use the code released by the authors and the hyperparameters they recommend for
(slightly different) n-body experiments. This leads to models with 0.1 (SEGNN) and 0.3 (SE(3)-
Transformer) million parameters. For SEGNN, we vary the number of nearest neighbours between 3
and the number of objects in the scene (corresponding a fully connected graph) and show the best
result.

Training All models are trained by minimizing a L2 loss on the final position of all objects. We
train for 50 000 steps with the Adam optimizer, using a batch size of 64 and exponentially decaying
the learning rate from 3 · 10−4 to 3 · 10−6.

C.2 Arterial wall-shear-stress estimation

Dataset We use the single-artery wall-shear-stress dataset published by Suk et al. [48]. It consists
of 2000 meshes of human arteries, of which 1600 are used for training the remaining for validation
and evaluation. Each mesh has around 7000 nodes.

We experiment both with randomly rotated meshes as well as a canonicalized version, in which all
meshes point in the same direction.

Models For the GATr model, we embed object the positions of the mesh nodes as trivectors, the
mesh surface normals as vectors, and the geodesic distance to the inlet as scalars. We use multi-query
attention, the distance-aware attention mechanism, and learnable prefactors for the attention weights.
Our model has 10 attention blocks, 8 multivector channels and 32 scalar channels, and 4 attention
heads, resulting in 0.2 million parameters.

For the Transformer baseline, we follow a pre-layer normalization [2, 54] architecture with GELU
activations [23] in the MLP block. We use 10 attention blocks, 160 channels, and 4 attention heads,
resulting in 1.7 million parameters.

In addition, we compare to the results reported by Suk et al. [48].
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Method Mean approximation error [%]
Random orientations Canonical orientations

GATr 5.6 5.5
Transformer 10.5 6.0
PointNet++ [36] 12.3 8.6
GEM-CNN [15] 7.7 7.8

Table 2: Arterial wall-shear-stress estimation [48]. We show the mean approximation error (lower is better),
reporting results both on randomly oriented training and test samples (left) and on a version of the dataset in
which all artery meshes are canonically oriented (right). We compare GATr to our own Transformer baseline as
well as to the results reported by Suk et al. [48].

Method Mean approx. error [%]

GATr (default) 6.1

Without multivector representations (= Transformer) 10.5
Without aux. scalar representations 10.4
Without equivariance constraints on linear maps 9.7
Less wide (4 MV channels + 8 scalar channels) 12.0
Less deep (5 blocks) 7.8

Table 3: Ablation experiments on the arterial wall-shear-stress dataset. We report the mean approximation error
(lower is better) on the validation set after training for 100 000 steps.

Training We train the models on a L2 loss on wall shear stress. We train for 200 000 steps with the
Adam optimizer, using a batch size of 8 and exponentially decaying the learning rate from 3 · 10−4 to
3 · 10−6.

To fit the models into memory, we use mixed 16-bit / 32-bit precision, gradient checkpointing [9], and
multi-query attention. Most importantly, we compute dot-product attention with the implementation
by [32].

Results The results of our experiments are shown in Fig. 3 and in Tbl. 2.

Ablation studies We also perform ablation experiments to study the impact of multiple design de-
cisions on the performance. All major design choices appear to play an important role: without multi-
vector representations, without auxiliary scalar representations, or without equivariance constraints,
GATr performs much worse. Further reducing the model’s width also severaly harms the performance.

C.3 Robotic planning through invariant diffusion

Environment We use the block stacking environment from Janner et al. [27]. It consists of a Kuka
robotic arm interacting with four blocks on a table, simulated with PyBullet [13]. The state consists
of seven robotic joint angles as well as the positions and orientations of the four blocks. We consider
the task of stacking four blocks on top of each other in any order. The reward is the stacking success
probability and is normalized such that 0 means that no blocks are ever successfully stacked, while
100 denotes perfect block stacking.

Dataset and data parameterization We train models on the offline trajectory dataset published by
Janner et al. [27]. It consists of 11 000 expert demonstrations.

To facilitate a geometric interpretation, we re-parameterize the environment state into the positions
and orientations of the robotic endeffector as well as the four blocks. The orientations of all objects
are given by two direction vectors. In addition, there are attachment variables that characterize
whether the endeffector is in contact with either of the four blocks. In this parameterization, the
environment state is 49-dimensional.

We train models in this geometric parameterization of the problem. To map back to the original
parameterization in terms of joint angles, we use a simple inverse kinematics model that solves for
the joint angles consistent with a given endeffector pose.

23



Method Reward

GATr-Diffuser (ours) 74.8± 1.7
Transformer-Diffuser 69.8± 1.9
Diffuser [27] (reproduced) 57.7± 1.8

Diffuser [27] 58.7± 2.5
EDGI [7] 62.0± 2.1
CQL [30] 24.4
BCQ [21] 0.0

Table 4: Diffusion-based robotic planning. We show the normalized cumulative rewards achieved on a robotic
block stacking task [27], where 100 is optimal and means that each block stacking task is completed successfully,
while 0 corresponds to a failure to stack any blocks. We show the mean and standard error over 200 evaluation
episodes. The top three results were computed in the GATr code base, the bottom four taken from the literature [7,
27].

Models For the GATr model we embed object positions as trivectors, object orientations as oriented
planes, gripper attachment variables as scalars, and the diffusion time as scalars. We use axial
attention, alternating between attending over time steps and over objects, with positional embeddings
along the time axis. Neither multi-query attention nor the distance-aware attention mechanism are
used. We train three models, with 10, 20, and 30 Transformer blocks. In each case we use 16
multivector plus 32 scalar channels and 8 attention heads. We report results for the best-performing
model with 20 Transformer blocks and 4.0 million parameters.

For the Transformer baseline, we also use axial attention, pre-layer normalization, GELU activations,
and rotary positional embeddings. We experiment with 6 models, with 10, 20, or 30 Transformer
blocks and 144 or 384 channels. All use 8 attention heads. We report results for the best model,
which has 20 Transformer blocks, 144 channels, and 3.5 million parameters.

For the Diffuser baseline, we follow the architecture and hyperparameters described by Janner et al.
[27]. The model has 65.1 million parameters.

All models are embedded in a diffusion pipeline as described by Ho et al. [25], using the diffusion
time embedding and hyperparameter choices of Ref. [27]. In particular, we use univariate Gaussian
base densities and 1000 diffusion steps.

Training We train all models by minimizing the simplified diffusion loss proposed by Ho et al.
[25]. For our GATr models and the Diffuser baselines we use an L2 loss and train for 200 000 steps
with the Adam optimizer, exponentially decaying the learning rate from 3 · 10−4 to 3 · 10−6. This
setup did not work well for the Diffuser model, where (following Janner et al. [27]) we use a L1 loss
and a low constant learning rate instead.

Evaluation All models are evaluated by rolling out at least 200 episodes in a block stacking
environment and reporting the mean task and the standard error. We use the planning algorithm
and parameter choices of Janner et al. [27] (we do not optimize these, as our focus in this work is
on architectural improvements). It consists of sampling trajectories of length 128 from the model,
conditional on the current state; then executing these in the environment using PyBullet’s PID
controller. Each rollout consists of three such phases.

Results The results of our experiments are shown in Fig. 4 and in Tbl. 4.

C.4 Scaling

Setup To study computational requirements and scaling behaviour, we measure the wall time and
peak GPU memory usage during a combined forward and backward pass for various models. We use
random Gaussian input data with a batch size of 4, a variable number of items (tokens), and four input
channels. After a number of warmup steps, measure the resource use over ten successive steps and
report the average time and peak memory usage. For all measurements, we use mixed 16-bit / 32-bit
precision, gradient checkpointing, and an efficient attention implementation by Lefaudeux et al. [32].
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Models The GATr model has 10 blocks, 8 multivector and 16 scalar channels, and 4 attention heads.
We use multi-query attention, the distance-aware attention mechanism, and learnable prefactors for
the attention weights.

For the baselines, we choose hyperparameters to match GATr in terms of depth (number of blocks),
width (total size of hidden channels), and token connectivity (allowing all tokens to interact with each
other in each layer). For the Transformer, this leads to the same choices as for GATr, except that 144
hidden channels are used.

For SEGNN and the SE(3)-Transformer, we use fully connected graphs, O(3) representations
ℓ ≤ 1, a total of 144 hidden features distributed between scalar and vector representations, and 10
layers. We use the official implementation by Brandstetter et al. [6] for SEGNN and the optimized
implementation by Milesi [35] for the SE(3)-Transformer.
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