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Abstract

Extending recent advances in Learning from Demonstration (LfD) frameworks to
multi-robot settings poses critical challenges such as environment non-stationarity
due to partial observability which is detrimental to the applicability of existing
methods. Although prior work has shown that enabling communication among
agents of a robot team can alleviate such issues, creating inter-agent communication
under existing Multi-Agent LfD (MA-LfD) frameworks requires the human expert
to provide demonstrations for both environment actions and communication actions,
which necessitates an efficient communication strategy on a known message space.
To address this problem, we propose Mixed-Initiative Multi-Agent Apprenticeship
Learning (MixTURE). MixTURE enables robot teams to learn from a human
expert-generated data a preferred policy to accomplish a collaborative task, while
simultaneously learning emergent inter-agent communication to enhance team
coordination. The key ingredient to MixTURE’s success is automatically learning
a communication policy, enhanced by a mutual-information maximizing reverse
model that rationalizes the underlying expert demonstrations without the need for
human generated data or an auxiliary reward function. MixTURE outperforms
a variety of relevant baselines on diverse data generated by human experts in
complex heterogeneous domains. MixTURE is the first MA-LfD framework to
enable learning multi-robot collaborative policies directly from real human data,
resulting in 44% less human workload, and 46% higher usability score.

1 Introduction

In recent years, Multi-Agent Reinforcement Learning (MARL) has been predominantly used by
researchers to optimize a reward signal and for learning multi-robot tasks. Nevertheless, RL generally
suffers from key limitations such as difficulty in designing an expressive and suitable reward function
for complex tasks [60, 2] which can lead to undesirable robot behavior [14, 60, 64], high sample
complexity [29], and safety concerns due to direct robot-environment interactions for optimizing
the policy [64]. These problems are further exacerbated in multi-robot scenarios where inter-robot
interactions and environment dynamics can be more complex and task descriptions and objectives
more ambiguous [60, 53, 52]. As such, accurate models of human strategies and behaviors achieved
via imitation methods are increasingly important for safely and effectively deploying autonomous
systems and aligning values motivating robot behaviors with human values [47, 22, 12].

Learning from Demonstration (LfD) attempts to learn the correct behavior (policy) from a set of
expert-generated demonstrations rather than a reward function, which can result in lower sample

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



complexity and a learned policy that more closely reflects the human’s preferred strategy [48, 47].
Unfortunately, extending existing single-agent LfD paradigms such as Behavioral Cloning (BC) [66]
or Inverse Reinforcement Learning (IRL) [1] to multi-robot settings poses several challenges such
as environment non-stationarity and existence of multiple equilibrium solutions (an agent’s optimal
policy depends on other agents’ policies) [37, 27, 60]. One can adopt such frameworks directly in a
centralized system. However, centralized systems are not scalable, are prone to single-node failure,
and pose significant computation overhead, and therefore, decentralized approaches (e.g., limited-
range communication and local computations) have been more desired in multi-robot systems [20].

Prior work has shown that enabling communication among agents of a robot team creates a shared
mental model of joint action-spaces and therefore, allowing coordinated action decisions [38, 65, 55,
19, 51] to handle challenges such as partial observability and environment dynamicity [25, 54, 50].
Although LfD can resolve the high sample complexity and reward shaping problems in RL, the task
of MA-LfD can be onerous for the humans as they have to control multiple robots and imagine and
simulate an appropriate Theory-of-Mind to create a communication strategy for the robot team.

Introducing the inter-agent communication [32] under current state-of-the-art (SOTA) Multi-Agent
LfD (MA-LfD) frameworks such as Multi-Agent Generative Adversarial Imitation Learning (MA-
GAIL) [60] or Multi-Agent Adversarial IRL (MA-AIRL) [71] requires the human expert to provide
demonstrations for both environment actions and communication actions. Such approaches assume
that the human expert has access to an efficient communication strategy on a known finite message
space in addition to a known strategy for taking environment actions [42]. This assumption, however,
is invalid, since dynamic environments with multiple interacting agents will be too complex and
unpredictable for humans to be able to develop cohesive and comprehensive inter-agent communica-
tion protocols. Even if such an efficient communication strategy exists, demonstrating both the task
strategy as well as the communication strategy could potentially pose significant workload on the
human expert, which in turn can affect the performance and quality of demonstrations. These issues
become even more severe when the robot team is heterogeneous or of composite nature (i.e., agents
with different observation- and action-spaces as well as different objectives) where agents must rely
on communication to operate and fulfill their tasks correctly [54, 7, 41].

To address these challenges, we develop a distributed MA-LfD framework to efficiently incorporate a
human expert’s domain-knowledge of teaming strategies for collaborative robot teams and directly
learn team coordination policies from expert human teachers. To this end, we propose Mixed-
Initiative Multi-Agent Apprenticeship Learning (MixTURE) which enables robot teams to learn
an expert’s preferred strategy to act in an environment. MixTURE simultaneously learns end-to-
end emergent communication for the robot team to enhance team coordination, without the need
for human generated data or an auxiliary reward function. To improve the quality of the learned
inter-agent communication protocol, we reduce the entropy of a generated message given joint
states and actions by maximizing the Mutual Information (MI) between messages and joint states.
We demonstrate through empirical evaluation and a human subject experiment that our LfD-based
MixTURE outperforms RL based methods due to reward function independence and low sample
complexity. Furthermore, MixTURE significantly alleviates the human demonstrators’ workload
and time required to provide demonstrations, increases system usability, and improves overall
collaboration performance of the robot team. Our key contributions are as follows:

1. We propose the MixTURE framework for learning robot teaming strategies from human
expert demonstrations while simultaneously learning inter-agent communication through
online interactions during training, without the need for expert data or an auxiliary reward.

2. We develop an MI maximization-based emergent communication learning model which
reduces the entropy of a generated message for an agent given joint state-observations.

3. We evaluate MixTURE on real, diverse human-generated data, collected in a human-subject
user study, and show that, in a complex multi-agent domain with heterogeneous tasks, we
are able to achieve ∼ 42% − ∼ 77% higher performance and a significantly lower sample
complexity. We also show that using MixTURE significantly improves workload and system
usability relative to a benchmark MA-LfD framework. To best of our knowledge, this is the
first work to train a MA-LfD framework on real human data.

4. We investigate the effects of demonstrating both environment actions and communication
actions on a human expert’s workload, demonstration quality, and system usability score.
Our results show that a high-workload demonstration process in classic MA-LfD approaches

2



significantly (p < .001) reduces an expert’s demonstration quality (measured by perfor-
mance) and the system’s usability score. MixTURE significantly improves these results;
increasing a human’s performance and experience engaging in MA-LfD.

2 Related Work

The literature for Multi-Agent LfD (MA-LfD) primarily aims to address the complexity of simul-
taneously training multiple agents under coordinated [43, 58, 46, 57, 68, 28] and uncoordinated
tasks [6, 69, 40, 70]. In [61, 8] the MA-LfD problem is reduced into a single-agent problem by mak-
ing the assumption that all agents share the same dynamics, observation spaces, and model parameters.
In [34], a coordinated multi-agent IL approach is proposed which learns a latent coordination model
along with the individual agent policies. In [60] the single-agent GAIL framework is extended for
multi-agent scenarios along with a practical actor-critic method for multi-agent imitation. Similarly,
in [71] the AIRL method was extended to the multi-agent settings. In [62] a scalable multi-agent LfD
approach is proposed where a model-based heuristic method for automated swarm reorganization is
leveraged to improve multi-agent task allocation problem. In [4] an expert feedback-based system is
developed to address multi-agent path-finding problem. In [64] authors create an advising system to
incorporate sub-optimal model-based heuristic policies to help improve MARL performance. Other
prior work focused on learning human profile/behavior models for improved MA-LfD [45, 5]. More
recently, Hoque et al. [26] proposed Fleet-DAgger , formalizing interactive fleet learning setting, in
which multiple robots interactively query and learn from multiple human supervisors.

Nevertheless, applicability of these prior works in the collaborative multi-agent problems is consider-
ably limited since none of these works explicitly address the inter-agent communication in dynamic
and partially observable domains where agents not only need to take task-related actions, but also
need to communicate and share information for coordination. Additionally, none of these prior work
leverage real human-generated data for training to evaluate the approach against heterogeneity and
diversity in human data. Our work addresses these limitations by eliminating the requirement for an
expert to demonstrate a communication strategy. Instead, the human expert only needs to teach the
robot team how to complete a task through demonstrations, and the robots will automatically learn a
communication strategy that aligns with the expert’s demonstrations. We also collect real human data
to evaluate our method’s ability to cope with variations in demonstration styles and strategies.

3 Problem Formulation: General MA-LfD with Heterogeneous Agents

We ground our problem formulation in a Markov Game (MG) [36] generalized to include partial
observability and heterogeneous agents. We define a set of heterogeneous agents in a composite robot
team (i.e., composed of different classes of robots) as agents that can have arbitrarily different state-,
observation-, and action-spaces. The agents can also have different task objectives which, when
enacted in coordination, enable the team to achieve a shared overarching mission. Accordingly, we
define our generic MG as a 9-tuple: ⟨C,N , {S(c)}c∈C , {A(c)}c∈C , {Ω(c)}c∈C , {O(c)}c∈C , r, T , γ⟩.
C is set of all available agent classes in the composite robot team and the index c ∈ C denotes the
agent class. N =

∑
⟨c∈C⟩ N

(c) is the total number of collaborating agents where N (c) represents
the number of agents in class c. {S(c)}c∈C and {A(c)}c∈C are discrete joint sets of state- and
action-spaces, respectively. {Ω(c)}c∈C is the joint set of observation-spaces, including class-specific
observations. Agents of the same class have identical S , A, and Ω. γ ∈ [0, 1) is the temporal discount
factor for each unit of time and T is the state transition probability density function. At each timestep,
t, each agent, j, of the c-th class can receive a partial observation o

cj
t ∈ Ω(c) according to some

class-specific observation function {O(c)}c∈C : o
cj
t ∼ O(c)(·|s̄). Next, each agent, j, of class c, takes

an action, acjt , forming a joint action vector ā =
(
a11t , a12t , · · · , ac1t , · · · , acjt

)
. When agents take

the joint action ā, in the joint state s̄ and depending on the next joint-state, they receive an immediate
reward, r(s̄, ā) ∈ R, shared by all agents regardless of classes. Each agent, j, of a class, c, achieves
its own objective by sampling actions from a stochastic policy π

(c)
j . The objective of each agent is

then to maximize the team return (expected sum of discounted rewards), i.e., Eπ

[∑T
t=0 γ

trt

]
.
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To directly learn the human’s preferred strategy and resolve the reward specification problems [2]
posed by RL, we leverage a demonstration dataset, D, provided by an expert, rather than the ground
truth reward signal r employed in MARL. Unlike [71, 60] or [67], we do not assume multiple human
experts in our MG to avoid the need for further coordination amongst the experts, which can be
time consuming and expensive. D is a set of trajectories {τ cj }N

(c)

j=1 , where τ cj = {(ocjt , a
cj
t )}Tt=1 is an

expert trajectory collected by sampling a
cj
t ∼ πE(a

cj
t |ōt) in which πE is the expert policy and ōt is

the joint observation that the expert has access to at time t. We further assume that D contains the
entire supervision to the learning algorithm (i.e., no online interactions during training). We build the
MixTURE architecture on the generative adversarial training [21]. Our distributed GAIL objective
underlying MixTURE is shown in Eq. 1 where D(cj)

θ is a local discriminator that classifies expert and
policy trajectories for agent j of a class c, and π

(cj)
ϕ is the parameterized policy of agent j of a class c.

LD(c)
θ

= −Eτ∼πE ,(ō,ā)∼τ

[
logD(cj)

θ (ō, ā)
]
− E

τ∼π
(cj)

ϕ ,(ō,ā)∼τ

[
log

(
1−D(cj)

θ (ō, ā)
)]

(1)

According to [21], under the GAIL objective in Eq. 1 and at optimality, the distribution of generated
state-action pairs by π̄ϕ should match the distribution of demonstrated state-action pairs.

4 Mixed-Initiative Multi-Agent Apprenticeship Learning

Motivation and Problem Overview – Consider a generic composite team of robots including
agents with heterogeneous characteristics and task objectives. Without loss of generality, consider
a robot team composed of perception-only and action-only robots. Under our problem formulation
in Section 3, perception robots and action robots create two separate classes of agents that need to
collaborate on an overarching mission. For instance, in an application of wildfire fighting, robots
of the perception class (e.g., quadcopters) need to search an environment for firespots, while the
action robots (e.g., fire-extinguishing ground robots) who cannot sense the environment are required
to extinguish the firespots found by the perception robots [54, 55, 52, 3]. Note that neither of the
robot classes are capable of accomplishing the task without the other class.

To teach a collaborative policy to such a robot team, one can leverage demonstrations from a team
of humans where each member is an expert. Using a team of human experts, however, poses
further challenges: (1) simultaneous access to several human experts is expensive and can be time
consuming, and (2) a communication strategy (e.g., natural language) among the human demonstrators
is required for coordination, which can be challenging to translate to robot domain due to ambiguity,
colloquialisms, and context-dependent use [30, 23]. Additionally, humans’ communications might
not make sense to the robot agents as humans could be unaware of all agents’ full local state spaces.

Alternatively, we can leverage the demonstrations from a single human with domain-knowledge
regarding the entire mission objective. For example, a trainer/coach can play a simulated game of
firefighting using the aforementioned perception and action robots and provide expert demonstrations
for how to efficiently distribute agents and prioritize tasks for searching the environment and putting
out the fire. The challenge of using a single human expert, however, is that in this case the human
would also need to demonstrate communication-actions (i.e., what information should an agent
broadcast at each state) on top of the environment-actions (i.e., moving around or dousing fire). To
this end, humans would have to create and maintain a Theory-of-Mind (ToM) of each agent under
this increased action-space dimensionality, which significantly increases workload [15, 17].

To resolve this problem, we propose taking separate initiatives for teaching the robots in the team
how to operate (environment actions, at, per observation, ot) and how to communicate (commu-
nication message, zt, per state, st) such that a human expert would only be required to provide
environment-action demonstrations and the robot team would automatically infer on their own a
suitable communication policy for the underlying expert demonstrations. We call our approach
Mixed-Initiative Multi-Agent Apprenticeship Learning (MixTURE).

MixTURE Architecture – The proposed MixTURE architecture for human training of robot teams
is shown in Fig. 1. At each timestep, each agent generates an embedding, representing agent’s
belief space, from its local observation. To handle agents’ partial observability, the local observation
embeddings are then passed into local recurrent policies for each agent. Each GRU policy receives
the preprocessed features from the local observations as well as its own hidden state from previous
timesteps. Therefore, the policy output depends only on the history of local observations and actions.
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Figure 1: The proposed MixTURE architecture for a two-agent example scenario. At each timestep,
each agent generates an embedding from its local observation, which is then passed into local
recurrent policies for each agent. To learn from the expert demonstrations stored in the dataset DE ,
we build a distributed multi-agent GAIL architecture. We enable inter-agent communication by
adding an attentional communication module enhanced by a MI maximization reverse model.

To learn from the human expert demonstrations stored in the dataset DE , as shown in Fig. 1, we
build a distributed multi-agent GAIL architecture where each agent is equipped with a parametrized
discriminator, Dθ. The discriminators are trained via a Binary Cross Entropy (BCE) loss to distinguish
between state-action pair samples from the expert dataset and those generated by the generator (i.e.,
local policies). The output of the discriminators are treated as local rewards, which are then combined
to encourage collaboration and teaming behaviour among agents [31]. To learn the agent policies
through this shared reward signal, we leverage the Proximal Policy Optimization (PPO) [49].

We enable inter-agent communication by adding an attentional communication module in which each
agent is equipped with a fully-connected network that processes action-embeddings generated by
the recurrent policies of an agent and those generated by its local teammates (i.e., messages, z) to
output an action-decision. We enable this message-passing by creating differentiable communication
channels among agents. To maintain locality, these communication channels can be leveraged locally
(i.e., a communication graph where edges only exist when robots are spatially within close proximity).
For an agent, i, the action-embedding messages received from a teammate, j, are weighted by some
learned attention coefficients, αji, to assign message importance. Therefore, the input message
for agent i at time, t, can be computed as mj→i

t =
∑Nt(i)

j=1 αjiz
t
ji where Nt(i) represents the

neighbors, j, of agent i at time t. Here, αji are the learned attention coefficients that are computed
via αji = softmaxj(σ(W̄att[ωh̄i ∥ m̄j→i])). In this equation, W̄att are the learnable weights of
the attention network, ∥ represents concatenation, σ is an activation function nonlinearity, and h̄
represents the hidden states. The Softmax function is used to normalize the coefficients across all
neighbors j. Such attentional communication can enhance the action-decision quality, particularly
with increased number of agents or when the states may significantly vary in different parts of the
environment [16]. Messages in our communication module are entirely learned via backpropagation.

Mutual Information Maximization-Based Differentiable Communication – A challenge with
the communication model learned via the described end-to-end differentiable channels is that the
distribution of the messages broadcasted by an agent, i, given the state-observations, ρ(zij |ō), can have
a high variance. The desired behavior, instead, is that the agents employ a cohesive communication
strategy in which an agent sends a consistent message when it observes relatively similar states.

To resolve this issue, we propose maximizing the Mutual Information (MI) between an agent’s
outgoing message and the joint state-observations. MI is a measure of the reduction in entropy
of a probability distribution, X , given another probability distribution, Y , such that I(X;Y ) =
H(X)−H(X|Y ), where H(X) denotes the entropy of X and H(X|Y ) is the conditional entropy
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of X given Y [33]. In our work, by maximizing the MI between the distribution of an agent’s
message, ρ(zij |ō), and the joint observations, we reduce the entropy over messages and encourage
the communication model to be more consistent. Maximizing the MI in this way encourages zij to
correlate with features within the observation distribution (i.e., mode discovery) [13, 44].

Unfortunately, a direct MI Maximization (MIM) between the message distributions and joint obser-
vations as formulated above, I(zij ; ō) = H(zij) −H(zij |ō), is intractable as it requires access to
the true posterior, ρ(zij |ō). Therefore, in keeping with prior work, we rely on the Evidence Lower
Bound (ELBO) of the MI instead. As shown in prior work [13], by minimizing an MSE loss between
a sample from the current message embedding and the approximate posterior, modeled as a normal
distribution with constant variance, is equivalent to maximizing the likelihood of the posterior.

In practice, we build a distributed reverse model in the MixTURE architecture (shown in Fig. 1) to
accommodate the mentioned MSE loss. The distributed reverse model for each agent has access
to the local received messages as well as the global joint-actions taken by all agents such that the
optimization results in a communication entropy-reduction mechanism at the team level. Since
actions and generated messages are functions of the state-observations, each reverse model, Θ, can
take in the joint actions, ā, and all received messages, zji, to estimate the outgoing message for agent,
i, as ẑtij = Θi(ā, z

t
ji). The policy and reverse models are trained together in an end-to-end fashion to

minimize the message reconstruction error as LMIMci = 1
N

∑N
i=1 ∥Θi(ā, zji)− zij∥2.

We note that while the addition of the MI maximization loss would make the overall loss function more
complex, we believe there are further benefits that could be achieved via training the MIM reverse
model, besides enhancing agent certainty in choosing actions. Particularly, we believe our MIM
reverse model, when tuned well, has the potential to roughly cluster message embeddings based on
observation-action pairs which can provide further useful information on the learned communication
protocol for a task and further insight into interpreting the learned communication protocols.

Training and Execution – We build the MixTURE framework in a Centralized Training for De-
centralized Execution (CTDE) paradigm [19] to accommodate for the global joint-action inputs
to the MI maximizing reverse models during training. We note that, the MIM reverse model is
only used during training and is cut during the execution, and therefore, the learned policies can be
executed fully decentralized. To optimize the policies based on the reward signal generated by the
discriminators, we leverage the PPO algorithm [49]. Moreover, to enhance and stabilize the training
we propose combining an offline BC loss, LBCci = − 1

N
∑N

i=1 πi(a
ci
t |ocit , ztji), with the online GAIL

loss. As shown by prior work [18], through this combination, the offline BC helps preserving ground
knowledge that should be respected during training, while the online part helps with learning of new
information encountered during execution. As such, putting together our distributed GAIL loss in
Eq. 1, the standard clipped PPO loss [49], the offline BC loss, and the MIM loss introduced above,
we present the full loss expression to train the MixTURE architecture as in Eq. 2, where ζπ and ζDE

are minibatches of trajectory segments belonging to current policy, π, and demonstration dataset, DE ,
respectively, N is the total number of agents and λ is a tunable scaling parameter.

Ltotal(ζπ, ζDE
) =

N∑
i=1

(LD(ci)

θ

(ζπ, ζDE
)+LPPO(ci)(ζπ))+λBCLBC(ci)(ζDE

)+λMIMLMIM(ci)(ζπ) (2)

5 Evaluation

We break the problem of evaluating our proposed architecture for teaching multi-agent coordination
policies to (heterogeneous) robot teams into three research questions (RQ):

RQ1 Can MixTURE learn useful multi-agent coordination strategies from synthetic data (e.g, models
of human experts / Oz-of-Wizard [63])?

RQ2 Can MixTURE learn from diverse data generated by real human experts?
RQ3 How challenging is it for a human expert to provide multi-agent demonstrations and does

MixTURE alleviate these challenges (comparing workload and system usability)?

Environments – In keeping with prior work in MARL and MA-LfD [60, 54], we selected three multi-
agent domains that are partially observable and require collaboration among heterogeneous agents
(see Section 3). Please refer to the supplementary material for more details about the environments.
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Figure 2: Evaluation results for MixTURE and the baselines in the medium case on synthetic dataset.
MixTURE outperforms all baselines in both sample complexity and performance at convergence.

1. Predator-Prey (PP) [59]: the goal in this homogeneous (i.e., same class agents) domain is
for N predator agents with limited vision to find a stationary prey and move to its location.

2. Predator-Capture-Prey (PCP) [54]: a new class of capture-agents, are introduced to the
PP. In this heterogeneous domain, the goal of predator agents is the same, while capture
agents must move to the prey location and capture it, without having any observation inputs.

3. FireComander (FC) [54, 56]: two classes of robots, perception and action robots, are
required to collaborate to extinguish propagating firespots. Similar to the PCP domain,
perception robots search the domain to find hidden firespots, and action robots with no
observation must rely on communication to know where to put out the firespots using an extra
action when on a fire. Unlike the PCP, in this complex domain firespots randomly spread
over time and thus, the team must continue until all firespots are found and extinguished.

Baselines – To investigate our RQ1, we employ a variety of baselines, described below, all of which
utilize the combined offline BC and online loss training scheme. To collect the synthetic dataset, the
expert heuristic (Appendix 4) for environment-actions is a near-optimal search algorithm and for the
communication, it is an anticipatory observation sharing mechanism inspired by prior work [11, 10].

• MARL [49]: MA-PPO optimizing both environment-action and communication policies.
• BC+DC [66]: MixTURE ablation trained only via offline BC loss with diff. communication.
• NC MA-GAIL [60]: Non-communicative ablation of the MA-GAIL [60] framework.
• MA-GAIL [60]: Full MA-GAIL trained on full dataset w/ demonstrated communication.

5.1 Human-Subject Experiment: Conditions and Procedure

To investigate our RQ2 and RQ3, we conducted an IRB-approved human-subject user study in the
FireCommander domain. For more experiment details please refer to the supplementary material.

Domain, Setup, and Procedure – Our experiments were conducted in the context of a simulated
multi-robot task, leveraging the FireCommander (FC) domain under different difficulty levels and
modes. Depending on the level of difficulty, there can be multiple initial firespots, hidden from the
human, that propagate randomly based on a fixed wall-clock rate. The human expert was responsible
to strategically move the simulated robots to find and extinguish all firespots as fast as possible. The
human subject was shown a performance score at the end of each round, computed based on existing,
found, and extinguished fires. After briefing, each subject began by filling in a pre-questionnaire form
(demographic and prior videogame experience) followed by reading through a series of detailed game
instructions. To minimize the learning effect, subjects were allowed to practice all conditions until
they felt comfortable. Next, each subject played six different rounds of the game (i.e., two conditions
and three difficulty levels) in a randomly selected order. The demonstration data was fully stored to
be later used for training. Finally, each subject was asked to fill some post-measurement forms.

Participants – We recruited 55 participants (mean age = 25.0±2.67; 34.5% female). All participants
were recruited through on-university-campus advertisement and were trained equally for the task.

Independent Variables and Conditions – In this study, we seek to determine if MixTURE can
learn multi-agent collaborative policies from diverse human generated data without demonstrated
communication and we compare its performance against the MA-GAIL [60] with expert demonstrated
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Number of steps taken to win the game (lower is better).
Predator-Prey Predator-Capture-Prey FireCommander

Heu. Diff. easy medium hard easy medium hard easy medium hard

MARL ✓ - 15.57 17.93 47.40 23.38 56.04 79.76 78.77 79.09 80.00
BC+DC - ✓ 11.84 21.28 46.16 15.38 61.54 79.75 38.95 44.70 72.87
NC MA-GAIL - - 17.48 60.38 79.52 27.60 77.77 80.00 76.49 79.47 79.98
MA-GAIL ✓ - 11.68 20.39 49.08 16.43 44.84 79.86 77.46 79.47 80.00
MixTURE - ✓ 11.16 13.15 28.73 13.08 17.27 36.41 22.31 34.82 56.49

Table 1: Full evaluation results for all methods and all difficulty settings on synthetic dataset. Heu.
and Diff. indicate a models access to heuristic or differentiable communication, respectively.

Figure 3: Evaluation results for MixTURE and MA-GAIL [60] on real human data. From left to
right, the figures present test results for easy, medium, and hard scenarios with one initial firespot.

communication. We examine the performance across three levels of difficulty, i.e., easy, medium, and
hard, which represent game complexity. As such, we utilize a 2×3 within-subjects experiment design
varying across two abstractions: (1) only demonstrating environment actions for each robot at each
time step (i.e., noComm condition), 2) demonstrating both environment actions and communication
actions for each agent at each time step ((i.e., withComm condition)).

Metrics – To evaluate our RQ2 and RQ3, the demonstration data collected from the human subjects
for both noComm and withComm conditions are used to train MixTURE and the benchmark MA-
GAIL [60], respectively. The algorithms are compared in terms of the learned policy performance
(i.e., number of steps taken to win the game, where lower is better). Additionally, to address our RQ3,
we leverage the NASA-TLX Workload Survey [24] and the System Usability Scale (SUS) [9].

5.2 Results and Discussion

RQ1: Evaluation on Synthetic Dataset – We perform our evaluations across three different difficulty
levels: (1) easy (5 × 5 domain, 3 robots), (2) medium (10 × 10 domain, 6 robots), and (3) hard
(20× 20 domain, 10 robots). Table 1 presents the full evaluation results for collaborative policies
learned by MixTURE and the baselines in terms of number of steps taken to win the game (lower
is better). The test results show the mean performance values calculated over ten trials of running
the best training models. As shown, MixTURE achieves significant improvement over all baselines
and in all domains. Additionally, the learning curves in Fig. 2 (medium case), show significant
improvement in sample complexity. We believe our model provides a strong step towards learning
collaborative policies in multi-robot systems by setting a new SOTA in complex heterogeneous tasks.

We also performed several ablation studies, such as investigating scalability and effects of the MIM
reverse model for message reconstruction, discriminator architecture, and the combined offline BC
loss. Due to space constraints, all ablation results are available in the supplementary material.

RQ2: Training and Evaluation Results on Human-Subject Dataset – We train MixTURE and
MA-GAIL [60] (and other baselines) on data collected in our human-subject user experiment to
investigate our RQ2. The results are presented in Fig. 3. Please see the Appendix for environment
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details. As shown, MixTURE can learn high-quality multi-robot collaboration policies from diverse
human-generated demonstrations. This is while purely relying on human demonstrations [60], does
not succeed in this task. We hypothesize that a key point underlying MixTURE’s success despite
diversity and heterogeneity in human data is that the MIM-based differentiable communication
channels provide the model with ability to reason about the underlying human demonstrations and
cope with trajectory distribution through automatically finding a suitable communication protocol.
This result also shows that a demonstrated communication policy by a human expert is not enough to
efficiently coordinate the robot team in complex domains as the human is unaware of all agents’ local
states, which leads to the failure of existing MA-LfD frameworks such as the MA-GAIL [60]. We
hypothesize that MA-GAIL trained on demonstrated communications fails because: (1) humans are
not fully aware of all agents’ full local state spaces and therefore, the demonstrated communication
could be severely inefficient and sub-optimal. MixTURE instead learns an efficient communication
policy automatically through gradient updates; (2) The laborious task of providing both environment
and communication actions for the human demonstrators significantly deteriorates the quality of
demonstrated policies, which can be confirmed by our subject-study results in next section.

We believe that this strong result shows great potential for the MixTURE model to efficiently teach
multi-agent coordination and collaboration policies to robot teams through human demonstrations.

RQ3: Statistical Analysis – We investigate our RQ3 by quantifying the workload and SUS measures
reported by the human subjects. We hypothesize that:

H1 Demonstrating both an environment-action and a communication-action strategy for the robot
team increases the human expert’s workload and decreases the system’s usability score.

H2 Demonstrating both an environment-action and a communication-action strategy for the robot
team negatively affects human performance and the demonstration quality.

H1: We test for normality and homoscedasticity and do not reject the null hypothesis in either
case, using Shapiro-Wilk (p > 0.32 and p > 0.96) and Levene’s (p > 0.39 and p > 0.09)
tests for workload and SUS, respectively. For workload, we perform a paired t-test and find
that using the MixTURE model w/o communication demonstration was rated statistically signif-
icantly lower than using MA-GAIL w/ demonstrated communication by the expert (p < 0.001)
on NASA-TLX workload scale. For system usability, using a similar a paired t-test we find that
using the MixTURE model w/o communication demonstration led to a statistically significantly
higher SUS than using MA-GAIL w/ demonstrated communication by the expert (p < 0.001).
As shown in Fig. 4, relaxing the need for demonstrating a communication strategy reduced the
humans’ workload by 44.3% and increased the systems’ usability scale by 46.1% in our experiment.

Figure 4: Workload and SUS results for H1.

H2: We examine: (1) human’s performance
score in the game, (2) total tasks completed (i.e.,
fires extinguished), and (3) average demonstra-
tion time per step. We apply a paired samples
Wilcoxon test and confirm that (see Fig. 5, from
left to right), relaxing the need for demonstrating
a communication strategy through MixTURE
leads to achieving significantly higher perfor-
mance score (p < 0.001) by the human, bet-
ter ability to scale to more complex scenarios
with more tasks (p < 0.001), and significantly
lower demonstration time per step (p < 0.001).
Note that, the middle plot in Fig. 5 shows more
tasks completed (i.e., more firespots killed) for
withComm condition under easy and moderate
scenarios, which indicates a worse human performance in this conditions since existence of more
firespots means inefficiency in extinguishing the fire before it spreads too large. On the other hand,
under the noComm condition, humans can easily scale to larger domain sizes and more initial firespots.
Note that, lower tasks completed for withComm condition under the hard case is attributed to failing
the task and losing the game (i.e., hard game cut-off when score drops below 50).

Further Discussions and Limitations – Demonstrating multi-agent strategies can be considered a
highly involved and high-workload task, which in turn can affect a human’s situational awareness and

9



Figure 5: Objective human performance results supporting the H2. In summary, using the MixTURE
framework leads to significantly better human performance and a lower demonstration time.

optimality of demonstrations. We posit that a human’s decision-making for one agent is influenced by
knowledge of other agents’ observations. However, we note that, classic MA-LfD methods, such as
MA-GAIL, necessitate awareness all robots’ states and observations and they require providing both
environment and communication actions at the same time. In MixTURE, we relax this assumption
by tasking the human to only provide environment actions for robots one at a time. Our real human
subject study demonstrates this relaxation’s feasibility, enabling successful demonstrations provided
by humans for large and heterogeneous teams of simulated robots. In practice, one can use existing
multi-agent datasets (e.g., collaborative assembly in ROBOTURK [39, 67] or Meta’s STARDATA for
StarCraft II [35]) or readily create a demonstration dataset using existing tools (e.g., ROS, Gazebo).
MixTURE’s contribution comes in at this stage, where we can learn collaborative multi-agent policies
from such datasets.

The addition of the MIM loss to Eq. 2 can complicate the tuning process. While we never observed
any performance decay as a result of the MIM loss, tuning the MIM loss to achieve consistent and
significant performance improvement seems to be challenging. Finally, MixTURE currently does
not account for demonstration sub-optimality. An interesting future direction is then to modify the
MixTURE architecture to address suboptimal human demonstrations.

Conclusion – We proposed the MixTURE model to learn multi-agent collaborative policies for
a robot team, directly from human expert demonstrations. Using our method, a human expert
can teach the robot team how to accomplish a task collaboratively via demonstrations and the
team will automatically reason over and learn a communication strategy suitable for the underlying
demonstrations. The learned communication helps the robot team to deal with the partial observability,
reasoning about action-decisions to best respond to teammates’ policies, and alleviate the effects of
environment non-stationarity. We provided several empirical and experimental results, confirming
MixTURE’s strong ability to learn from expert heuristics and real diverse human generated data.

Broader Impact

Our experiments show that multi-agent learning from demonstration can be enabled for teams of
cooperating heterogeneous robots via direct human teaching. This greatly assists robot collaboration
through human domain knowledge and provides a strong next-step towards human-robot teaming.
We note that our research could be applied for good or otherwise, particularly in an adversarial setting.
Nonetheless, we believe democratizing this knowledge is for the benefit of society.
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