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Abstract

Federated learning (FL) is usually performed on resource-constrained edge devices,
e.g., with limited memory for the computation. If the required memory to train
a model exceeds this limit, the device will be excluded from the training. This
can lead to a lower accuracy as valuable data and computation resources are
excluded from training, also causing bias and unfairness. The FL training process
should be adjusted to such constraints. The state-of-the-art techniques propose
training subsets of the FL model at constrained devices, reducing their resource
requirements for training. However, these techniques largely limit the co-adaptation
among parameters of the model and are highly inefficient, as we show: it is actually
better to train a smaller (less accurate) model by the system where all the devices
can train the model end-to-end than applying such techniques. We propose a new
method that enables successive freezing and training of the parameters of the FL
model at devices, reducing the training’s resource requirements at the devices
while still allowing enough co-adaptation between parameters. We show through
extensive experimental evaluation that our technique greatly improves the accuracy
of the trained model (by 52.4 p.p.) compared with the state of the art, efficiently
aggregating the computation capacity available on distributed devices.

1 Introduction

Federated learning (FL) has achieved impressive results in many domains and is proposed for several
use cases, such as healthcare, transportation, and robotics [1, 2, 3, 4, 5, 6]. As data in FL is not
processed centrally but usually on resource-constrained edge devices, training machine learning
(ML) models impose a large computational burden on these devices [7]. Additionally, FL requires
communication, specifically exchanging ML model parameters from the devices to a centralized
entity for aggregation. Extensive research has been done to lower the communication overhead
required for FL, e.g., on the use of quantization in the communication [8, 9] or sketched updates [10].
Similarly, techniques such as partial updates [11], asynchronous aggregation [12, 13], and tier-based
aggregation [14, 15] have been proposed to lower and account for varying computational throughput.
While constrained computation throughput and communication capabilities can slow down FL
convergence, high memory requirements for training that are imposed on devices can exclude devices
completely from the FL system. This is, for example, the case in Google GBoard [16], where
devices that do not have 2GB of memory for training are removed. Excluding devices from training
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lowers the reachable accuracy, as fewer devices participate in the training, also resulting in bias and
unfairness [17].

Several techniques have been proposed to tackle these constraints, where the main idea is to train
a lower complexity submodel on the devices and embed the trained submodel into the full higher-
capacity server model. A submodel is typically created by scaling the width of the neural network
(NN), e.g., using a subset of convolutional filters per NN layer. There exist several variations of the
technique [9, 18, 19, 20]. In particular, Caldas et al. [9] propose Federated Dropout (FD), which
randomly, per round and per device, selects NN filters that are trained. Alam et al. [20] propose
FedRolex, a sliding window approach, where all devices train the same submodel, and in each FL
round, the used filter indices are shifted by one. While both these techniques allow training within
given memory constraints, our results show (Fig. 1) that they perform worse than a straightforward
baseline, i.e., using a smaller NN model that can be trained by all devices end-to-end. We evaluate
CIFAR10, FEMNIST, and TinyImageNet in an FL setting using ResNet and scale the width of the
NN down s.t. we achieve a 2− 8× reduction in training memory. We observe that training the same
small model at all devices outperforms FedRolex and FD w.r.t to the final accuracy and convergence
speed (we expect similar results for other subset-derived techniques), especially when enforcing a 4×
and 8× memory reduction (as also evaluated in [20]).
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Figure 1: Accuracy of FedRolex [20] and FD [9] compared to a small model using different NN
topologies and datasets after 2500/1000 FL rounds. In the case of 1×, both techniques are equivalent
to vanilla Federated Averaging (FedAvg). Hyperparameters of the experiments are given in Section 3.

Our results indicate that applying these techniques is rather harmful. This is as a large part of
filters/parameters has to be dropped during each round of training at each device, extremely limiting
the co-adaptation between parameters. Hence, the gradients for the subset of parameters that are
trained on devices are calculated without considering the error of the parameters that reside on the
server (more details in Appendix A). Motivated by these observations, we propose a new technique
that enables successive freezing and training of the parameters of the FL model at devices, reducing
the training’s resource requirements at the devices while allowing a higher co-adaptation between
parameters. Instead of switching between subsets of the model on an FL-round basis, we train
the same parameters for several rounds and successively switch to a larger model. To obey the
same memory constraints as in [9, 20], we train early layers using the full width while utilizing a
scaled-down NN head. We then freeze the early layers and expand the head layers’ width. By freezing
early layers, no activation has to be kept in memory, hence, we lower the memory footprint. But still,
the error of these frozen parameters is included in the calculation of the gradient of the new subset of
parameters. We apply this technique successively till all parameters of the model are trained.

In summary, we make the following novel contributions:

• We empirically show that employing current state-of-the-art techniques, FD [9] and Fe-
dRolex [20], for memory-constrained systems can actually hurt the performance.

• We propose a novel training scheme called Successive Layer Training (SLT)1, which ad-
dresses the shortcomings of previous techniques by successively adding more parameters to
the training, successively freezing layers, and reusing a scaled-down NN head.

• Our evaluation of common NN topologies, such as ResNet and DenseNet, shows that SLT
reaches significantly higher accuracies in independent and identically distributed (iid) and
non-iid CIFAR, FEMNIST, and TinyImageNet training compared to the state of the art.
Also, SLT provides a much faster convergence, reducing the communication overhead to
reach a certain level of accuracy by over 10× compared with FD and FedRolex. The same

1The source code of SLT is available at https://github.com/k1l1/SLT.
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Algorithm 1: Successive Layer Training: w and W label the set of all layers’ parameters.

Requires: Number of rounds R, devices C, number of devices per round |C(r)|,
configurations Sn n ∈ [1, . . . , N ], that satisfy constraint m, init. parameters W (1)

Server:
foreach round r = 1, 2, . . . , R do
C(r) ← select |C(r)| random devices out of C
w(r), S(r) ← ConfigurationSelection(W (r), r)
foreach device c ∈ C(r) in parallel do

w(r), S(r) receive from server
w(r,c) ← DeviceTraining(w(r), S(r))

upload w
(r,c)
j to server ∀j ∈ {j : KF < j ≤ K}

end
w

(r+1)
j ← 1

|C(r)|
∑

c∈C(r)

w
(r,c)
j //averaging of trained layers

W (r+1) ← w(r+1) //layers get embedded into server model
end

ConfigurationSelection (W , r):
S ← LookupTable(r,W )
w ←W //scaling down NN head based on configuration
Return w, S

DeviceTraining (w, S):
freeze wj for j ∈ {0 < j ≤ KF } according to S
foreach local mini-batch b do

w ← w − η∇l(w, b)
end
Return w

behavior can be observed w.r.t. Floating Point Operations (FLOPs), where SLT requires 10×
fewer operations to reach a certain level of accuracy compared with FD and FedRolex.

• We study the performance of SLT in heterogeneous settings. We show that devices with
different memory constraints can make a meaningful contribution to the global model,
significantly outperforming the state-of-the-art techniques.

2 Methodology

2.1 Problem Statement and Setup

We consider a synchronous cross-device FL setting, where we have one server and a set of devices c ∈
C as participants. There is a given ML model topology F on the FL server that is trained in a
distributed manner for R rounds. Our goal is to maximize the accuracy of the model. Similar to FD
and FedRolex, we assume that a fixed number of devices |C(r)| out of C participate in a round r ≤ R.
All devices are constrained in memory, and thus their training must not exceed this given memory
constraint mconstraint. In other terms, we assume that no participating device can train the server NN
model end-to-end.

2.2 Successive Layer Training

The following describes our methodology of Successive Layer Training for convolutional neural
networks (CNNs). Firstly, we rewrite F such that it is the consecutive operations of K layers, where
each layer is defined as fk, k ∈ [1, · · · ,K]. Each layer fk has associated server parameters Wk. We
label a convolution, followed by batch normalization and an activation function, a layer. Similar
to [9, 20], we define a subset wk of the layer parameters (server) Wk that is scaled down using s as

wk = W s,s
k wk ∈ R⌊sPk⌋×⌊sMk⌋ Wk ∈ RPk×Mk , (1)
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Figure 2: Visualization of SLT. With each step, KF and KT are shifted by 1. W1, . . . ,WKF
denote

the parameters that remain frozen during training, WKT
denotes parameters of layer KT that are

fully trained, while W 1,s
KT+1, . . . ,W

s,s
K denote the parameters of the scaled-down head using s.

where Pk labels the layer’s input dimension, Mk labels the output dimension of the fully-sized server
parameters, and s ∈ (0, 1] is a scaling factor (we omit the filter kernel dimensions for brevity). To
obey the memory constraint on the participating devices, we split the NN into three consecutive parts.
The first part of the NN contains layers that are already trained and remain frozen on the devices. The
second part contains layers that are being fully trained on the devices. The last part represents the
NN’s head. To train the remaining layers within the memory budget, the head’s parameters are scaled
down. Throughout the FL training, we successively switch the training configuration, s.t., the part
of the NN that is being fully trained (s = 1) moves from the first layer to the last layer. Thereby,
successively, the remaining parameters from the scaled-down head are added. At the same time, we
successively freeze more layers, starting with the first layer, to stay within the memory budget. We
visualize the switching from one training configuration to the next in Fig. 2. The parts of the NN that
are frozen, trained, and represent the head are labeled FF , FT , and FH . The resulting model that is
trained on the devices can be described as F = FF ◦ FT ◦ FH :

• The first part FF labels the part of the NN that is frozen and where the server pa-
rameters W1, . . . ,WKF

do not get updated by the devices. Freezing the first part of
the NN reduces the memory overhead during training, as in the forward pass, activa-
tions do not have to be stored for frozen layers. The frozen part of the NN is defined
as FF :=⃝k∈{k:0<k≤KF }fk, where layers 1, . . . ,KF remain frozen.

• The second part FT labels the part of the NN that is being fully trained by the devices. The
parameters WKF+1, . . . ,WKT

get updated during training. This part is defined as FT :=
⃝k∈{k:KF<k≤KT }fk, s.t. layers KF + 1, . . . ,KT are fully trained.

• The last part FH describes the NN’s head that is scaled down using s, s.t. FH :=
⃝k∈{k:KT<k≤K}fk, where the scaled-down layers KT + 1, . . . ,K are trained. The first
layer of FH scales down the parameters to the width of the head s.t. wKT+1 = W 1,s

KT+1,
where W 1,s

KT+1 ∈ RPKT +1×⌊sMKT +1⌋. All consecutive layers are scaled down using s,
s.t. wKT+j = W s,s

KT+j∀j ∈ [2, . . . ,K −KT ].

We define a set S as a training configuration that obeys the given memory constraint, s.t. S =
{KF ,KT , s} fully describes the mapping of layers fk, k ∈ [1, . . . ,K] into FF , FT , FH , and the
head’s scale factor s. Each S has a respective memory footprint during training. m = memory(S)
denotes the maximum memory that is utilized during training for a given configuration S. The
maximum memory of a configuration can be determined by measurements or by calculating the size
of weights, gradients, and activations that have to be kept in memory (see Section 3.2).

2.3 Configuration Selection

For each selected S, we aim to fully utilize the available memory. We define n as a configuration
step in n ∈ [1, . . . , N ], where we add parameters to the training (i.e., fill up the remaining parameters
of a head’s layer). These steps are distributed over the total training rounds R ( Fig. 3). We set
KT = KF + 1, s.t. in each configuration step exactly one layer gets fully trained (filled up). We start
with KF = KT = 0 (consequently F = FH ) to pre-train the head for a certain number of rounds.
After pre-training, we increase KF by one and apply KT = KF + 1 (the first configuration has no
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Figure 3: Visualization of the SLT training scheme with an exemplary 5-layer NN. The model is
first pre-trained for rp rounds. Following that, the model is trained for r1 − rp, r2 − r1, and R− r2
rounds in configuration 1, 2, and N(= 3), respectively.

frozen layers, i.e., F = FT ◦ FH ) and continue training2. We switch to the successive configuration
by increasing KF by one. Hence, for the training configuration at step n, we have KF = n− 1 and
KT = n, with sn selected as follows:

max sn, s.t. memory(Sn) ≤ mconstraint ∧ sn ≤ sj ∀j ∈ [n+ 1, . . . , N ], (2)

Equation (2) ensures that each configuration obeys the constraint mconstraint. The second constraint in
Eq. (2) enforces that sn can only grow with increasing n to ensure that parameters of the head are only
added throughout the training but not removed. We provide a justification for maximizing s instead
of FT by performing an ablation study in Appendix B. The configuration selection is performed
offline. Lastly, we define the last step N where a given memory constraint (memory(SN )) allows
for s = 1. If this step is reached, we train with SN for all remaining rounds since the memory budget
allows to fully train all remaining parameters at once. We provide a visualization of the training
process in Fig. 3 and outline SLT in Algorithm 1.

3 Experimental Evaluation

3.1 Experimental Setting and Hyperparamters

We evaluate SLT in an FL setting using PyTorch [21], where we distribute a share from the datasets
CIFAR10, CIFAR100 [22], FEMNIST from the Leaf [23] benchmark, and TinyImageNet [24] to
each device c ∈ C, s.t. each device c has a local dataset Dc of the same size. In each round r, a
subset of devices C(r) is selected. We train with the optimizer stochastic gradient descent (SGD)
with momentum of 0.9, an initial learning rate of η = 0.1, and apply cosine annealing to η = 0.01
and a weight decay of 1.0 × 10−5. We evaluate the vision models ResNet20, ResNet44 [25], and
DenseNet40 [26]. For each experiment, we report the average accuracy and standard deviation of 3
independent seeds after R rounds of FL training. For CIFAR10, CIFAR100, and TinyImageNet,
we evaluate a scenario with |C| = 100 devices, where each round |C(r)| = 10 devices are actively
participating. For FEMNIST, we evaluate with |C| = 3550 and |C(r)| = 35. We train for R = 2500
rounds for CIFAR10, CIFAR100, and TinyImageNet, and R = 1000 for FEMNIST. In each round r,
each participating device iterates once over its local dataset. We apply standard image augmentation
techniques like random cropping and horizontal and vertical flips to all datasets (horizontal and
vertical flips are omitted for FEMNIST). An input resolution of 3× 32× 32 is used for CIFAR and
FEMNIST (up-scaled from 28× 28) and 3× 64× 64 for TinyImageNet. We use batch size 32 and
perform 363 experiments in total, with an average run-time of 6 h on an NVIDIA Tesla V100.

Comparison with the state of the art: We compare SLT against several baselines. We introduce I(r)k
as the set of indices of the output dimension of a layer k ∈ [1, . . . ,K] where r ∈ [1, . . . , R]

denotes the rounds. Consequently, for full-sized NNs |I(r)k | = Mk. The subset for training is
scaled down by building a dense matrix using the indices from I

(r)
k , s.t. the scaled-down parameters

are wk ∈ R⌊sPk⌋×⌊sMk⌋. The consecutive layer’s input dimension indices are equal to the last layer’s
output indices. The first layer’s input dimension is not scaled to feed all color channels into the NN.

Small model: Devices train a submodel where all filters per layer are scaled down by s, s.t. all
devices can train the submodel. The remaining filters are trained end-to-end throughout the rounds.

2We discuss in the evaluation section how to decide the number of rounds a certain configuration should be
trained before switching to the next configuration.
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The same submodel is used for evaluation. The indices of the output dimension of a layer k are
selected using I

(r)
k = Ik = {i : 0 ≤ i < ⌊sMk⌋}.

FedRolex [20]: FedRolex creates a submodel by scaling the numbers of filters using s. Each device
trains the same continuous block of indices. The filter indices trained on the devices are shifted in a
rolling window fashion every round. The server averages the trained block and evaluates using the
full server model (s = 1). The indices I(r)k are selected with r̂ = r mod Mk using

I
(r)
k =

{
{r̂, r̂ + 1, . . . , r + ⌊sMk⌋ − 1} if r̂ + ⌊sMk⌋ ≤Mk

{r̂, r̂ + 1, . . . ,Mk − 1} ∪ {0, . . . , r̂ + ⌊sMk⌋ − 1−Mk} otherwise
. (3)

FD [9]: FD creates a submodel by scaling down the number of filters using s. The indices of the
filters are randomly sampled per device per round on the server. Hence, the indices I(r,c)k of a device c
of round r is a round-based per-device random selection of ⌊sMk⌋ indices out of all Mk indices. The
server aggregates the device-specific submodels after training and evaluates the full model (s = 1).

3.2 Memory Footprint during Training

The high memory requirements during training can be split into three groups: Firstly, the weights of
the NN have to be stored in memory. This is required both for the forward pass and the backward pass.
Secondly, for the calculated gradients in the backward pass, the activation maps of the respective
layers have to be kept in memory. Lastly, the calculated gradients have to be stored in memory. In
state-of-the-art CNNs, the size of the activation map makes up for most of the memory requirements,
while the size of the weights only plays a minor role. For ResNet44 and DenseNet40, we measure that
activations make up for ∼ 99% of the required memory for training, while gradients and parameters
account for the remaining 1%. Consequently, the required memory linearly reduces with s for FD
and FedRolex, as the number of layer’s output channels ⌊sMk⌋ determines the activation map’s size.
Similarly, for SLT, we measure the maximum amount of memory that is required during training
by counting the size of the activation maps, as well as the loaded weights and gradients in training.
For frozen layers, it is only required to load the parameters in memory, while no activation maps
and gradients have to be stored. For the fully trained layer KT , it is required to store the layer’s full
parameters wKT

, as well as the full-size activation map and gradients in memory. For all other layers
(NN head), memory scales linearly with s. We provide implementation details in Appendix E.

We evaluate memory constraints that are given by scaling down s in FedRolex and FD by sFD/FedRolex ∈
[0.125, 0.25, 0.5, 1.0] for experiments with ResNet and [0.33, 0.66, 1.0] for DenseNet3. In SLT, for a
given sFD/FedRolex, we adjust sn for each step n in the following way

max sn, s.t. memory(Sn) ≤ memory(sFD/FedRolex) ∧ sn ≤ sj ∀j ∈ [n+ 1, . . . , N ], (4)

to ensure that our technique obeys the same constraint as the baselines. If sFD/FedRolex = 1.0, all
algorithms coincide with vanilla Federated Averaging (FedAvg) using the full server model.

We distribute the required steps N over the total rounds R, s.t. all parameters receive sufficient
training. Specifically, we distribute the rounds based on the share of parameters that are added to
the training within a configuration n. We calculate the number of all trained parameters Q by using
KF ,KT , and s s.t.

Q(KF ,KT , s) =

( ∑
k∈{k:KF<k≤KT }

PkMk

)
+ PKT+1⌊sMKT+1⌋ +

∑
k∈{k:KT+1<k≤K}

⌊sPk⌋⌊sMk⌋, (5)

and use Q to calculate the share of rounds Rn for a step n. The share of rounds for pretraining
is calculated using Rpretraining = RQ(0,0,s)

Q(0,0,1) . For step 1, R1 = RQ(0,1,s)
Q(0,0,1) − Rpretraining. For all steps

n > 1, we calculate the rounds using

Rn = R
Q(n− 1, n, sn)−Q(n− 2, n− 1, sn−1)

Q(0, 0, 1)
. (6)

Lastly, the switching point for pretraining is rpretraining = Rpretraining and rn = RQ(n−1,n,sn)
Q(0,0,1) for all

steps n.
3For DenseNet, SLT only enables a reduction of 3×, as in DenseNet, specific layers have a significantly

larger sized feature map than others, which limits our technique’s effectiveness w.r.t memory reduction.
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Table 1: Results for iid experiments with ResNet and DenseNet using CIFAR10, FEMNIST, CI-
FAR100, and TinyImageNet. Accuracy in % after R rounds of training is given.

Setting ResNet20/CIFAR10 ResNet20/FEMNIST

sFD/FedRolex 0.125 0.25 0.5 1.0 0.125 0.25 0.5 1.0

SLT (ours) 74.1±0.8 83.4±0.2 85.2±0.6

87.5±0.6

84.4±0.3 85.8±0.1 86.9±0.0

87.6±0.0Small model 66.3±0.3 78.2±0.4 84.6±0.4 82.3±0.4 85.5±0.1 86.9±0.0
FedRolex [20] 21.7±1.9 61.0±0.5 80.6±0.6 42.1±6.0 71.4±2.1 83.0±0.1
FD [9] 19.0±1.4 36.7±1.8 71.6±0.4 38.9±3.7 70.4±0.2 83.4±0.3

Setting DenseNet40/CIFAR100 ResNet44/TinyImageNet

sFD/FedRolex 0.33 0.66 1.0 0.125 0.25 0.5 1.0

SLT (ours) 51.1±0.4 53.3±0.6

60.2±0.5

33.5±0.1 40.3±0.5 42.3±0.2

45.2±0.1Small model 43.9±1.5 55.9±0.1 19.8±0.3 30.6±0.3 40.2±0.3
FedRolex [20] 22.2±0.3 46.7±0.1 6.9±0.2 19.8±0.8 33.1±0.2
FD [9] 13.5±0.5 41.9±1.5 0.9±0.0 7.1±0.1 25.9±0.6

Preliminary experiments have shown that this mapping scheme outperforms other techniques, like
an equal distribution of rounds to all configurations, and enables SLT to converge as fast as a small
model while reaching a significantly higher final accuracy (we provide further results in Appendix C).
The mapping of steps N to rounds R does not rely on private data (or any data) and can be stored in a
look-up table prior to the training. A visualization of SLT is given in Fig. 3. We provide the number
of steps N for different NN architectures and constraints in Appendix C.

3.3 Experimental Results

Iid results: For the iid case, results are given in Table 1. We observe that SLT reaches significantly
higher accuracy for ResNet20 and CIFAR10 for all evaluated constraints, outperforming a small
model baseline by up to 7.8 p.p. and state of the art by 52.4 p.p.. The results with FEMNIST show
that a small model baseline already provides sufficient capacity for the dataset since only a few
percentage points separate sFD/FedRolex = 0.125 from the full model (i.e., when sFD/FedRolex = 1).
Hence, SLT can only provide a minor benefit over a small model baseline. The contrary can be
observed for CIFAR100 and TinyImageNet, where using a small model (sFD/FedRolex = 0.125) loses
up to 25.4 p.p. to the full model. Additionally, it can be observed that for low memory constraints,
FD and FedRolex fail to learn a useful representation at all. SLT improves upon a small model by up
to 13.7 p.p. and up to 26.6 p.p. compared to state of the art.

Non-iid results: Typically, data in FL is not distributed in an iid fashion but rather non-iid. We repeat
the experiments shown in Table 1 but distribute the data on the devices in a non-iid fashion. Similar
to [27], we apply a Dirichlet distribution, where the rate of non-iid-ness can be varied using α. For
all experiments, we set α = 0.1. We observe from Table 2 that the small model baselines in the
case of CIFAR10 and FEMNIST lose accuracy compared to the full model. Hence, the gain of SLT
compared to a small model baseline increases. The results for CIFAR100 and TinyImageNet show a
proportional drop in accuracy for all algorithms. However, SLT still outperforms other techniques by
a large margin. Note that we could apply common non-iid mitigation techniques like FedProx [11]
on top of SLT to further limit the drop in accuracy.

For additional experimental results, we refer the readers to Appendix D.

Communication, computation, and convergence speed: We evaluate our technique w.r.t. the
communication overhead of the distributed training and the number of computations devices have
to perform (FLOPs). Specifically, we evaluate the gain in accuracy over required transmitted data
and performed FLOPs. We show the results in Fig. 4. We observe that our technique converges fast,
similarly to a small model, while reaching higher final accuracy. Compared to FD and FedRolex,
our technique requires significantly less communication to reach the same level of accuracy. Similar
behavior can be observed w.r.t. FLOPs.

3.4 Heterogeneous Memory Constraints

Memory constraints in devices can be heterogeneous. We evaluate SLT in such scenarios and compare
it against the start of the art. We evaluate with different resource levels and split the available constraint
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Table 2: Results for non-iid experiments with ResNet and DenseNet using CIFAR10, FEMNIST,
CIFAR100, and TinyImageNet. Accuracy in % after R rounds of training is given.

Setting ResNet20/CIFAR10 ResNet20/FEMNIST

sFD/FedRolex 0.125 0.25 0.5 1.0 0.125 0.25 0.5 1.0

SLT (ours) 52.4±0.9 69.6±0.6 75.5±1.3

80.5±1.3

81.2±1.6 83.0±2.0 83.8±1.9

84.0±1.9Small model 44.7±1.2 63.1±0.7 73.6±0.6 79.6±0.8 82.9±1.1 83.3±2.4
FedRolex [20] 15.0±3.7 29.8±1.7 48.3±2.9 39.4±2.0 59.3±2.1 78.5±0.5
FD [9] 11.3±0.9 10.7±0.6 34.9±5.7 15.9±8.2 51.0±1.2 79.7±1.1

Setting DenseNet40/CIFAR100 ResNet44/TinyImageNet

sFD/FedRolex 0.33 0.66 1.0 0.125 0.25 0.5 1.0

SLT (ours) 45.9±1.4 48.4±0.5

55.8±0.5

28.5±1.2 35.1±1.1 36.1±0.2

39.0±0.8Small model 40.5±1.2 51.8±0.2 16.9±0.2 25.3±0.5 34.2±0.4
FedRolex [20] 20.0±0.3 42.9±0.4 1.5±0.5 12.7±1.3 26.1±0.5
FD [9] 7.6±0.1 36.9±1.0 0.4±0.1 0.6±0.0 20.0±1.3
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Figure 4: Maximum reached accuracy in % over data upload and performed FLOPs for CIFAR10,
CIFAR100, and TinyImageNet using DenseNet40, ResNet20, and ResNet44 in an iid training case.

levels equally upon the devices, i.e., when constraints of sFD/FedRolex = [0.125, 0.25] are given, 50%
of the devices train with sFD/FedRolex = 0.125 while the remaining 50% use sFD/FedRolex = 0.25.
SLT supports heterogeneous constraints through the following mechanism: Firstly, devices with the
highest constraint perform training as done in the homogeneous case, outlined in Algorithm 1 using
the head’s scale factor as described in Eq. (2). Devices that are less constrained use the same scale
factor sn per configuration to ensure that all devices train the same number of parameters within
a layer. To utilize the remaining available memory, less constrained devices freeze fewer layers,
therefore, train more layers at full width. For a given KT and sn of a configuration Sn, the remaining
memory of less constrained devices is utilized by minimizing KF , s.t.

min KF , s.t. memory(Sn) ≤ memory(sFD/FedRolex). (7)

In addition to FD and FedRolex, we evaluate HeteroFL [18] and FjORD [19]. Both require that some
devices are capable of training the full NN end-to-end, otherwise, some parameters do not receive
any updates. In cases where no device can train the server model end-to-end, we reduce the size of
the server model such that at least one participating device can fully train the model.

Small model: All devices train a small model regardless of their constraints. Scale factor s is set to
the minimum a participating device supports.

FedRolex [20]: Similar to the homogeneous case, FedRolex uses a rolling window (Eq. (3)). In
heterogeneous cases, devices use a constraint-specific scale se, to adjust the number of filters ⌊seMk⌋.
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Table 3: FL with heterogeneous constraints. Accuracy in % after R rounds of training is given.
Setting DenseNet40/CIFAR100 ResNet44/TinyImageNet

sFD/FedRolex [0.33, 0.66] [0.33, 0.66, 1.0] [0.125, 0.25] [0.125, 0.25, 0.5] [0.125, 0.25, 0.5, 1.0]

SLT (ours) 46.4±2.0 49.3±1.8 30.3±1.2 33.0±0.5 35.9±0.4
Small model 40.5±1.2 40.5±1.2 16.9±0.2 16.9±0.2 16.9±0.2
FedRolex [20] 33.2±0.4 43.9±1.3 5.4±0.2 13.8±1.3 23.6±0.7
FD [9] 21.2±0.6 38.1±0.4 0.5±0.1 0.6±0.1 20.6±1.7
HeteroFL [18] 42.2±1.3 42.8±0.5 20.7±0.7 24.1±0.2 23.3±0.5
FjORD [19] 38.7±0.4 36.9±0.4 22.4±1.0 25.3±0.3 27.5±0.8

FD [9]: Although Caldas et al. [9] do not specifically evaluate heterogeneous devices, heterogeneity
can be supported straightforwardly by using constraint-specific se for scaling down the NN. This
extension of FD is also evaluated in FedRolex and FjORD.

HeteroFL [18]: In HeteroFL, devices use the same subset throughout the training. To support
heterogeneity, devices use a resource-specific scaling factor se, s.t. for each se the indices are selected
using I

(r,e)
k = I

(e)
k = {i | 0 ≤ i < ⌊seMk⌋}.

FjORD [19]: FjORD uses the same indices as HeteroFL, but each device switches between constraint-
specific subsets that satisfy the device constraints within a local epoch on a mini-batch level.

Heterogeneity results: We repeat the experimental setup as presented in Table 2 for TinyImageNet
and CIFAR100, but enforce varying device constraints in the experiments (see Table 3). We observe
that SLT outperforms others in all evaluated scenarios. FedRolex can improve upon a small model
in some settings, but this is not the case with FD. For FjORD and HeteroFL, we observe that both
outperform the small model baseline. Yet, in some cases, both HeteroFL and FjORD have a lower
accuracy when utilizing more constraint levels. For HeteroFL, it can be observed that using ResNet44
with 4 constraint levels reaches a lower accuracy than with 3 levels (despite the fact that all devices
have higher average resources E[sFD/FedRolex] of ≈ 0.47 in the case of [0.125, 0.25, 0.5, 1.0] instead
of ≈ 0.29 in the case of [0.125, 0.25, 0.5]). The same can be observed for FjORD with DenseNet40.
As both techniques, in principle, use the same subset mechanism as FedRolex and FD, we think that
both suffer from supporting more constraint levels that cause less co-adaptation between NN filters.

4 Related Work

We cover related work that studies similar problems or employs similar techniques.

Resource constraints in FL: Most works on resource-constrained FL target communication. Specifi-
cally, the use of quantization and compression in communication [9, 8] and sketched updates [10]
have been proposed to lower the communication burden. Chen et al. [28] propose adaptive parameter
freezing as they discover that parameters stabilize during training and do not have to be transferred to
the server. Another branch of work focuses on reducing communication, computation, and memory
requirements by employing only a subset of the full NN on devices. Caldas et al. [9] introduce FD, a
mechanism that creates a device-specific subset by randomly selecting a subset of CNN filters. Diao et
al. [18] introduce HeteroFL, which allows for heterogeneous constraints by employing fixed subsets
of different sizes to the NN and aggregating them on the server. Horvath et al. [19] introduce a similar
technique (FjORD), with the main difference that in FjORD, each device trains every available subset
within its capabilities. Rapp et al. [29] propose DISTREAL, a technique that uses varying subsets on
a mini-batch level such that devices finish their update on time despite having intra-round changing
resources. FedRolex [20] supports heterogeneity similar to FjORD and HeteroFL but allows for
server NN models that are outside of the capabilities of all devices. This is enabled by not training a
fixed subset of the NN parameters but by training a rolling window of all parameters that is shifted on
a round basis. Beyond subsets, the use of low-rank factorization [30, 31] has been proposed to train
NN models. Lastly, Qui et al. [32] propose sparse convolutions to lower the resource requirements
for training but require special hardware for sparse computations to realize the gains.

Layer-wise model training: Layer-wise model training has been proposed in centralized training
of CNNs as an alternative to training with end-to-end backpropagation of the error. Hettinger et
al. [33] introduced a technique that adds CNN layers one at a time during training using auxiliary
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heads for classification while freezing early layers. Similar techniques have also been employed
for unsupervised learning, where representations are trained with contrastive techniques without
requiring end-to-end gradient propagation [34, 35]. Recently, the concept of progressive model
growth has also been proposed for FL: Wang et al. [36] propose ProgFed, where they discover
that by progressively adding CNN layers to the NN while using an auxiliary head, the FL training
converges faster and required less communication to reach the same accuracy as an end-to-end
baseline. Similarly, Kundu et al. [37] propose a technique that grows the model depending on the
complexity of the data to reach a high accuracy if the NN capacity is not sufficient for the problem.
Importantly, both techniques only focus on increasing the convergence speed. Hence, they consider
communication and computation overhead but not the problem of constrained memory on edge
devices, nor do they support heterogeneous devices. In both techniques, eventually, all devices have
to train the full-size NN and, consequently, have to have the memory resources available for that.

Memory-efficient training: Several techniques have been proposed to train an ML model in a
memory-efficient way. Kirisame et al. [38] present Dynamic Tensor Rematerialization that allows
recomputing activation maps on the fly. Similarly, encoding and compression schemes [39, 40] have
been proposed to lower the size of the activation maps during training. Techniques like that trade
memory for computation, and some lower the accuracy by using approximation or lossy compression.
Importantly, these techniques are orthogonal to SLT, FD, FedRolex, HeteroFL, and FjORD.

5 Conclusion

We proposed SLT that is able to reduce the memory requirements for training on devices, efficiently
aggregating computation capacity and learning from all available data. Through extensive evaluation,
we show that gains in final accuracy as well as the faster convergence speed (compared with state of
the art) are robust throughout different datasets, data distribution, and NN topologies.

Limitations: We observe that SLT is most effective if the used NN architecture is deep (i.e., has many
layers), as the cost of filling up a single layer becomes less significant. Also, SLT is less effective if
the size of the activation map is strongly unevenly distributed throughout the layers (DenseNet), as it
has to adapt to the layer with the highest memory requirements when filled up. Besides, we applied
SLT to CNN topologies only. Finally, we mainly focused on memory as a hard constraint [41] for
training. We show that communication and FLOP efficiency are significantly higher than in the state
of the art, but we did not consider per-round communication or FLOP constraints. For future work,
we want to extend our study to other topologies, such as transformers, and employ neural architecture
search (NAS) techniques to find NN configurations that reach the highest accuracy when trained in
FL with SLT in heterogeneous environments.

Broader impact: Our solution could help reduce biases in FL systems, improving fairness. For
instance, by including users with low-end smartphones in the learning process, it provides these users
(who perhaps cannot afford high-end devices) with better experiences as the model is going to be
trained over their data, too. It could also reduce the cost of deployment of distributed IoT systems
(e.g., sensor networks), as they can be implemented with low-cost devices (or a mixture of low and
high-cost devices), enabling, e.g., deployment of larger and more fine-grained monitoring systems.
On the negative side, distributing learning over low-end devices that are not particularly designed for
training tasks can increase the overall energy consumption of the system. This is an important issue
that should be studied in more detail.
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A Co-Adaptation in Subset-based FL

Federated Dropout is originally inspired by regular dropout [42], a regularization technique that
constrains the capacity of a large NN model by randomly dropping parameters from the training,
thereby limiting co-adaptation among parameters of the model. This is essential to improve the
accuracy and reduce the over-fitting of parameters, as shown in various studies. FD and FedRolex
adopt the dropout technique, removing CNN’s filters in a round-based manner. These techniques,
however, exercise dropout to its extreme, dropping a large part of filters so that not enough co-
adaptation between filters remains. In particular, the gradients for the subset of parameters trained on
a device are calculated without consideration of the error of the remaining parameters that reside on
the server. These subsets are randomly changing over time and devices, reducing the co-adaptation of
this distributed training process. Add to these the fact that the data is also distributed over devices,
so applying such a random scheme significantly decreases the chance that a subset of parameters is
being trained together over a sizable proportion of the data.

To further study the effects of co-adaptation on the reachable accuracy and the differences between FD
and FedRolex, we run the following experiment, using CIFAR10 with ResNet20 and sFD/FedRolex =
0.25:

• We modify FD s.t. all devices train the same random subset per round, i.e., the same
indices I(r,c) = I(r) per round (index k is omitted for simplicity).

• We limit the randomness, where at each round, we arbitrarily select I(r) out of a set I =
{I1, . . . , I|I|} of randomly initialized subsets that are generated once prior to training.
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Figure 5: FD with limited randomness using CIFAR10 with ResNet20 and sFD/FedRolex = 0.25.

We vary the randomness by varying the number of sampled subsets in I, s.t. |I| ∈ [0, 500]. Thereby,
the probability of a specific subset being selected is p = 1

|I| . Recall that all the devices train the same
submodel in a round, and there are only |I| submodels that would be trained by devices over the
training period. Evaluation is done with the full server model. Results are shown in Fig. 5.

We observe the following effects: 1) The final accuracy drops proportionally to ∼ p. 2) In the case
of |I| = 1, FD behaves similarly to the small model baseline, as always the same subset is used for
training. We also observe that remaining untrained filters have a minor effect on the accuracy when
compared with a small model. However, because of these untrained parameters, the model fails to
reach higher accuracies as with SLT (see Section 3). 3) The accuracy drops with introducing more
randomness to the training process (i.e., increasing |I|). This is as co-adaptation among parameters
of the model reduces as we increase the randomness. 4) The rolling window approach of FedRolex is
a special case of FD with limited randomness (i.e., |I| = 5 in this experiment).

B Ablation study maximizing s over FT

To justify our design choice in Section 2 to maximize sn for all steps n, we conduct an ablation
study, where we study the best trade-off between s and FT . In particular, instead of maximizing s,
we only use fractions of the maximized sn labeled sablation. We evaluate different values for sablation,
i.e. sablation

sn
∈ (0, 1]. When only a fraction of the maximized sn is used in a step, the remaining

memory can be used to increase the size of FT . We conduct with CIFAR10/ResNet20 and TinyIm-
ageNet/ResNet44, where all the hyper-parameters are kept the same as in Section 3.1 (except the
changes in sn and FT ). The final accuracy of SLT is displayed in Fig. 6. For each run, we depict the
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gives the highest accuracy.

Table 4: Steps N in SLT for different constraints s and NN models.
Constraint s ResNet20 ResNet44 DenseNet40

0.66 - - 10
0.5 8 14 -
0.33 - - 15
0.25 14 26 -
0.125 16 14 -

average accuracy and standard deviation for three seeds. The results show that by maximizing s in
favor of FT , SLT reaches a higher final accuracy.

C Mapping of steps N to rounds R

Generally, any layer that is trained in SLT should receive a sufficient amount of training to extract
useful features for downstream layers, but at the same time, it should not overfit in the current
configuration. The mapping of rounds R to steps N in SLT is done proportionally to the amount
of added (previously untrained) parameters to the training. Since N depends on how many steps
are required until s = 1, the number of steps depends on the constraint level. In Table 4, we list N
for all experiments and constraints. Fig. 7 visualizes this mapping for DenseNet40, ResNet20,
and ResNet44, where SLT’s accuracy over rounds is displayed in green while steps over rounds are
displayed in black. This mapping scheme has key advantages over other techniques. Most importantly,
it depends only on the NN structure and not on the data available on the devices. Hence, it can be
calculated offline prior to the training.

We compare our mapping scheme with two other mapping schemes, one offline and one online:

• Equal distribution: In this scheme, we equally distribute the rounds to the steps, i.e., Rn =
R

N+1 .
• Early stopping: In this scheme, we decide online, based on the test accuracy, when to

switch. If the test accuracy on the server for a number of FL rounds does not improve, the
mapping switches to the next configuration. The number of rounds is usually referred to as
patience. We evaluate with patience 5, 15, and 25.

To compare the mapping schemes, we run experiments with CIFAR10 and ResNet20, where, except
for the mapping scheme, all hyperparameters are kept the same (as presented in Section 3). We can
observe from the results in Fig. 8 that our mapping scheme outperforms the others with respect to
the final accuracy and convergence. Even though the early-stopping-based technique with patience 5
increases n more aggressively, it does not result in faster convergence or higher final accuracies.

D Miscellaneous Experiments

To evaluate how SLT and baselines perform with more complex datasets and deeper NNs, we evaluate
it with the full ImageNet [43] dataset (1.28M images, 1K classes). However, we downscale the
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Figure 7: Accuracy over rounds (green) and steps over rounds (black) in SLT for CI-
FAR100/DenseNet40, CIFAR10/ResNet20, and TinyImageNet with ResNet44.
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Figure 8: Different strategies for mapping N to R using CIFAR10 with ResNet20 and sFD/FedRolex =
0.25. Accuracy over rounds is displayed on the left. Steps over rounds are displayed on the right.

images to 3× 64× 64 pixels to reduce the complexity of the evaluation. To account for the larger
dataset, we increase the number of devices to |C| = 500 and the number of rounds to R = 4000. All
remaining hyperparameters are kept the same (Section 3). We use ResNet56 to account for the more
complex dataset. Results for iid and non-iid data are provided in Table 5. We observe that the general
trend of Tables 1 and 2 remains the same: SLT outperforms the state of the art and the small model
baseline with large margins.

E Training Memory Measurements in PyTorch

We measure the maximum memory requirement for the evaluated NN models ResNet and DenseNet
using PyTorch 1.10. Specifically, we measure the size of the activations, gradients, and weights.
These memory measurements are done offline (prior to training) and do not require any data.

• Measurement of weights: To measure the size of the weights, we sum up all tensors that
are present in the NN’s state_dict.

Table 5: Results for iid and non-iid experiments with ResNet56 using Imagenet (64 × 64) are given.
Accuracy in % after 4000 rounds of training is given.

Setting ResNet56/ImageNet/iid ResNet56/ImageNet/non-iid

sFD/FedRolex 0.125 0.25 0.5 1.0 0.125 0.25 0.5 1.0

SLT (ours) 24.2±0.2 31.2±0.3 34.6±0.1

41.6±0.5

21.7±0.9 29.7±0.3 31.8±0.4

38.7±0.3Small model 8.9±0.2 18.4±0.0 30.3±0.1 8.4±0.3 16.2±0.2 27.3±0.3
FedRolex [20] 3.4±0.2 11.4±0.3 21.3±0.5 2.8±1.1 10.2±0.9 18.4±0.4
FD [9] 0.3±0.2 6.2±0.2 16.8±0.5 0.1±0.0 0.1±0.0 15.7±0.4
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• Measurement of activations and gradients: To measure the size of the activations that have
to be kept in memory, as well as the gradients, we apply backward_hooks to all relevant
PyTorch modules in an NN. Specifically, we add these hooks to Conv2d, BatchNorm2d,
ReLU, Linear, and Add operations. If a hook attached to a module is called, we add the
respective size of the activation map and the size of the calculated gradient to a global
variable to add up all required activations and gradients.
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