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Abstract

Wasserstein distance (WD) and the associated optimal transport plan have proven
useful in many applications where probability measures are at stake. In this paper,
we propose a new proxy for the squared WD, coined min-SWGG, which relies on
the transport map induced by an optimal one-dimensional projection of the two
input distributions. We draw connections between min-SWGG and Wasserstein
generalized geodesics with a pivot measure supported on a line. We notably
provide a new closed form of the Wasserstein distance in the particular case
where one of the distributions is supported on a line, allowing us to derive a fast
computational scheme that is amenable to gradient descent optimization. We show
that min-SWGG is an upper bound of WD and that it has a complexity similar to
that of Sliced-Wasserstein, with the additional feature of providing an associated
transport plan. We also investigate some theoretical properties such as metricity,
weak convergence, computational and topological properties. Empirical evidences
support the benefits of min-SWGG in various contexts, from gradient flows, shape
matching and image colorization, among others.

1 Introduction

Gaspard Monge, in his seminal work on Optimal Transport (OT) [42], studied the following problem:
how to move with minimum cost the probability mass of a source measure to a target one, for a given
transfer cost function? At the heart of OT is the optimal map that describes the optimal displacement
as the Monge problem can be reformulated as an assignment problem. It has been relaxed by [33]
by finding a plan that describes the amount of mass moving from the source to the target. Beyond
this optimal plan, an interest of OT is that it defines a distance between probability measures: the
Wasserstein distance (WD).

Recently, OT has been successfully employed in a wide range of machine learning applications, in
which the Wasserstein distance is estimated from the data, such as supervised learning [30], natural
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language processing [38] or generative modelling [5]. Its capacity to provide meaningful distances
between empirical distributions is at the core of distance-based algorithms such as kernel-based
methods [60] or k-nearest neighbors [6]. The optimal transport plan has also been used successfully
in many applications where a matching between empirical samples is sought such as color transfer
[55], domain adaptation [19] and positive-unlabeled learning [15].

Solving the OT problem is computationally intensive; the most common algorithmic tools to solve the
discrete OT problem are borrowed from combinatorial optimization and linear programming, leading
to a cubic complexity with the number of samples that prevents its use in large scale applications [53].
To reduce the computation burden, regularizing the OT problem with e.g. an entropic term has led to
solvers with a quadratic complexity [23]. Other methods based on the existence of a closed form of
OT have also been devised to efficiently compute a proxy for WD, as outlined below.

Projections-based OT. The Sliced-Wasserstein distance (SWD) [56, 10] leverages 1D-projections of
distributions to provide a lower approximation of the Wasserstein distance, relying on the closed form
of OT for 1D probability distributions. Computation of SWD leads to a linearithmic time complexity.
While SWD averages WDs computed over several 1D projections, max-SWD [24] keeps only the
most informative projection. These frameworks provide efficient algorithms that can handle millions
of samples and have similar topological properties as WD [45]. Other works restrain SWD and
max-SWD to projections onto low dimensional subspaces [52, 40] to provide more robust estimation
of those OT metrics. Although effective as proxies for WD, those methods do not provide a transport
plan in the original space Rd. To overcome this limitation, [44] aims to compute transport plans in a
subspace which are extrapolated to the original space.

Pivot measure-based OT. Other research works rely on a pivot, yet intermediate measure. They
decompose the OT metric into Wasserstein distances between each input measure and the con-
sidered pivot measure. They exhibit better properties such as statistical sample complexity or
computational efficiency [29, 65]. Even though the OT problems are split, they are still expensive
when dealing with large sample size distributions, notably when only two distributions are involved.

Contributions. We introduce a new proxy for the squared WD that exploits the principles of
aforementioned approximations of OT metric. The original idea is to rely on projections and one-
dimensional assignment of the projected distributions to compute the new proxy. The approach is
well-grounded as it hinges on the notion of Wasserstein generalized geodesics [4] with pivot measure
supported on a line. The main features of the method are as: i) its computational complexity is on par
with SW, ii) it provides an optimal transport plan through the 1D assignment problem, iii) it acts as an
upper bound of WD, and iv) is amenable to optimization to find the optimal pivot measure. As an addi-
tional contribution, we establish a closed form of the WD when an input measure is supported on a line.

Outline. Section 2 presents some background of OT. Section 3 formulates our new WD proxy,
provides some of its topological properties and a numerical computation scheme. Section 4 builds
upon the concept of Wasserstein generalized geodesics to reformulate our OT metric approximation as
the Sliced Wasserstein Generalized Geodesics (SWGG) along its optimal variant coined min-SWGG.
This reformulation allows deriving additional topological properties and an optimization scheme.
Finally, Section 5 provides experimental evaluations.

Notations. Let ⟨·, ·⟩ be the Euclidean inner product on Rd and let Sd−1 = {u ∈ Rd s.t. ∥u∥2 = 1},
the unit sphere. We denote P(Rd) the set of probability measures on Rd endowed with the σ−algebra
of Borel set and P2(Rd) ⊂ P(Rd) those with finite second-order moment i.e. P2(Rd) = {µ ∈
P(Rd) s.t.

∫
Rd ∥x∥22dµ(x) < ∞}. Let Pn

2 (R
d) be the subspace of P2(Rd) defined by empirical

measures with n-atoms and uniform masses. For any measurable function f : Rd → Rd, we denote f#
its push forward, namely for µ ∈ P2(Rd) and for any measurable setA ∈ Rd, f#µ(A) = µ(f−1(A)),
with f−1(A) = {x ∈ Rd s.t. f(x) ∈ A}.

2 Background on Optimal Transport

Definition 2.1 (Wasserstein distance). The squared WD [63] between µ1, µ2 ∈ P2(Rd) is defined as:

W 2
2 (µ1, µ2)

def
= inf

π∈Π(µ1,µ2)

∫

Rd×Rd

∥x− y∥22dπ(x,y) (1)
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with Π(µ1, µ2) = {π ∈ P2(Rd × Rd) s.t. π(A × Rd) = µ1(A) and π(Rd × A) = µ2(A), ∀A
measurable set of Rd}.
The argmin of Eq. (1) is referred to as the optimal transport plan. Denoted π∗, it expresses how
to move the probability mass from µ1 to µ2 with minimum cost. In some cases, π∗ is of the
form (Id, T )#µ1 for a measurable map T : Rd → Rd, i.e. there is no mass splitting during the
transport. This map is called a Monge map and is denoted Tµ1→µ2 (or shortly T 1→2). Thus, one has
W 2

2 (µ1, µ2) = infT s.t. T#µ1=µ2

∫
Rd ∥x− T (x)∥22dµ1(x). This occurs, for instance, when µ1 has a

density w.r.t. the Lebesgue measure [12] or when µ1 and µ2 are in Pn
2 (R

d) [58].

Endowed with the WD, the space P2(Rd) is a geodesic space. Indeed, since there exists a Monge
map T 1→2 between µ1 and µ2, one can define a geodesic curve µ1→2 : [0, 1]→ P2(Rd) [31] as:

∀t ∈ [0, 1], µ1→2(t)
def
= (tT 1→2 + (1− t)Id)#µ1 (2)

which represents the shortest path w.r.t. Wasserstein distance in P2(Rd) between µ1 and µ2. The
Wasserstein mean between µ1 and µ2 corresponds to t = 0.5 and we simply write µ1→2.

This notion of geodesic allows the study of the curvature of the Wasserstein space [1]. Indeed, the
Wasserstein space is of positive curvature [51], i.e. it respects the following inequality:

W 2
2 (µ1, µ2) ≥ 2W 2

2 (µ1, ν) + 2W 2
2 (ν, µ2)− 4W 2

2 (µ
1→2, ν) (3)

for all pivot measures ν ∈ P2(Rd).

Solving and approximating Optimal Transport. The Wasserstein distance between empirical
measures µ1, µ2 with n-atoms can be computed in O(n3 log n), preventing from the use of OT for
large scale applications [11]. Several algorithms have been proposed to lower this complexity, for
example the Sinkhorn algorithm [23] that provides an approximation in near O(n2) complexity [2].

Notably, when µ1 = 1
n

∑n
i=1 δxi and µ2 = 1

n

∑n
i=1 δyi are 1D distributions, computing the WD can

be done by matching the sorted empirical samples, leading to an overall complexity of O(n log n).
More precisely, let σ and τ two permutation operators s.t. xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n) and
yτ(1) ≤ yτ(2) ≤ ... ≤ yτ(n). Then, the 1D Wasserstein distance is given by:

W 2
2 (µ1, µ2) =

1

n

n∑

i=1

(xσ(i) − yτ(i))2. (4)

Sliced WD. The Sliced-Wasserstein distance (SWD) [56] aims to scale up the computation of OT
by leveraging the closed form expression (4) of the Wasserstein distance for 1D distributions. It is
defined as the expectation of 1D-WD computed along projection directions θ ∈ Sd−1 over the unit
sphere:

SW2
2(µ1, µ2)

def
=

∫

Sd−1

W 2
2 (P

θ
#µ1, P

θ
#µ2)dω(θ), (5)

where P θ
#µ1 and P θ

#µ2 are projections onto the direction θ ∈ Sd−1 with P θ : Rd → R, x 7→ ⟨x, θ⟩
and where ω is the uniform distribution over Sd−1.

Since the integral in Eq. (5) is intractable, one resorts, in practice, to Monte-Carlo estimation to
approximate the SWD.

Its computation only involves projections and permutations. For L directions, the computational
complexity is O(dLn+ Ln log n) and the memory complexity is O(Ld+ Ln). However, in high
dimension, several projections are necessary to approximate accurately the SWD and many projections
lead to 1D-WD close to 0. This issue is well known in the SW community [68], where different
ways of performing effective sampling have been proposed [49, 46, 50] such as distributional or
hierarchical slicing. In particular, this motivates the definition of max-Sliced-Wasserstein [24] which
keeps only the most informative slice:

max-SW2
2(µ1, µ2)

def
= max

θ∈Sd−1
W 2

2 (P
θ
#µ1, P

θ
#µ2). (6)

While being a non convex problem, it can be optimized efficiently using a gradient ascent scheme.

The SW-like distances are attractive since they are fast to compute and enjoy theoretical properties:
they are proper metrics and metricize the weak convergence. However, they do not provide an OT
plan.
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Projected WD. Another quantity of interest based on the 1D-WD is the projected Wasserstein
distance (PWD) [57]. It leverages the permutations of the projected distributions in 1D in order to
derive couplings between the original distributions.

Let µ1 = 1
n

∑n
i=1 δxi

and µ2 = 1
n

∑n
i=1 δyi

in Pn
2 (R

d). The PWD is defined as:

PWD2
2(µ1, µ2)

def
=

∫

Sd−1

1

n

n∑

i=1

∥xσθ(i) − yτθ(i)
∥22dω(θ), (7)

where σθ, τθ are the permutations obtained by sorting P θ
#µ1 and P θ

#µ2.

As some permutations are not optimal, we straightforwardly have W 2
2 ≤ PWD2

2. Note that some
permutations can appear highly irrelevant in the original space, leading to an overestimation of W 2

2
(typically when the distributions are multi-modal or with support lying in a low dimensional manifold,
see Supp. 7.1 for a discussion).

In this paper, we restrict ourselves to empirical distributions with the same number of samples. They
are defined as µ1 = 1

n

∑n
i=1 δxi and µ2 = 1

n

∑n
i=1 δyi

in Pn
2 (R

d). Note that the results presented
therein can be extended to any discrete measures by mainly using quantile functions instead of
permutations and transport plans instead of transport maps (see Supp. 7.2).

3 Definition and properties of min-SWGG

The fact that the PWD overestimates W 2
2 motivates the introduction of our new loss function coined

min-SWGG which keeps only the most informative permutation. Afterwards, we derive a property
of distance and grant an estimation of min-SWGG via random search of the directions.
Definition 3.1 (SWGG and min-SWGG). Let µ1, µ2 ∈ Pn

2 (R
d) and θ ∈ Sd−1. Denote by σθ and τθ

the permutations obtained by sorting the 1D projections P θ
#µ1 and P θ

#µ2. We define respectively
SWGG and min-SWGG as:

SWGG2
2(µ1, µ2, θ)

def
=

1

n

n∑

i=1

∥xσθ(i) − yτθ(i)
∥22, (8)

min-SWGG2
2(µ1, µ2)

def
= min

θ∈Sd−1
SWGG2

2(µ1, µ2, θ). (9)

One shall remark that the function SWGG corresponds to the building block of PWD in eq. (7).

One main feature of min-SWGG is that it comes with a transport map. Let θ∗ ∈
argmin SWGG2

2(µ1, µ2, θ) be the optimal projection direction. The associated transport map is:

T (xi) = yτ−1
θ∗ (σθ∗ (i))

, ∀1 ≤ i ≤ n. (10)

In Supp. 7.6 we give several examples of such transport plan. These examples show that the overall
structure of the optimal transport plan is respected by the transport plan obtained via min-SWGG.

We now give some theoretical properties of the quantities min-SWGG and SWGG. Their proofs are
given in Supp. 7.3.
Proposition 3.2 (Distance and Upper bound). Let θ ∈ Sd−1. SWGG2(·, ·, θ) defines a distance on
Pn
2 (R

d). Moreover, min-SWGG is an upper bound of W 2
2 , and W 2

2 ≤ min-SWGG2
2 ≤ PWD2

2, with
equality between W 2

2 and min-SWGG2
2 when d > 2n.

Remark 3.3. Similarly to max-SW, min-SWGG retains only one optimal direction θ∗ ∈ Sd−1.
However, the two distances strongly differ: i) min-SWGG is an upper bound and max-SW a lower
bound of W 2

2 , ii) the optimal θ∗ may differ (see Supp. 7.4 for an illustration), and iii) max-SW does
not provide a transport plan between µ1 and µ2.

Solving Eq. (9) can be achieved using a random search, by sampling L directions θ ∈ Sd−1 and
keeping only the one leading to the lowest value of SWGG.

This gives an overall computational complexity of O(Ldn+ Ln log n) and a memory complexity
of O(dn). In low dimension, the random search estimation is effective: covering all possible
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permutations through Sd−1 can be done with a low number of directions. In high dimension, many
more directions θ are needed to have a relevant approximation, typically O(Ld−1). This motivates
the design of gradient descent techniques for finding θ∗.

4 SWGG as minimizing along the Wasserstein generalized geodesics

µ1

Qθ1

#µ2

µ2

Qθ2

#µ1

Qθ1

#µ1

Qθ2

#µ2

0

π/2

π

3π/2

0 7

SWGG value

Figure 1: (Left) Empirical distributions with ex-
amples of 2 sampled lines (Right) that lead to 2
possible values of SWGG when θ ∈ [0, 2π].

Solving problem in Eq. (9) amounts to optimize
over a set of admissible permutations. This prob-
lem is hard since SWGG is non convex w.r.t. θ
and piecewise constant, thus not differentiable
over Sd−1. Indeed, as long as the permuta-
tions remain the same for different directions
θ, the value of SWGG remains constant. When
the permutations change, the objective SWGG
"jumps" as illustrated in Fig. 1.

In this section, we tackle this problem by provid-
ing an alternative formulation of min-SWGG
that allows smoothing the different kinks of
SWGG, hence, making min-SWGG amenable to optimization. This formulation relies on Wasserstein
generalized geodesics we introduce hereinafter.

We show that this alternative formulation brings in computational advantages and allows establishing
some additional topological properties and deriving an efficient optimization scheme. We also
provide a new closed form expression of the Wasserstein distance W 2

2 (µ1, µ2) when either µ1 or
µ2 is supported on a line.

4.1 SWGG based on Wasserstein Generalized Geodesics

Wasserstein generalized geodesics (see Supp. 8 for more details) were first introduced in [4] in order
to ensure the convergence of Euler scheme for Wasserstein Gradient Flows. This concept has been
used notably in [29, 44] to speed up some computations and to derive some theoretical properties.
Generalized geodesic is also highly related with the idea of linearization of the Wasserstein distance
via an L2 space [65, 43], see Supp. 9 for more details on the related works.

Generalized geodesics lay down on a pivot measure ν ∈ Pn
2 (R

d) to transport the distribution µ1

toward µ2. Indeed, one can leverage the optimal transport maps T ν→µ1 and T ν→µ2 to construct a
curve t 7→ µ1→2

g (t) linking µ1 to µ2 as

µ1→2
g (t)

def
= ((1− t)T ν→µ1 + tT ν→µ2)# ν, ∀t ∈ [0, 1]. (11)

The related generalized Wasserstein mean corresponds to t = 0.5 and is denoted µ1→2
g .

Intuitively, the optimal transport maps between ν and µi, i = 1, 2 give rise to a sub-optimal transport
map between µ1 and µ2:

T 1→2
ν

def
= T ν→µ2 ◦ Tµ1→ν with (T 1→2

ν )#µ1 = µ2. (12)

One can be interested in the cost induced by the transportation of µ1 to µ2 via the transport map
T 1→2
ν , known as the ν-based Wasserstein distance [47] and defined as

W 2
ν (µ1, µ2)

def
=

∫

Rd

∥x−T 1→2
ν (x)∥22dµ1(x) = 2W 2

2 (µ1, ν)+2W 2
2 (ν, µ2)−4W 2

2 (µ
1→2
g , ν). (13)

Notably, the second part of Eq. (13) straddles the square Wasserstein distance with Eq. (3). Re-
markably, the computation of W 2

ν can be efficient if the pivot measure ν is chosen appropriately. As
established in Lemma 4.6, it is the case when ν is supported on a line. Based on these facts, we
propose hereafter an alternative formulation of SWGG.
Definition 4.1 (Pivot measure). Let µ1 and µ2 ∈ Pn

2 (R
d). We restrict the pivot measure ν to be the

Wasserstein mean of the measures Qθ
#µ1 and Qθ

#µ2:

µ1→2
θ

def
= arg min

µ∈Pn
2 (Rd)

W 2
2 (Q

θ
#µ1, µ) +W 2

2 (µ,Q
θ
#µ2),

5



where θ ∈ Sd−1 and Qθ : Rd → Rd, x 7→ θ⟨x, θ⟩ is the projection onto the subspace generated by θ.
Moreover µ1→2

θ is always defined as the middle of a geodesic as in Eq (2).

One shall notice that Qθ
#µ1 and Qθ

#µ2 are supported on the line defined by the direction θ, so is the
pivot measure ν = µ1→2

θ . We are now ready to reformulate the metric SWGG.

Proposition 4.2 (SWGG based on generalized geodesics). Let θ ∈ Sd−1, µ1, µ2 ∈ Pn
2 (R

d) and µ1→2
θ

be the pivot measure. Let µ1→2
g,θ be the generalized Wasserstein mean between µ1 and µ2 ∈ Pn

2 (R
d)

with pivot measure µ1→2
θ . Then,

SWGG2
2(µ1, µ2, θ) = 2W 2

2 (µ1, µ
1→2
θ ) + 2W 2

2 (µ
1→2
θ , µ2)− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ ). (14)

The proof is in Supp.10.1. From Proposition 4.2, SWGG is the µ1→2
θ -based Wasserstein dis-

tance between µ1 and µ2. This alternative formulation allows establishing additional properties
of min-SWGG.

4.2 Theoretical properties

Additionally to the properties derived in Section 3 (SWGG is a distance and min-SWGG is an upper
bound of W 2

2 ), we provide below other theoretical guarantees.

Proposition 4.3 (Weak Convergence). min-SWGG metricizes the weak convergence in Pn
2 (R

d). In
other words, let (µk)k∈N be a sequence of measures in Pn

2 (R
d) and µ ∈ Pn

2 (R
d). We have:

µk
L,2−→
k

µ ⇐⇒ min-SWGG2
2(µk, µ) −→

k
0,

where
L,2−→ stands for the weak convergence of measure i.e.

∫
Rd fdµk →

∫
Rd fdµ for all continuous

bounded functions f .

Beyond the weak convergence, min-SWGG possesses the translation property, i.e. the translations
can be factored out as the Wasserstein distance does (see [53, remark 2.19] for a recall).
Proposition 4.4 (Translation). Let Tu (resp. T v) be the map x 7→ x− u (resp. x 7→ x− v), with
u,v vectors of Rd. We have:

min-SWGG2
2(T

u
#µ1, T

v
#µ2) = min-SWGG2

2(µ1, µ2) + ∥u− v∥22 − 2⟨u− v,m1 −m2⟩

where m1 =
∫

Rd xdµ1(x) and m2 =
∫

Rd xdµ2(x) are the means of µ1, µ2.

This property is useful in some applications such as shape matching, in which translation invariances
are sought.

The proofs of the two Propositions are deferred to Supp. 10.2 and 10.3.
Remark 4.5 (Equality). min-SWGG and W 2

2 are equal in different cases. First, [43] showed that it
is the case whenever µ1 is the shift and scaling of µ2 (see Supp. 9.1 for a full discussion). In Lemma
4.6, we will state that it is also the case if one of the two distributions is supported on a line.

4.3 Efficient computation of SWGG

SWGG defined in Eq. (14) involves computing three WDs that are fast to compute, with an overall
O(dn+ n log n) complexity, as detailed below. Building on this result, we provide an optimization
scheme that allows optimizing over θ with O(sdn+ sn log sn) operations at each iteration, with s
a (small) integer. We first start by giving a new closed form expression of the WD whenever one
distribution is supported on a line, that proves useful for deriving an efficient computation scheme.

New closed form of the WD. The following lemma states that W 2
2 (µ1, µ2) admits a closed form

whenever µ2 is supported on a line.

This lemma leverages the computation of the WD between µ2 and the orthogonal projection of µ1

onto the linear subspace defined by the line. Additionally, it provides an explicit formulation for the
optimal transport map T 1→2.

6



Lemma 4.6. Let µ1, µ2 in Pn
2 (R

d) with µ2 supported on a line of direction θ ∈ Sd−1. We have:

W 2
2 (µ1, µ2) =W 2

2 (µ1, Q
θ
#µ1) +W 2

2 (Q
θ
#µ1, µ2) (15)

with Qθ as in Def. 4.1. Note that W 2
2 (µ1, Q

θ
#µ1) =

1
n

∑ ∥xi −Qθ(xi)∥22 and W 2
2 (Q

θ
#µ1, µ2) =

W 2
2 (P

θ
#µ1, P

θ
#µ2) are the WD between 1D distributions. Additionally, the optimal transport map

is given by T 1→2 = TQθ
#µ1→µ2 ◦ Tµ1→Qθ

#µ1 = TQθ
#µ1→µ2 ◦Qθ. In particular, the map T 1→2 can

be obtained via the permutations of the 1D distributions P θ
#µ1 and P θ

#µ2. The proof is provided in
Supp. 10.4.

Efficient computation of SWGG. Eq. (14) is defined as the Wasserstein distance between a distri-
bution (either µ1 or µ2 or µ1→2

g,θ ) and a distribution supported on a line (µ1→2
θ ). As detailed in Supp.

10.5, computation of Eq. (14) involves three Wasserstein distances between distributions and their
projections: i) W 2

2 (µ1, Q
θ
#µ1), ii) W 2

2 (µ2, Q
θ
#µ2), iii) W 2

2 (µ
1→2
g,θ , µ1→2

θ ), and a one dimensional
Wasserstein distance W 2

2 (P
θ
#µ1, P

θ
#µ2), resulting in a O(dn+ n log n) complexity.

Optimization scheme for min-SWGG. The term W 2
2 (µ

1→2
g,θ , µ1→2

θ ) in Eq. (14) is not continuous
w.r.t. θ. Indeed, the generalized mean µ1→2

g,θ depends only on the transport maps Tµ1→2
θ →µ1 and

Tµ1→2
θ →µ2 , which remain constant as long as different projection directions θ lead to the same

permutations σθ and τθ. Hence, we rely on a smooth surrogate µ̃1→2
g,θ of the generalized mean and we

aim to minimize the following objective function:

˜SWGG2
2(µ1, µ2, θ)

def
= 2W 2

2 (µ1, µ
1→2
θ ) + 2W 2

2 (µ
1→2
θ , µ2)− 4W 2

2 (µ̃
1→2
g,θ , µ1→2

θ ). (16)

To define µ̃1→2
g,θ , one option would be to use entropic maps in Eq. (11) but at the price of a quadratic

time complexity. We rather build upon the blurred Wasserstein distance [26] to define µ̃1→2
g,θ as it

can be seen as an efficient surrogate of entropic transport plans in 1D. In one dimensional setting,
µ̃1→2
g,θ can be approximated efficiently by adding an empirical Gaussian noise followed by a sorting

pass. In our case, it resorts in making s copies of each sorted projection P θ(xσ(i)) and P θ(yτ(i))

respectively, to add an empirical Gaussian noise of deviation
√
ϵ/2 and to compute averages of sorted

blurred copies xs
σs , ys

τs . We finally have (µ̃1→2
g,θ )i =

1
2s

∑is
k=(i−1)s+1 x

s
σs(k) + ys

τs(k). [26] showed
that this blurred WD has the same asymptotic properties as the Sinkhorn divergence.

The surrogate S̃WGG(µ1, µ2, θ) is smoother w.r.t. θ and can thus be optimized using gradient descent,
converging towards a local minima. Once the optimal direction θ∗ is found, min-SWGG resorts to
be the solution provided by SWGG(µ1, µ2, θ

∗). Fig. 2 illustrates the effect of the smoothing on
a toy example and more details are given in Supp. 10.6. The computation of S̃WGG(µ1, µ2, θ) is
summarized in Alg. 1.

Algorithm 1 Computing ˜SWGG2
2(µ1, µ2, θ)

Require: µ1 = 1
n

∑
δxi , µ2 = 1

n

∑
δyi

, θ ∈ Sd−1, s ∈ N+ and ϵ ∈ R+

σ, τ ← ascending ordering of (P θ(xi))i, (Qθ(yi))i
xs ← s copies of (xσ(i))i, ys ← s copies of (yτ(i))i
σs, τs ← ascending ordering of ⟨xs, θ⟩+ ξ, ⟨ys, θ⟩+ ξ for ξi ∼ N (0, ϵ/2), ∀i ≤ sn

a← 2
n

∑
i

(∥∥xi −Qθ(xi)∥22 + ∥yi −Qθ(yi)∥22
)

▷ 2W 2
2 (µ1, Q

θ
#µ1) + 2W 2

2 (µ2, Q
θ
#µ2)

b← 2
n

∑
i

∥∥P θ(xσ(i)) + P θ(xτ(i))
∥∥2
2

▷ 2W 2
2 (P

θ
#µ1, P

θ
#µ2)

c← 4
n

∑
i

∥∥ 1
2 (Q

θ(xσ(i)) +Qθ(yτ(i)))− 1
2s

is∑
k=(i−1)s+1

(xs
σs(k) + ys

τs(k))
∥∥2
2
▷ 4W 2

2 (µ̃
1→2
g,θ , µ1→2

θ )

Output a+ b− c

7



θ1
θ2

Generalized Wasserstein mean

µ1 µ2 µ1→2
g,θ1

µ1→2
g,θ2

Smooth generalized Wasserstein mean

µ̂1→2
g,θk

0

π/2

π

3π/2

5 10

SWGG2
2

˜SWGG
2

2

Figure 2: Illustration of the smoothing effect in the same setting as in Fig. 1. (Left) Two sets of
generalized Wasserstein means are possible, depending on the direction of the sampled line w.r.t.
θ1 and θ2, giving rise to 2 different values for SWGG. (Middle) The surrogate provides a smooth
transition between the two sets of generalized Wasserstein means as the direction θ changes, (Right)
providing a smooth approximation of SWGG that is amenable to optimization.

5 Experiments

We highlight that min-SWGG is fast to compute, gives an approximation of the WD and the associated
transport plan. We start by comparing the random search and the gradient descent schemes for finding
the optimal direction in subsection 5.1. Subsection 5.2 illustrates the weak convergence property
of min-SWGG through a gradient flow application to match distributions. We then implement an
efficient algorithm for colorization of gray scale images in 5.3, thanks to the new closed form
expression of the WD. We finally evaluate min-SWGG in a shape matching context in subsection 5.4.
When possible from the context, we compare min-SWGG with the main methods for approximating
the WD namely SW, max-SW, Sinkhorn [23], factored coupling [29] and subspace robust WD (SRW)
[52]. Supp. 11 provides additional results on the behavior of min-SWGG and experiments on other
tasks such as color transfer or on data sets distance computation. All the code is available at 1

5.1 Computing min-SWGG

Let consider Gaussian distributions in dimensions d ∈ {2, 20, 200}. We first sample n = 1000 points
from each distribution to define µ1 and µ2. We then compute min-SWGG2

2(µ1, µ2) computed using
different schemes, either by random search, by simulated annealing [54] or by gradient descent. We
report the obtained results in Fig. 3 (left). For the random search scheme, we repeat each experiment
20 times and we plot the average value of min-SWGG ± 2 times the standard deviation.

For the gradient descent, we select a random initial θ. We observe that, in low dimension, all schemes
provide similar values of min-SWGG. When the dimension increases, optimizing the direction θ
yields a more accurate approximation of the true Wasserstein distance (see plots’ title in Fig. 3). On
Fig. 3 (right), we compare the empirical runtime evaluation for min-SWGG with different competitors
for d = 3 and using n samples from Gaussian distributions, with n ∈ {102, 103, 104, 5× 104, 105}.
We observe that, as expected, min-SWGG with random search is as fast as SW with a super linear
time complexity. With the optimization process, it is faster than SRW for a given number of samples.
We also note that SRW is more demanding in memory and hence does not scale as well as min-SWGG.
We give more details on this experimentation and a comparison with competitors in Supp. 11.2.
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Figure 3: (Left) evolution of min-SWGG with different numbers of projections and with the dimension
d in {2, 20, 200}. (Right) Runtimes.

1https://github.com/MaheyG/SWGG
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5.2 Gradient Flows

We highlight the weak convergence property of min-SWGG. Initiating from a random initial distribu-
tion, we aim to move the particles of a source distribution µ1 towards a target one µ2 by reducing
the objective min-SWGG2

2(µ1, µ2) at each step. We compare both variants of min-SWGG against
SW, max-SW and PWD, relying on the code provided in [37] for running the experiment; we report
the results on Fig. 4. We consider several target distributions, representing diverse scenarios and fix
n = 100. We run each experiment 10 times and report the mean ± the standard deviation. In every
case, one can see that µ1 moves towards µ2 and that all methods tend to have similar behavior. One
can notice though that, for the distributions in d = 500 dimensional space, min-SWGG computed
with the optimization scheme leads to the best alignment of the distributions.
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Figure 4: Log of the WD between different source and target distributions as a function of the number
of iterations.

5.3 Gray scale image colorization

Lemma 4.6 states that the WD has a closed form when one of the 2 distributions is supported on a
line, allowing us to compute the WD and the OT map with a complexity of O(dn+ n log n). This
particular situation arises for instance with RBG images (µ1, µ2 ∈ Pn

2 (R
3)), where black and white

images are supported on a line (the line of grays). One can address the problem of image colorization
through color transfer [25], where a black and white image is the source and a colorful image the
target. Our fast procedure allows considering large images without sub-sampling with a reasonable
computation time. Fig. 5 gives an example of colorization of an image of size 1280×1024 that was
computed in less than 0.2 second, while being totally untractable for the O(n3 log n) solver of WD.

Figure 5: Cloud point source and target (left) colorization of image (right).
This procedure can be lifted to pan-sharpening [64] where one aims to construct a super-resolution
multi-chromatic satellite image with the help of a super-resolution mono-chromatic image (source)
and a low-resolution multi-chromatic image (target). Obtained results are given in the Supp. 11.4.

5.4 Point clouds registration

Iterative Closest Point (ICP) is an algorithm for aligning point clouds based on their geometries
[7]. Roughly, its most popular version defines a one-to-one correspondence between point clouds,
computes a rigid transformation (namely translation, rotation or reflection), moves the source point
clouds using the transformation, and iterates the procedure until convergence. The rigid transformation
is the solution of the Procrustes problem i.e. argmin(Ω,t)∈O(d)×Rd ∥Ω(X − t)− Y ∥22, where X,Y
are the source and the target cloud points and O(d) the space of orthogonal matrices of dimension d.
This Procrustes problem can be solved using a SVD [59] for instance.

We perform the ICP algorithm with different variants to compute the one-to-one correspondence:
neareast neighbor (NN) correspondence, OT transport map (for small size datasets) and min-SWGG
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transport map. Note that SW, PWD, SRW, factored coupling and Sinkhorn cannot be run in this
context where a one-to-one correspondence is mandatory; subspace detours [44] are irrelevant in this
context (see Supp. 11.5). We evaluate the results of the ICP algorithm in terms of: i) the quality of
the final alignment, measured by the Sinkhorn divergence between the re-aligned and target point
cloud; ii) the speed of the algorithm given by the running time until convergence. We consider 3
datasets of different sizes. The results are shown in Table 1 and more details about the setup, can be
found in Supp. 11.5. In Supp. 11.5 we give a deeper analysis of the results, notably with different
criteria for the final assignment, namely the Chamfer and the Frobenius distance. One can see that
the assignment provided by OT-based methods is better than NN. min-SWGG allows working with
large datasets, while OT fails to provide a solution for n = 150000.

Source
Target n 500 3000 150 000

NN 3.54 (0.02) 96.9 (0.30) 23.3 (59.37)
OT 0.32 (0.18) 48.4 (58.46) ·
min-SWGG 0.05 (0.04) 37.6 (0.90) 6.7 (105.75)

Table 1: Sinkhorn Divergence between final transformation on
the source and the target. Timings in seconds are into parenthesis.
Best values are boldfaced. An example of a point clouds (n =
3000) is provided on the left.6 Conclusion

In this paper, we hinge on the properties of sliced Wasserstein distance and on the Wasserstein
generalized geodesics to define min-SWGG, a new upper bound of the Wasserstein distance that
comes with an associated transport map. Topological properties of SWGG are provided, showing that
it defines a metric and that min-SWGG metrizes the weak convergence of measure. We also propose
two algorithms for computing min-SWGG, either through a random search scheme or a gradient
descent procedure after smoothing the generalized geodesics definition of min-SWGG. We illustrate
its behavior in several experimental setups, notably showcasing its interest in applications where a
transport map is needed.

The set of permutations covered by min-SWGG is the one induced by projections and permutations on
the line. It is a subset of the original Birkhoff polytope and it would be interesting to characterize how
these two sets relates. In particular, in the case of empirical realizations of continuous distributions, the
behavior of min-SWGG, when n grows, needs to be investigated. In addition, the fact that min-SWGG
and WD coincide when d > 2n calls for embedding the distributions in higher dimensional spaces to
benefit from the greater expressive power of projection onto the line. Another important consideration
is to establish a theoretical upper bound for min-SWGG.
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7 Proofs and supplementary results related to Section 3

7.1 Overestimation of WD by PWD

As stated in Section 2, the projected Wasserstein distance PWD (see Eq. 7) tends to overestimate
the Wasserstein distance. This is due to the fact that some permutations σθ and τθ (with θ ∈ Sd−1)
involved in PWD computation may be irrelevant. Such situation occurs when the distributions
are in high dimension but supported on a low dimensional manifold or when the distributions are
multi-modal.

Let consider the distributions µ1 and µ2 lying on a low dimensional manifold. In high dimension,
randomly sampled vectors θ tend to be orthogonal. Moreover, vectors orthogonal to the low dimen-
sional manifold lead to “collapsed” projected distributions P θ

#µ1 and P θ
#µ2 onto θ. Hence, such

projection directions lead to permutations that can be randomly chosen. To empirically illustrate this
behavior of PWD, we consider µ1 and µ2 as Gaussian distributions in Rd, d = 10 but supported on
the first two coordinates and we sample 200 points per distribution. Table 2 summarizes the obtained
corresponding distances and shows that PWD overestimates the WD.

Now, let us consider two multimodal distributions µ1, µ2 with K clusters such that each cluster of µ1

has a close cluster from µ2 (cyclical monotonicity assumption). Also we assume the same number
of points in each cluster. OT plan will match the corresponding clusters and will lead to a relatively
low value for W 2

2 (since cluster from µ1 has a closely related cluster in µ2). However as PWD may
allow permutations that make correspondences between points from different clusters (since a source
cluster and a target cluster can be far in the original space but very close when projected on 1D), the
resulting distance will be much more larger, leading to an overestimation of the Wasserstein distance.
Table 2 provides an illustration for K = 10 clusters and d = 2.

Table 2: Values of W 2
2 , PWD and min-SWGG on two toy examples. PWD samples θ uniformly over

Sd−1; PWD Orthogonal Projections seek orthogonal vectors (see [57] for more details)
Distributions Multi-modal Low dimensional manifold
W 2

2 12 12
PWD2

2 Monte-Carlo 54 29
PWD2

2 Orthogonal Projections 54 37
min-SWGG2

2 13 13

7.2 Quantile version of SWGG

The main body of the paper expresses SWGG for empirical distributions µ1 and µ2 with the same
number of points and uniform probability masses. In this section we derived SWGG in a more general
setting of discrete distributions.

Let remark that min-SWGG relies on solving a 1D optimal transport (OT) problem. So far, the 1D
OT problem was derived for µ1, µ2 ∈ Pn

2 (R) and thus was expressed using the permutation operators
τ and σ. In the general setting of distributions µ1 ∈ Pn

2 (R) and µ2 ∈ Pm
2 (R) with n ̸= m, the

1D optimal transport is computed based on quantile functions. Hence, the expression of SWGG
in the general setting of µ1 ∈ Pn

2 (R) and µ2 ∈ Pm
2 (R) hinges on quantile functions instead of

permutations.

More formally, let µ ∈ Pn
2 (R); its cumulative function is defined as:

Fµ : R→ [0, 1] , x 7→
∫ x

−∞
dµ (17)

and its quantile function (or pseudo inverse), is given by:

qµ : [0, 1]→ R , r 7→ min{x ∈ R ∪ {−∞} s.t. Fµ(x) ≥ r} (18)

An important remark is that the quantile function is a step function with n (the number of atoms)
discontinuities. Thus, it can be stored efficiently using two vectors of size n (one for the locations of
the discontinuities and the other for the values of the discontinuities).

15



For µ1 ∈ Pn
2 (R) and µ2 ∈ Pm

2 (R), we recover the Wasserstein distance through quantiles with:

W 2
2 (µ1, µ2) =

∫ 1

0

|qµ1
(r)− qµ2

(r)|2dr (19)

Moreover, the optimal transport plan is given by:

π = (qµ1
, qµ2

)#λ[0,1] (20)

where λ[0,1] is the Lebesgue measure on [0, 1]. The transport plan can be stored efficiently using two
vectors of size (n+m− 1) (see [53] Prop 3.4).

Following [53, Remark 9.6], one can define the quantile function related to the Wasserstein mean by :

qµ1→2 =
1

2
qµ1

+
1

2
qµ2

. (21)

Now, let µ1 ∈ Pn
2 (R

d) and µ2 ∈ Pm
2 (Rd). Let µ1→2

θ be the Wasserstein mean of the projected
distributions on θ. Finally let πθ→1 denote the transport plan from µ1→2

θ to µ1 and πθ→2 be the
transport plan from µ1→2

θ to µ2. Following the construction of [4, Sec. 9.2], we shall introduce a
multi marginal plan defined as:

π ∈ P2(R
d × Rd × Rd) s.t. P 12

# π = πθ→1 , P 13
# π = πθ→2 and π ∈ Π(µ1→2

θ , µ1, µ2) (22)

where P 12 : (Rd)3 → (Rd)2 projects to the first two coordinates and P 13 projects to the coordinates
1 and 3. In particular, P 12

# π is the projection of π on its 2 first marginals and P 13
# π on the first and 3rd

marginal. Similarly to the 2-marginal transport plan we defined Π(µ1→2
θ , µ1, µ2) = {π ∈ P2(Rd ×

Rd×Rd) s.t. π(A×Rd×Rd) = µ1→2
θ (A) , π(Rd×A,×Rd) = µ1(A) and π(Rd×Rd×A) = µ2(A),

∀A measurable set of Rd}:
The generalized barycenter µ1→2

g,θ is then defined as:

µ1→2
g,θ =

(
1

2
P 2 +

1

2
P 3

)

#

π (23)

where P i is the projection on the i-th coordinate.

We finally have all the building blocks to compute SWGG in the general case. Let remark that the
complexity goes from O(dn+ n log n) in the Pn

2 (R
d) case to O(d(n+m) + (n+m) log(n+m))

in the general case.

7.3 Proof of Proposition 3.2

We aim to prove that SWGG2
2(µ1, µ2, θ) is an upper bound ofW 2

2 (µ1, µ2) and that SWGG(µ1, µ2, θ)
is a distance ∀θ ∈ Sd−1, µi ∈ Pn

2 (R
d), i = 1, 2.

Distance. Note that this proof will be derived for the alternative definition of SWGG in supp. 10.8.

Let µ1 = 1
n

∑
δxi

, µ2 = 1
n

∑
δyi

, µ3 = 1
n

∑
δzi

be in P2(Rd), let θ ∈ Sd−1. We note σ (resp.
τ and π) the permutation such that ⟨xσ(1), θ⟩ ≤ ... ≤ ...⟨xσ(n), θ⟩ (resp. ⟨yτ(1), θ⟩ ≤ ... ≤
...⟨yτ(n), θ⟩ and ⟨zπ(1), θ⟩ ≤ ... ≤ ...⟨zπ(n), θ⟩).
Non-negativity and finite value. From the ℓ2 norm, it is derived

Symmetry. SWGG2
2(µ1, µ2, θ) = 1

n

∑
i ∥xσ(i) − yτ(i)∥22 = 1

n

∑
i ∥yτ(i) − xσ(i)∥22 =

SWGG2
2(µ2, µ1, θ)

Identity property. From one side, µ1 = µ2 implies that ⟨xi, θ⟩ = ⟨yi, θ⟩, ∀1 ≤ i ≤ n and that σ = τ ,
which implies SWGG2

2(µ1, µ2, θ) = 0.

From the other side, SWGG2
2(µ1, µ2, θ) = 0 =⇒ 1

n

∑ ∥xσ(i) − yτ(i)∥22 = 0 =⇒ xσ(i) = yτ(i),
∀1 ≤ i ≤ n =⇒ µ1 = µ2.
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Triangle Inequality. We have SWGG2(µ1, µ2, θ) =
(

1
n

∑
i ∥xσ(i) − yτ(i)∥22

)1/2

≤
(∑

i ∥xσ(i) − zπ(i)∥22 +
∑

i ∥zπ(i) + yτ(i)∥22
)1/2

≤
(∑

i ∥xσ(i) − zπ(i)∥22
)1/2

+
(∑

i ∥zπ(i) + yτ(i)∥22
)1/2

= SWGG2(µ1, µ3, θ) + SWGG2(µ3, µ2, θ)

Upper Bound The fact that min-SWGG2
2 in an upper bound of W 2

2 comes from the sub-optimality
of the permutations σθ, τθ. Indeed, they induce a one-to-one correspondence xσθ(i) → yτθ(i)

∀1 ≤ i ≤ n. This correspondence corresponds to a transport map T θ such that T θ
#µ1 = µ2. Since

W 2
2 = infT s.t. T#µ1=µ2

1
n

∑ ∥x− T (x)∥22 we necessarily have W 2
2 ≤ min-SWGG2

2.

Equality The equality W 2
2 = min-SWGG2

2 whenever d > 2n comes from the fact that all the
permutations are within the range of SWGG. In particular minimizing SWGG is equivalent to solve
the Monge problem. We refer to Supp. 11.1 for more details.

7.4 Difference between max-SW and min-SWGG

Herein, we give an example where the selected vectors θ for max-SW and min-SWGG differ.

Let µ1, µ2 ∈ P(R2) be an empirical sampling ofN (m1,Σ1) and ofN (m2,Σ2) with m1 =

(
−10
0

)
,

m2 =

(
10
0

)
, Σ1 =

(
1 0
0 11

)
and Σ2 =

(
2 0
0 2

)
.

Since these two distributions are far away on the x-coordinate, max-SW will catch this difference

between the means by selecting θ ≈
(
1
0

)
. Indeed, the projection on the x-coordinate represents the

largest 1D WD.

Conversely, min-SWGG selects the pivot measure to be supported on θ ≈
(
1
0

)
that separates the

two distributions. Indeed, this direction better captures the geometry of the 2 distributions, delivering
permutations that are well grounded to minimize the transport cost.

Fig. 6 illustrates that difference between max-SW and min-SWGG.

−10 −5 0 5 10 15

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

min-SWGG
Source
Target
Optimal direction

−10 −5 0 5 10 15

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

max-SW
Optimal direction

Figure 6: Optimal θ for max-SW and min-SWGG

7.5 From permutations to transport map

In this section we provide the way of having a transport map from permutations.

Let µ1, µ2 ∈ Pn
2 (R

d), let θ∗ ∈ argmin SWGG and let σθ∗ , τθ∗ the associated permutations. The
associated map must be T (xσ(i)) = yτ(i) ∀1 ≤ i ≤ n. In the paper, we formulate the associated
transport map as:

T (xi) = yτ−1
θ∗ (σθ∗ (i))

, ∀1 ≤ i ≤ n. (24)
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Moreover, the matrix representation of T is given by:

Tij =

{
1
n if σ(i) = τ(j)
0 otherwise (25)

7.6 Examples of Transport Plan

Fig. 7 illustrates two instances of the transport plan obtained via min-SWGG. Even though these
transport plans are not optimal, they were able to capture the overall structure of the true optimal
transport plans.
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Figure 7: Example of transports plan given by Wasserstein (left and middle-right) and min-SWGG
(middle left and right). Transport plan distribution (top) and transport matrix (bottom).The relative
distances between source and target are given in the title.

The first example shows that the OT plan by min-SWGG exhibits a "block" structure, and thus
approximates well the true Wasserstein distance. The second example shows that even in a context of
superimposed distribution the "general transport direction" in min-SWGG is representative of that of
the optimal transport map.

8 Background on Wasserstein Generalized Geodesics

We introduce some concepts related the Wasserstein generalized geodesics in Sec. 4.1. In this section,
we provide more details about these geodesics in order to provide a wider view on this theory.

In the following definitions, we do not address the issue of uniqueness of the geodesics. However this
is not a problem in our setup since we focus our study on pivot measure with n-atoms ν ∈ Pn

2 (R
d).

In this case, we have uniqueness of the ν-based Wasserstein distance [47].

Wasserstein generalized geodesics As mentioned in Sec. 4.1, Wasserstein generalized geodesics
rely on a pivot measure ν ∈ Pn

2 (R
d) to transport µ1 to µ2. Indeed, one can leverage the optimal

transport maps T ν→µ1 and T ν→µ2 to construct a curve linking µ1 to µ2. The generalized geodesic
with pivot measure ν is defined as:

µ1→2
g (t)

def
= ((1− t)T ν→µ1 + tT ν→µ2)# ν ∀t ∈ [0, 1]. (26)

The generalized Wasserstein mean refers to the middle of the geodesic, i.e. when t = 0.5 and has
been denoted µ1→2

g .

Intuitively, the optimal transport maps between ν and µi, i = 1, 2 give rise to a sub-optimal transport
map between µ1 and µ2 through:

T 1→2
ν

def
= T ν→µ2 ◦ Tµ1→ν with (T 1→2

ν )#µ1 = µ2. (27)
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T 1→2
ν links µ1 to µ2 via the generalized geodesic:

µ1→2
g (t) = ((1− t)Id+ tT 1→2

ν )#µ1. (28)

We recall here the ν-based Wasserstein distance induced by T 1→2
ν and introduced in Eq. (13).

Definition 8.1. The ν-based Wasserstein distance [21, 47] is defined as:

W 2
ν (µ1, µ2)

def
=

∫

Rd

∥x− T 1→2
ν (x)∥22dµ1(x) (29)

=

∫

Rd

∥T ν→µ1(z)− T ν→µ2(z)∥22dν(z). (30)

Moreover, this new notion of geodesics comes with an inequality, which is of the opposite side to
Eq. (3):

W 2
2 (µ

1→2
g (t), ν) ≤ (1− t)W 2

2 (µ1, ν) + tW 2
2 (ν, µ2)− t(1− t)W 2

2 (µ1, µ2). (31)

The parallelogram law is not respected but straddles with eq. (3) and eq. (31). We refer to Figure 8
for an intuition behind positive curvature [51], parallelogram law and generalized geodesics.

µ1 µ1

ν ν

µ2
µ2x1

y

x2
µ1 →2(t)

µ1→2
g (t)

tx1 + (1− t)x2

Figure 8: Geodesic (tId+ (1− t)T 1→2)#µ1 and generalized geodesic (tId+ (1− t)T 1→2
ν )#µ1 in

Wasserstein space (Left and Right) in dashed line and parallelogram law in Rd (middle).

Setting t = 0.5 in Eq. (31) and reordering the term gives:
W 2

2 (µ1, µ2) ≤ 2W 2
2 (µ1, ν) + 2W 2

2 (ν, µ2)− 4W 2
2 (µ

1→2
g , ν). (32)

Moreover one can remark that:
W 2

ν (µ1, µ2) = 2W 2
2 (µ1, ν) + 2W 2

2 (ν, µ2)− 4W 2
2 (µ

1→2
g , ν) (33)

In particular situations W 2
ν and W 2

2 coincide. It is the case for 1D distributions where the Wasserstein
space is known to be flat [4]. In that case, the Wasserstein mean and the generalized Wasserstein
mean are the same.

Multi-marginal Another formulation of the ν-based Wasserstein distance is possible through
the perspective of multi-marginal OT [4]. Let Π(µ1, µ2, ν) = {π s.t. P 12

# π = π1→2 , P 13
# π =

π1→ν and P 23
# π = π2→ν}, where P ij is the projection onto the coordinates i, j. Let also Π∗(µi, ν)

be the space of optimal transport maps between µi and ν. We have:

W 2
ν (µ1, µ2) = inf

π∈Π(µ1,µ2,ν) s.t. P i3
# π∈Π∗(µi,ν) i=1,2

∫

Rd

∥x− y∥22dπ(x,y) (34)

Equation (34) expresses the fact that we select the optimal plan from Π(µ1, µ2, ν) which is already
optimal for Π(µi, ν). Mathematically, this minimization is not a multi-marginal problem, since the
optimal plan is supposed to be already optimal for some coordinate.

The set {π ∈ Π(µ1, µ2, ν) s.t. P i3
# π ∈ Π∗(µi, ν) i = 1, 2} is never empty, i.e. there is always

existence of π1→2
ν (thanks to the gluing lemma [63], page 23). Moreover, in situations where it is a

singleton, there is uniqueness of π1→2
ν . Uniqueness is an ingredient which overpasses the selection

of a final coupling and comes with additional result.
Lemma 8.2 (Lemma 6 [47]). Whenever {π ∈ Π(µ1, µ2, ν) s.t. P i3

# π ∈ Π∗(µi, ν) i = 1, 2} is a
singleton, W 2

ν is a proper distance. It is a semi-distance otherwise.

Notably, 1D pivot measure was studied in [35] to ensure a dendritic structure of the distributions
along the geodesic.
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9 Related Works

In this section we highlight the fact that several upper approximations of W 2
2 are in the framework of

generalized geodesics. The differences lay in the choice of the pivot measure ν.

Factored Coupling. In [29], the authors impose a low rank structure on the transport plan by
factorizing the couplings through a pivot measure ν expressed as the k-Wasserstein mean between µ1

and µ2 (k ≤ n). It is of particular interest since whenever the pivot distribution is the Wasserstein
mean between µ1 and µ2, W 2

ν and W 2
2 coincide.

Factored coupling results in a problem of computing the k-Wasserstein mean (µ1→2) followed by
solving two OT problems between the clustered Wasserstein mean and the two input distributions
(W 2

2 (µ1, µ
1→2) and W 2

2 (µ
1→2, µ2)). Even though the OT problems are smaller, they are still

expensive in practice.

Moreover, in this scenario, the uniqueness of the OT plan T 1→2
ν is not ensured. It appears that [29]

chooses the most entropic transport plan, i.e. simply T 1→2
ν = Tµ1→2→µ2 ◦ Tµ1→µ1→2

.

Subspace Detours. From a statistical point of view, it is beneficial to consider optimal transport
on a lower dimensional manifold [66]. In [44], authors compute an optimal transport plan TµE

1 →µE
2

between projections on a lower linear subspace E of µ1 and µ2, i.e. µE
i = PE#µi, where PE is the

linear projection on E. They aimed at leveraging TµE
1 →µE

2 to construct a sub-optimal map T 1→2
E

between µ1 and µ2.

The problem can be recast as a generalized geodesic problem with ν being the Wasserstein mean of
µE
1 and µE

2 embedded in Rd. Once again, uniqueness of Tµ1→µ2
ν is not guaranteed, authors provide

two ways of selecting the map, namely Monge-Knothe and Monge-Independent lifting.

Subspace detours result in a problem where one needs to select a linear subspace E (which is a
non convex procedure), compute an optimal transport between µ1 and µ2 (in O(n3 log n) whenever
dim(E) > 1) and reconstruct Tµ1→µ2

E .

Linear Optimal Transport (LOT). Given a set of distributions (µi)
m
i=1 ∈ P2(Rd)m, LOT [65]

embeds the set of distributions into the L2(ν)-space by computing the OT of each distribution to
the pivot distribution. Mathematically, it computes T ν→µi ∀1 ≤ i ≤ m and lies on estimating
W 2

2 (µi, µj) with W 2
ν (µi, µj) through eq. (13).

In LOT, the pivot measure ν was chosen to be the average of the input measures [65], the Lebesgue
measure on Rd [41] or an isotropic Gaussian distribution [43].

Instead of computing
(
m
2

)
expensive Wasserstein distances, it resorts only on m Wasserstein distances

between (µi)
m
i and ν. While significantly reducing the computational cost when several distributions

are at stake, it does not allow speeding up the computation when only two distributions are involved.

9.1 Linear Optimal Transport with shift and scaling

In this section, we recall the result from [43]. The theorem states that the ν-based approximation
is very close to WD whenever µ1, µ2 are continuous distributions which are very close to be shift
and scaling of each other. It can applies to a continuous version of SWGG, however it works with
discrete measures in the particular case of equality between W 2

ν and W 2
2 .

Theorem 9.1 (Theorem 4.1 [43]). Let Λ = {Sa (shift) , a ∈ Rd} ∪ {Rc (scaling) , c ∈ R},
Λµ,R = {h ∈ Λ s.t. ∥h∥µ ≥ R} and Gµ,R,ϵ = {g ∈ L2(Rd, µ) s.t. ∃h ∈ Λµ,R s.t. ∥g − h∥µ ≤ ϵ}
Let ν, µ ∈ P2(Rd), with µ, ν ≪ λ (the Lebesgue measure). Let R > 0, ϵ > 0

• For g1, g2 ∈ Gµ,R,ϵ and ν = λ on a convex compact subset of Rd, we have:

Wν(g1#µ, g2#µ)−W2(g1#µ, g2#µ) ≤ Cϵ
2
15 + 2ϵ (35)

20



• If µ and ν satisfy the assumption of Caffarelli’s regularity theorem [14], then for g1, g2 ∈
Gµ,R,ϵ, we have:

Wν(g1#µ, g2#µ)−W2(g1#µ, g2#µ) ≤ Cϵ1/2 + Cϵ (36)

where C,C depdends on ν, µ and R.

10 Proofs and other results related to Section 4

10.1 Proof of Proposition 4.2: equivalence between the two formulations of SWGG

In this section, we prove that the two definitions of SWGG in Def. 3.1 and Prop. 4.2 are equivalent.
Let θ ∈ Sd−1 be fixed.

From one side in Def. 3.1, we have:

SWGG2
2(µ1, µ2, θ)

def
=

1

n

∑

i

∥xσθ(i) − yτθ(i)
∥22 (37)

where σθ and τθ are the permutations obtained by sorting P θ
#µ1 and P θ

#µ2.

From the other side we note D(µ1, µ2, θ) the quantity:

D(µ1, µ2, θ)
def
= 2W 2

2 (µ1, µ
1→2
θ ) + 2W 2

2 (µ
1→2
θ , µ2)− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ ). (38)

We want to prove that SWGG2
2(µ1, µ2, θ) = D(µ1, µ2, θ), ∀µ1, µ2 ∈ Pn

2 (R
d) and θ ∈ Sd−1.

Eq. (13) in the main paper states that D(µ1, µ2, θ) is equivalent to
∫

Rd ∥x− T 1→2
µ1→2
θ

(x)∥22dµ1(x).

Finally, Lemma 4.6 states that the transport map T 1→2
µ1→2
θ

is fully determined by the permutations on
the line: the projections part is a one-to-one correspondence between x and θ⟨x, θ⟩ (resp. between y
and θ⟨y, θ⟩). More formally T 1→2

µ1→2
θ

(xσθ(i)) = yτθ(i)
∀1 ≤ i ≤ n. And thus we recover:

∫

Rd

∥x− T 1→2
µ1→2
θ

(x)∥22dµ1(x) =
1

n

∑

i

∥xσθ(i) − yτθ(i)
∥22 (39)

which concludes the proof.

10.2 Proof of Weak Convergence (Proposition 4.3)

We want to prove that, for a sequence of measures (µk)k∈N ∈ Pn
2 (R

d), we have:

µk
L,2−→ µ ∈ Pn

2 (R
d)) ⇐⇒ min-SWGG2

2(µk, µ) −→
k

0 (40)

The notation µk
L,2−→ µ stands for the weak convergence in Pn

2 (R
d) i.e.

∫
Rd f(x)dµ(k)(x) →∫

Rd f(x)dµ(x) for all continuous bounded functions f and for the Euclidean distance f(x) =

∥x0 − x∥22 for all x0 ∈ Rd.

From one side, if min-SWGG2
2(µk, µ) → 0 =⇒ W 2

2 (µk, µ) → 0 =⇒ µk
L,2−→ µ. The first

implication is due to the fact that min-SWGG2
2 is an upper-bounds of W 2

2 , the Wasserstein distance,
and that WD metrizes the weak convergence.

From another side, assume µk
L,2−→ µ; we have for any θ:

1. Let µµk→µ
θ ∈ Pn

2 (R
d) stands for the Wasserstein mean of the projections Qθ

#µk and Qθ
#µ

and let µµ→µ
θ = Qθ

#µ. We have µµk→µ
θ converges towards (in law) to µµ→µ

θ , which implies
that:

W 2
2 (µk, µ

µk→µ
θ ) −→

k
W 2

2 (µ, µ
µ→µ
θ ). (41)
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2. Since µ ∈ Pn
2 (R

d), we have Tµ
µk→µ

θ →µk −→
k

Tµ
µk→µ

θ →µ (see [22], theorem 3.2). It

implies that µµk→µ
g,θ

L−→ µ and particularly:

W 2
2 (µ

µk→µ
g,θ , µµk→µ

θ ) −→
k

W 2
2 (µ, µ

µ→µ
θ ) (42)

By combining the previous elements, we get:

2W 2
2 (µk, µ

µk→µ
θ ) + 2W 2

2 (µ
µk→µ
θ , µk)− 4W 2

2 (µ
µk→µ
g,θ , µµk→µ

θ ) −→
k

2W 2
2 (µ, µ

µ→µ
θ )

+ 2W 2
2 (µ

µ→µ
θ , µ)

− 4W 2
2 (µ, µ

µ→µ
θ ) = 0 (43)

The previous relation shows that µk
L,2−→ µ implies SWGG2

2(µk, µ, θ) −→
k

0 for any θ. Hence, we

can conclude that:

µk
L,2−→ µ =⇒ min-SWGG2

2(µk, µ)→ 0 (44)

This concludes the proof.

Note that when µ1 and µ2 are continuous, [41] proved that when the distributions are smooth enough
(i.e. respecting the Cafarelli theorem [14]), there is a bi-Holder equivalence between the ν-based
Wasserstein distance and W 2

2 . Hence, it still holds for SWGG for any θ ∈ Sd−1:

W 2
2 (µ1, µ2) ≤ SWGG2

2(µ1, µ2, θ) ≤ B ×W 2
2 (µ1, µ2)

2/15 ∀µi ∈ P2(R
d) (45)

where B depends on µi, i ∈ {1, 2}, θ and the dimension d. This bound is sufficient to prove that
SWGG metrizes the weak convergence in this context. We refer to [41] for more details.

10.3 Proof of Translation property (Proposition 4.4)

We prove that min-SWGG2
2 has the same behavior w.r.t. the translation as W 2

2 . This property is well
known for Wasserstein and useful in applications such as shape matching.

Let µ1, µ2 ∈ Pn
2 (R

d), and let Tu (resp. T v) be the map x 7→ x− u (resp. x 7→ x− v), with u,v
vectors of Rd.

To ease the notations, let define µ̃1 = Tu
#µ1 and µ̃2 = T v

#µ2.

Let remind that in the case of Wasserstein distance we have [53](Remark 2.19):

W 2
2 (µ̃1, µ̃2)

def
= W 2

2 (T
u
#µ1, T

v
#µ2) =W 2

2 (µ1, µ2)− 2⟨u− v,m1 −m2⟩+ ∥u− v∥22 (46)

with m1 =
∫

Rd xdµ1(x) and m2 =
∫

Rd xdµ2(x).

We aim to compute min-SWGG2
2(µ̃1, µ̃2)

def
= min-SWGG2

2(T
u
#µ1, T

v
#µ2). Let express first

SWGG2
2(µ̃1, µ̃2) = 2W 2

2 (µ̃1, µ̃
1→2
θ ) + 2W 2

2 (µ̃2, µ̃
1→2
θ )− 4W 2

2 (µ̃
1→2
g,θ , µ̃1→2

θ ) (47)

where µ̃1→2
θ is the Wasserstein mean of the projections along θ of the shifted measures µ̃1 = Tu

#µ1

and µ̃2 = T v
#µ2 as in Proposition 2. The generalized Wasserstein mean µ̃1→2

g,θ is defined accordingly
(see also Proposition 11).

We have:

W 2
2 (µ̃1, µ̃

1→2
θ ) =W 2

2 (µ1, µ
1→2
θ )− 2⟨u,m1 −m3⟩+ ∥u∥22 (48)

where m3 =
∫

Rd xdµ̃
1→2
θ (x).

Similarly W 2
2 (µ̃2, µ̃

1→2
θ ) =W 2

2 (µ2, µ
1→2
θ )− 2⟨v,m2 −m3⟩+ ∥v∥22.

22



Let express now the third term in eq. (47). For that we require to define the generalized Wasserstein
mean µ̃1→2

g,θ with pivot measure µ̃1→2
θ . By the virtue of eq. (11) in the main paper, we have:

µ̃1→2
g,θ =

(
1

2
T µ̃1→2

θ →µ̃1 +
1

2
T µ̃1→2

θ →µ̃2

)

#

µ̃1→2
θ (49)

=

(
1

2
Tµ1→2

θ →µ1 +
1

2
Tµ1→2

θ →µ2 − T u+v
2

)

#

µ̃1→2
θ (50)

= T
u+v
2

#

((
1

2
Tµ1→2

θ →µ1 +
1

2
Tµ1→2

θ →µ2

)

#

µ1→2
θ

)
(51)

Hence, the third term in (47) is:

W 2
2 (µ̃

1→2
g,θ , µ̃1→2

θ ) =W 2
2 (µ

1→2
g,θ , µ1→2

θ )− 2
〈u+ v

2
,
m1 +m2

2
−m3

〉
+
∥∥∥u+ v

2

∥∥∥
2

2
(52)

since the mean of a Wasserstein mean is the mean of m1, m2.

Putting all together, we have:

min-SWGG2
2(T

u
#µ1, T

v
#µ2) = min-SWGG2

2(µ1, µ2) −4⟨u,m1 −m3⟩ − 4⟨v,m2 −m3⟩
(53)

+ 8
〈u+ v

2
,
m1 +m2

2
−m3

〉

+ 2∥u∥22 + 2∥v∥22 − 4
∥∥∥u+ v

2

∥∥∥
2

2

= min-SWGG2
2(µ1, µ2) +4⟨u+ v,m3⟩ (54)

− 4⟨u+ v,m3⟩ − 4⟨u,m1⟩ − 4⟨v,m2⟩
+ 4⟨u+ v,m1 +m2⟩+ ∥u− v∥22

(Parallelogram law)

= min-SWGG2
2(µ1, µ2) −2⟨u,m1⟩ − 2⟨v,m2⟩+ 2⟨u,m2⟩+ 2⟨v,m1⟩

(55)

+ ∥u− v∥22
= min-SWGG2

2(µ1, µ2) −2⟨u− v,m1 −m2⟩+ ∥u− v∥22 (56)

10.4 Proof of the new closed form of the Wasserstein distance (Lemma 4.6)

We recall and prove the lemma that makes explicit a new closed form for WD. Let µ1, µ2 be in
Pn
2 (R

d) with µ2 a distribution supported on a line whose direction is θ ∈ Sd−1. We have:

W 2
2 (µ1, µ2) =W 2

2 (µ1, Q
θ
#µ1) +W 2

2 (Q
θ
#µ1, µ2). (57)

Moreover, the optimal map is given by T 1→2 = TQθ
#µ1→µ2 ◦ Tµ1→Qθ

#µ1 = TQθ
#µ1→µ2 ◦Qθ.

Let µ1, µ2 be in Pn
2 (R

d) with µ2 a distribution supported on a line of direction θ. We have:

W 2
2 (µ1, µ2) =W 2

2 (µ1, Q
θ
#µ1) +W 2

2 (Q
θ
#µ1, µ2) (58)

Moreover, the optimal map is given by:

T 1→2 = TQθ
#µ1→2 ◦ T 1→Qθ

#µ1 = TQθ
#µ1→2 ◦Qθ (59)

Here Qθ is given in Def. 4.1 of the paper.

The proof of the Lemma was first inspired by [13](Proposition 2.3), where authors show that
W 2

C(µ1, µ2) = W 2
C1(µ1, µ) +W 2

C2(µ, µ2) , with C1, C2 and C some cost matrices with the con-
straints Cij = mins C

1
is + C2

sj .
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Let µ1 = 1
n

∑
δxi and µ2 = 1

nδyi
be in Pn

2 (R
d) with µ2 a distribution supported on a line with

direction θ. Let Qθ
#µ1 = µ1 = 1

n

∑
δxi ∈ Pn

2 (R
d). We emphasize here the fact that the atoms of µ1

and µ2 are supported on a line are denoted by the overline symbol.

From one side, we have:

W 2
2 (µ1, µ2) = inf

T 1 s.t. T 1
#µ1=µ2

∫

Rd

∥x− T 1(x)∥22dµ1(x) (60)

= inf
T 1 s.t. T 1

#µ1=µ2

∫

Rd

(∥x−Qθ(x)∥22 + ∥Qθ(x)− T 1(x)∥22)dµ1(x) (61)

=

∫

Rd

∥x−Qθ(x)∥22dµ1(x) + inf
T 1 s.t. T 1

#µ1=µ2

∫

Rd

∥Qθ(x)− T 1(x)∥22dµ1(x) (62)

≥ inf
T 2 s.t. T 2

#µ1=µ1

∫

Rd

∥x− T 2(x)∥22dµ1(x) + inf
T 3 s.t. T 3

#µ1=µ2

∫

Rd

∥x− T 3(x)∥22dµ1(x)

(63)

≥W 2
2 (µ1, µ1) +W 2

2 (µ1, µ2) (64)

Equation (61) is obtained thanks to the Pythagorean theorem since ⟨xi, Q
θ(xi),yi⟩ is a right triangle

∀1 ≤ i ≤ n. The equation (64) is obtained by taking the inf of the previous first term of the previous
equation.

From the other side:

W 2
2 (µ1, µ1) +W 2

2 (µ1, µ2) =

∫

Rd

∥x− T 3(x)∥22dµ1(x) +

∫

Rd

∥x− T 4(x)∥22dµ1(x) (65)

=

∫

Rd

∥T 3(x)− T 4(x)∥22dµ1(x) (66)

=W 2
µ1
(µ1, µ2) ≥W 2

2 (µ1, µ2) (67)

Where T 3 and T 4 are the optimal plan of W 2
2 (µ1, µ1) and+W 2

2 (µ1, µ2). Similarly, (65) is obtained
via the Pythagorean theorem. This concludes the proof.

We plot an illustration of the lemma in Figure 9.
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Figure 9: Closed form for Wasserstein with Pythagorus theorem

10.5 Details on the efficient computation of SWGG

We decompose the second formulation of SWGG. Let first remind that Qθ : Rd → Rd, x 7→ θ⟨x, θ⟩
and P θ : Rd → R, x 7→ ⟨x, θ⟩ are the projections on the subspace generated by θ.

We have:
SWGG2

2(µ1, µ2, θ) = 2W 2
2 (µ1, µ

1→2
θ ) + 2W 2

2 (µ
1→2
θ , µ2)− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ ). (68)
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First, by lemma 4.6,

2W 2
2 (µ1, µ

1→2
θ ) = 2W 2

2 (µ1, Q
θ
#µ1) + 2W 2

2 (P
θ
#µ1, P

θ
#µ

1→2
θ ) (69)

as µ1→2
θ ’s support is on a line. Similarly,

2W 2
2 (µ2, µ

1→2
θ ) = 2W 2

2 (µ2, Q
θ
#µ2) + 2W 2

2 (P
θ
#µ2, P

θ
#µ

1→2
θ ). (70)

and

−4W 2
2 (µ

1→2
g,θ , µ1→2

θ ) = −4W 2
2 (µ

1→2
g,θ , Qθ

#µ
1→2
g,θ )− 4W 2

2 (P
θ
#µ

1→2
g,θ , P θ

#µ
1→2
θ ). (71)

We notice that 2W 2
2 (P

θ
#µ1, P

θ
#µ

1→2
θ ) + 2W 2

2 (P
θ
#µ

1→2
θ , P θ

#µ2) = W 2
2 (P

θ
#µ1, P

θ
#µ2) (as

P θ
#µ

1→2
θ is the Wasserstein mean between P θ

#µ1 and P θ
#µ2). We also notice that

−4W 2
2 (P

θ
#µ

1→2
g,θ , P θ

#µ
1→2
θ ) = 0 (it comes from the fact that the generalized Wasserstein mean

is induced by the permutations on the line), we can put all together to have:

SWGG2
2(µ1, µ2, θ) = 2W 2

2 (µ1, Q
θ
#µ1) + 2W 2

2 (µ2, Q
θ
#µ2)− 4W 2

2 (µ
1→2
g,θ , Qθ

#µ
1→2
g,θ ) +W 2

2 (P
θ
#µ1, P

θ
#µ2)

(72)

One can show that SWGG is divided into 3 Wasserstein distances between a distribution and its
projections on a line and 1D Wasserstein problem. This results in a very fast computation of SWGG.

10.6 Smoothing of SWGG

In this section, we give details on the smoothing procedure of min-SWGG, an additional landscape
of SWGG and its smooth counterpart S̃WGG and an empirical heuristic for setting hyperparameters
s and ϵ.

Smoothing Procedure. A natural surrogate would be to add an entropic regularization within the
definition of Tµ1→2

θ →µi , i ∈ {1, 2} and to solve an additional optimal transport problem. Nevertheless,
it would lead to an algorithm with an O(n2) complexity. Instead, we build upon the blurred
Wasserstein distance [26] between two distributions ν1 and ν2:

B2
ϵ (ν1, ν2)

def
= W 2

2 (kϵ/4 ∗ ν1, kϵ/4 ∗ ν2)
where ∗ denotes the smoothing (convolution) operator and kϵ/4 is the Gaussian kernel of deviation√
ϵ/2. In our case, it resorts in making s copies of each sorted projections P θ(xi) and P θ(yi)

respectively, to add a Gaussian noise of deviation
√
ϵ/2 and to compute averages of sorted blurred

copies xs
σs , ys

τs :

(µ̃1→2
θ )i =

1

2s

is∑

k=(i−1)s+1

xs
σs(k) + ys

τs(k). (73)

Further, we provide additional examples of the landscape of ˜min-SWGG(µ1, µ2) and discuss how to
choose empirically relevant s and ϵ values.

[26] has shown that the blurred WD has the same asymptotic properties as the Sinkhorn divergence,
with parameter ϵ the strength of the blurring: it interpolates between WD (when ϵ → 0) and a
degenerate constant value (when ϵ→∞).

To find a minimum of Eq. (16) in the paper (i.e. ˜SWGG2
2(µ1, µ2, θ)), we iterate over:

θt+1 =θt + η∇θ
˜SWGG2

2(µ1, µ2, θ)

θt+1 =θt+1/∥θt+1∥2
where η ∈ R+ is the learning rate. This procedure converges towards a local minima with a complexity
of O(snd+ sn log(sn)) for each iteration. Once the optimal direction θ⋆ is found, the final solution
resorts to be the solution provided by SWGG2

2(µ1, µ2, θ
⋆), where the induced optimal transport map

is an unblurred matrix.
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Heuristic for setting the hyperparameters of S̃WGG We here provide an heuristic for setting
parameters s (number of copies of each points) and ϵ (strength of the blurring). We then give an
example of the behavior of S̃WGG w.r.t. these hyper parameters.

Let µ1 = 1
n

∑
δxi

and µ2 = 1
n

∑
δyi

.

• s ∈ N+ represents the number of copies of each sample. We observe empirically that the quantity
sn should be large to provide a smooth landscape. It means that the s values can be small when n
increases, allowing to keep a competitive algorithm (as the complexity depends on ns)

• ϵ ∈ R+ represents the variance of the blurred copies of each sample. Empirically, ϵ should depend
on the variance of the distributions projected on the line. Indeed, an ϵ very close to zero will not
smooth enough the discontinuities whereas a large ϵ will give a constant landscape.

As discussed in Section 4.3, finding an optimal θ ∈ Sd−1 is a non convex problem and provides
a discontinuous loss function. We give some examples of the landscape of S̃WGG w.r.t. different
values of the hyperparameters in Fig. 10. The landscapes were computed with a set of projections θ
regularly sampled with angles ∈ [0, 2π].

We observe that the larger s, the smoother S̃WGG. Additionally, raising ϵ tends to flatten S̃WGG
w.r.t. θ (erasing local minima). Indeed similarly to Sinkhorn, a large ϵ blurred the transport plan and
thus homogenize all the value of SWGG w.r.t. θ.

Moreover, we empirically observe that the number of samples for µ1 and µ2 enforces the continuity of
SWGG. We then conjecture that the discontinuities of SWGG are due to artifact of the sampling and
thus the smoothing operation erases this unwanted behavior. A full investigation of this assumption is
left for future work.
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Figure 10: Non-convex landscapes for SWGG and S̃WGG with different hyper parameters.

10.7 Inconsequential of the pivot measure

Importantly, only the direction θ is of importance for the value of SWGG. Indeed, whenever
ν ∈ Pn

2 (R
d) is supported on a line of direction θ, the position of the atoms is irrelevant for Wν

and the associated transport plan whenever the atoms are distinct. Despite the fact that the pivot
measure is inconsequential for the value of SWGG (at θ fixed), we choose it to be µ1→2

θ . This choice
is supported by the fact that µ1→2

θ can be efficiently computed (as a 1D Wasserstein mean) and that
some computation can be alleviated:

2W 2
2 (Q

θ
#µ1, µ

1→2
θ ) + 2W 2

2 (µ
1→2
θ , Qθ

#µ2) =W 2
2 (Q

θ
#µ1, Q

θ
#µ2) (74)

It is an important comment to derive the property of distance for SWGG; it also allows minimizing
SWGG over θ ∈ Sd−1 without consideration for ν, since any choice of ν supported on the subspace
generated by θ give the same result for min-SWGG. This property of irrelevance comes from the
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nature of the subspace where ν is supported, which is uni-dimensional. More formally we give the
following proposition and its associated proof.

Proposition 10.1. Let µ1, µ2 ∈ Pn
2 (R

d). Let θ ∈ Sd−1. Let ν1, ν2 ∈ Pn
2 (R

d) be two pivot measures
supported on a line with direction θ, with disctincs atoms for each measure. We then have:

W 2
ν1
(µ1, µ2) =W 2

ν2
(µ1, µ2) (75)

We give a proof of this proposition.

Thanks to lemma 4.6, we known that the transport map T 1→2
ν is fully induced by the transport

plan T
Qθ

#µ1→Qθ
#µ2

ν . Let remind that T
Qθ

#µ1→Qθ
#µ2

ν is given by T ν→Qθ
#µ2 ◦ TQθ

#µ1→ν (see equation
(12)). Moreover the two optimal transport plans are obtained via the ordering permutations, i.e. let
σ, τ, π ∈ S(n) s.t:

xσ(1) ≤ ... ≤ xσ(n)

yτ(1) ≤ ... ≤ yτ(n)

zπ(1) ≤ ... ≤ zπ(n)

With xi being the atoms of Qθ
#µ1, yi the atoms of Qθ

#µ2 and zi being the atoms of Qθ
#ν.

One have Tµ1→ν(xσ(i)) = zπ(i) (resp. T ν→µ2(zπ(i)) = xτ(i)) ∀1 ≤ i ≤ n. Composing these two
identities gives:

T 1→2
ν (xσ(i)) = yτ(i) ∀1 ≤ i ≤ n (76)

The last equation shows that T 1→2
ν is in fact independent of π and thus of ν.

10.8 Proof that min-SWGG is a distance (generalized geodesic formulation)

This proof has already been established in 7.3. However we rephrase the proof in the context of
generalized geodesics.

We aim to prove that SWGG2 =
√
2W 2

2 (µ1, µ1→2
θ ) + 2W 2

2 (µ
1→2
θ , µ2)− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ ) de-
fines a metric.

Finite and non-negativity. Each term of SWGG2
2 is finite thus the sum of the three terms is finite.

Moreover, being an upper bound of WD makes it non-negative.

Symmetry. We have

SWGG2
2(µ1, µ2, θ) = 2W 2

2 (µ1, µ
1→2
θ ) + 2W 2

2 (µ2, µ
1→2
θ )− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ )

= 2W 2
2 (µ2, µ

1→2
θ ) + 2W 2

2 (µ1, µ
1→2
θ )− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ )

= SWGG2
2(µ2, µ1, θ).

Identity property.
From one side, when µ1 = µ2 =⇒ Tµ1→µ1→2

θ = Tµ2→µ1→2
θ = Id, giving µ1→2

g,θ = µ1 = µ2.
Thus:

SWGG2
2(µ1, µ2, θ) = 2W 2

2 (µ1, µ
1→2
θ ) + 2W 2

2 (µ1, µ
1→2
θ )− 4W 2

2 (µ1, µ
1→2
θ ) = 0 (77)

From another side, SWGG2
2(µ1, µ2, θ) = 0 =⇒ W 2

2 (µ1, µ2) = 0 =⇒ µ1 = µ2 (by being an
upper bound of WD).

27



Triangle Inequality. We have:

SWGG2
2(µ1, µ2, θ) = 2W 2

2 (µ1, µ
1→2
θ ) + 2W 2

2 (µ
1→2
θ , µ2)− 4W 2

2 (µ
1→2
g,θ , µ1→2

θ ) (78)

= 2

∫

Rd

∥T 1
θ (x)− x∥22dµ1→2

θ (x) + 2

∫

Rd

∥T 2
θ (x)− x∥22dµ1→2

θ (x) (79)

− 4

∫

Rd

∥T g
θ (x)− x∥22dµ1→2

θ (x)

=

∫

Rd

(
2∥T 1

θ (x)− x∥22 + 2∥T 2
θ (x)− x∥22 − 4∥T g

θ (x)− x∥22
)
dµ1→2

θ (x)

(80)

=

∫

Rd

∥T 1
θ (x)− T 2

θ (x)∥22dµ1→2
θ (x) (81)

where, with an abuse of notation for clarity sake, T i
θ is the optimal map between µ1→2

θ and µi and
T g
θ is the optimal map between µ1→2

θ and µ1→2
g,θ . The last line comes from the parallelogram rule of

Rd. Thanks to Proposition 10.1 we see that SWGG is simply the L2(Rd, ν) square norm, i.e.:

SWGG2
2(µ1, µ2, θ) = ∥T 1

θ − T 2
θ ∥2ν

def
=

∫

Rd

∥T 1
θ − T 2

θ ∥22dν (82)

with ν being any arbitrary pivot measure of Pn
2 (R

d). And thus SWGG2 is the L2(Rd, ν) norm. This
observation is enough to conclude that SWGG2 is a proper distance for θ fixed.

11 Experiment details and additional results

WD, SW, Sinkhorn, Factored coupling are computed using the Python OT Toolbox [28] and our
code is available at https://github.com/MaheyG/SWGG. The Sinkhorn divergence for the point
cloud matching experiment was computed thanks to the Geomloss package [27].

11.1 Behavior of min-SWGG with the dimension and the number of points

In this section, we draw two experiments to study the behavior of min-SWGG w.r.t. the dimension
and to the number of points.

Evolution with d In [20][Theorem of Section 2], authors aim at enumerate the number of permuta-
tions obtained via the projection of point clouds on a line. It appears that the number of permutations
increases with the dimension. They even show that whenever d ≥ 2n (2n being the total number of
points of the problem), all the possible permutations (n!) are in the scope of a line. Fig. 11 depicts
the number of obtainable permutations as a function of the dimension d, for n fixed. This theorem
can be applied to min-SWGG to conclude that whenever d ≥ 2n, we have min-SWGG2

2 =W 2
2 .

It turns out empirically that the greater the dimension, the better the approximation of W 2
2 with

min-SWGG (see Fig. 11) for a fixed n. More formally, the set of all possible transport maps is
called the Birkhoff polytope and it is known that the minimum of the Monge problem is attained at
the extremal points (which are exactly the set of permutations matrices, a set of n! matrices in our
context) [8]. The set of the transport maps in the scope of SWGG is a subset of the extremal points
of the Birkhoff polytope (there are permutations matrices but not all possibilities are represented).
Theoretically, the set of transport maps in the scope of SWGG is larger as d grows, giving a subset
that is more and more tight with the extremal points of the Birkhoff polytope. This explains that
min-SWGG can benefit from higher dimension.

We plot in Fig. 11 the evolution, over 50 repetitions, of the ratio min-SWGG(µ1,µ2)
W 2

2 (µ1,µ2)
with d, n = 50 and

µ1 ∼ N (1Rd , Id), µ2 ∼ N (−1Rd , Id).

Evolution with n Fig. 12 represents the evolution of W 2
2 (µ1, µ2) and min-SWGG2

2(µ1, µ2) for
two distributions µ1 ∼ N (1Rd , Id) and µ2 ∼ N (−1Rd , Id), with d = 4 and a varying number of
points. The results are averages over 10 repetitions.
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We observe that, when n is large enough, min-SWGG tends to stabilize around some constant value.

We conjecture that there may exist an upper bound for min-SWGG:

min-SWGG2
2(µ1, µ2) ≤ ψ(d, n, d′)W 2

2 (µ1, µ2) (83)

Where d′ is the max of the dimensions of the distributions µ1, µ2 [66], and ψ an unknown function.

11.2 Computing min-SWGG

We now provide here more details about the experimental setup of the experiments of Section 5.1.

Choosing the optimal θ We compare three variants for choosing the optimal direction θ: random
search, simulated annealing and optimization (defined in Section 4.3). We choose to compare with
simulated annealing since it is widely used in discrete problem (such as the travelling salesman) and
known to perform well in high dimension [62] [16] [36]. We notice in Fig. 3 of the paper that the
smooth version of min-SWGG is always (comparable or) better than the simulated annealing. In
this experiment, we randomly sample 2 Gaussian distributions with different means and covariances
matrices, whose parameters are chosen randomly. For optimizing min-SWGG, we use the Adam
optimizer of Pytorch, with a fixed learning rate of 5e−2 during 100 iterations, considering s = 10
and ϵ = 1.

Fig. 13 provides the timings for computing the random search approximation, simulated annealing
and the optimization scheme. In all cases, we recover the linear complexity of min-SWGG (blue
curves) in a log space. For the computation timings we compute min-SWGG with random search
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with L = 500, simulated annealing (green curves) with 500 iterations with a temperature scheme
(1− k+1

500 )
500
k=1 and the optimization scheme (considering s = 10 with a fixed number of iterations for

the optimization scheme equals to 100).
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Figure 13: Considering two Gaussian distributions in dimensions d equals to: 2 (left), 20 (middle), 200
(right),we compute min-SWGG with random search, simulated annealing schemes and optimization
procedure and report the timings for varying number of points and fixed number of projections.

Additionally, we reproduce the same setup as in 5.1 for the SW, max-SW and PWD distance. For
sake of readability we compared with min-SWGG optim and report the results in Fig. 14.
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Figure 14: Comparison of min-SWGG optim with PWD (left) and with max-SW and SW (right).
PWD and SW are computed with a growing number of projection

Runtime Evaluation In the paper, on Fig. 3 (Right), we compare the empirical runtime evaluation
on GPU for different methods. We consider Gaussian distributions in dimension d = 3 and we
sample n points per distribution with n ∈ {102, 103, 104, 5 · 104, 105}. For SW Monte-Carlo and
min-SWGG random search, we use L = 200 projections. For both max-SW and min-SWGG with
optimization, we use 100 iterations with a learning rate of 1, and we fix s = 50 for min-SWGG. We
use the official implementation of the Subspace Robust Wasserstein (SRW) with the Frank-Wolfe
algorithm [52].

11.3 Gradient Flows

We rely on the code provided with [37] for running the experiment of Section 5.2.

We fix n = 100, the source distribution is taken to be Gaussian and we consider four different target
measures that represent several cases: i) a 2 dimensional Gaussian, ii) a 500 dimensional Gaussian
(high dimensional case), iii) 8 Gaussians (multi-modal distribution) and iv) a two-moons distribution
(non-linear case).

We fix a global learning rate of 5e−3 with an Adam optimizer. For SW, PWD and SWGG (random
search), we sample L = 100 directions. For the optimization methods max-SW, we set a learning
rate of 1e−3 with a number of 100 iterations for i), iii), and iv) and 200 iterations for ii). For
min-SWGG (optimization), we took a learning rate of i)1e−1, ii)1e−3, iii)5e−2, and iv) 1e−3. The
hyper parameters for the optimization of min-SWGG are s = 10 and ϵ = 0.5, except for the
500-dimensional Gaussian for which we pick ϵ = 10 .

Each experiment is run 10 times and shaded areas in Fig. 4 (see the main paper) represent the mean
± the standard deviation.

30



11.4 Gray scale image colorization

We now provide additional results on a pan-sharpening application to complete results provided in
Section 5.3.

In pan-sharpening [64], one aims at constructing a super-resolution multi-chromatic satellite im-
age with the help of a super-resolution mono-chromatic image (source) and low-resolution multi-
chromatic image (target).

To realize this task, we choose to used a color transfer procedure, where the idea is to transfer the
color palette from the target to the source image. This transfer is carry out by the optimal transport
plan of the Wasserstein distance. More details on color transfer can be found in Supp. 11.6.

Additionally, we improve the relevance of the colorization by adding a proximity prior. For that,
we used super pixels computed via the Watershed algorithm [48] thanks to the the scikit-image
package [61]. Obtained high resolution colorized images of size 512×512 (n = 262 144) are reported
on Fig. 15.

Figure 15: Source high resolution black and white image (left) Target low resolution colorful image
(right) Obtained high resolution colorful image (mid).

All pan-sharpening experiments were run on the PairMax data set [64]. The hyperparameters (markers
and compactness) for the watershed super-pixels are: 500, 200, 200, 200 markers (an upper bound
for the number of super pixel) for each image (by order of apparition) and compactness 1e− 8 (high
values result in more regularly-shaped watershed basins) for all the images.

11.5 Point clouds registration

We here provide additional details and results about the experiments in Section 5.4.

31



Authors of [9] highlighted the relevance of OT in the point clouds registration context, plugged into
an Iterative Closest Point (ICP) algorithm. They leveraged the 1D partial OT without consideration
for the direction of the line. Our experiment shows the importance of θ: the smaller SWGG is, the
better the registration.

In this experiment, having a one to one correspondence is mandatory: as such, we compare
min-SWGG with a nearest neighbor assignment and the one provided by OT. Note that we do
not compare min-SWGG with subspace detour [44], since: i) with empirical distributions, the re-
construction of the plan is degenerated (as it doesn’t involve any computation), ii) the research of
subspace can be intensive as no prior is provided.

To create the source distributions, we used random transformation (Ω, t) ∈ O(d)× Rd of the target
domain. Ω was picked randomly from O(d), the set of rotations and reflections, and t has random
direction with ∥t∥2 = 5. We also add a Gaussian noise N (0, ϵId), with ϵ = 0.1.

The ICP algorithm was run with 3 datasets with the following features: i) 500 points in 2D, ii)
3000 points in 3D, and iii) 150 000 points in 3D. min-SWGG was computed through the random
search estimation with L = 100. A stopping criterion was the maximum number of iterations of
the algorithm, which varies with the dataset i.e.: i) 50, ii) 100, and iii) 200 respectively. The other
stopping criterion is ∥Ω− Id∥+ ∥t∥2 ≤ ε with ε chosen respectively for the datasets as follows: i)
1e−4, ii) 1e−2, and iii) 1e−2, where (Ω, t) ∈ O(d)× Rd is the current transformation and ∥ · ∥ is the
Frobenius norm. All these settings were run with 50 different seeds. Results are reported in Fig. 16.
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Figure 16: The three datasets (left) and the distributions of the Sinkhorn divergences, the Chamfer
distance, the Frobenius distance, the timing and the number of iterations over 50 seeds (right).

From Fig. 16, one can see that for:

• n = 500: The registration obtained via OT is very powerful (it is fast to compute and
converges toward a good solution). min-SWGG is slightly faster with better convergence
result and an equivalent number of iterations. Finally the nearest neighbor does not converge
to a solution closed to the target.

• n = 3000: registration by OT can converge poorly, moreover the timings are much higher
than the competitors. min-SWGG shows efficient convergence results with an attractive
computation time (order of fews seconds). We observe that the number of iterations can be
very large and we conjecture that it is due to the fact that min-SWGG-based ICP can exit
local minima. The nearest neighbor is fast but, most of the time, does not converge to global
minima (i.e. the exact matching of the shapes).

• n = 150000: In this setting, OT is totally untractable (the cost matrix needs 180 GB in
memory). min-SWGG shows good convergence and is most of the time very fast whenever
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the number of iterations does not attain the stopping criterion. The nearest neighbor
assignment is faster but only converges to local minima.

Note that, despite the fact that min-SWGG is slightly slower than the nearest neighbor, the overall
algorithm can be faster due to the better quality of each iteration (min-SWGG can attain a minimum
with less iterations).

In Table 3 we give additional results on the final distribution. We control the final convergence via
the square Chamfer distance and the square Frobenius distance. The Square Chamfer distance is a
sqaure distance between point cloud defined as:

d2(X,Y ) =
∑

x∈X

min
y∈Y
||x− y||22 +

∑

y∈Y

min
x∈X
||x− y||22 (84)

and the Square Frobenius norm is a square distance between the transformation, defined as:

Fr((Ωreal, treal), (Ωestimated, testimated)) = ∥Ωreal − Ωestimated∥22 + ∥treal − testimated∥22 (85)

In both cases we can see that the final results for min-SWGG are much better than the results for NN
and relatively closed to the results from OT.

n 500 3000 1500 00
NN 11.65 0.20 6.90
OT 0.03 0.16 ·
min-SWGG 0.08 0.13 8 × 10−4

n 500 3000 150 000
NN 526 30.04 21.7
OT 3.8 6.5 ·
min-SWGG 2 4.5 6.01

Table 3: Square Chamfer distance (top) and Square Frobenius distance (bottom) between final
transformation on the source and the target. Best values are boldfaced.

An other important aspect of ICP is that the algorithm tends to fall into local minima: the current
solution is not good and further iterations do not allow a better convergence of the algorithm. We
observed empirically that min-SWGG can avoid getting stuck on local minima when a reasonable
number of directions θ is sampled (L ∼ 100). We conjecture that the random search approximation
is not always the ideal solution and hence may escape local minima. This may lead to a better
convergence solution for min-SWGG-based ICP.

11.6 Color Transfer

In this section, we provide an additional experiment in a color transfer context.

We aim at adapting the color of an input image to match the color of a target one [25, 44]. This
problem can be recast as an optimal transport problem where we aim at transporting the color of
the source image X into the target Y . For that, usual methods lie down on the existence of a map
T : X → Y . We challenge min-SWGG to this problem to highlight relevance of the obtained
transport map.

Images are encoded as vector in Rnm×3, where n and m are the size of the image and 3 corresponds
to the number of channels (here RBG channels). We first compute a map T0 : X0 → Y 0 between a
subsample of X and Y of size 20000 and secondly extend this mapping to the complete distributions
T : X → Y using a nearest neighbor interpolation. The subsampling step is mandatory due to the
size of the images but can deteriorate the quality of the transfer.

We compare the results obtained with maps obtained from Wasserstein distance, min-SWGG with
random search (100 projections), subspace detour [44] and min-SWGG (optimized). Obtained images
and the associated timings are provided in fig. 17.

Figure 17 shows that min-SWGG and W 2
2 provide visually equivalent solutions. Since, the quality

of the color transfer is dependent on the size of the subsampling: using min-SWGG permits larger
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Figure 17: Color transfer of images with W 2
2 , min-SWGG and subspace detours, with runtimes.

subsamples than W 2
2 and thus improves the quality of the map T . Moreover one can note that

min-SWGG (optimized) is the fastest to compute.

We now give more details about how to perform color transfer between two distributions. The first
step is to encode n×m images as Rnm×3 vectors, with 3 channels in a RGB image. Note that m
and n can differ for the source and target image. The second step consists of defining subsamples
X0, Y0 of X,Y , in our case we took X0,Y 0 ∈ R20000×d. We subsample the same number of points
for the source and target image. In order to have a better subsampling of X and Y , it is common to
perform a k-means [34] to derive X0 and Y 0 (X0,Y 0 are then taken as centroids of the k-means
algorithm). The third step is to compute T0 : X0 → Y 0. We set T as the optimal Monge map given
by the Wasserstein distance and T as the optimal map given by min-SWGG. Finally, the fourth step
deals with extending T0 : X0 → Y 0 to T : X → Y . ∀x ∈ X . We compute the closest element
x0 ∈X0 and we pose:

T (x) = T (x0). (86)
More details on the overall procedure can be found in [25].

To perform the experiment, we took L = 100 projections for min-SWGG (random search). For
min-SWGG (optimized), we fixed the following set of parameters for the gradient descent: learning
rate 5e−2, number of iterations 20, number of copies s = 10 and ϵ = 1. Regarding the subspace
detour results, we used the code of [44] provided at https://github.com/BorisMuzellec/
SubspaceOT.

Additionally, we perform color transfer without sub-sampling with the help of min-SWGG (we the
same hyperparameters). This procedure is totally untractable for either W 2

2 and subspace detours
(due to memory issues). As we mentioned before, the subsampling phase can decrease the quality of
the transfer and thus min-SWGG can deliver better result than before. Result are give in Fig. 18

Figure 18: Color transfer of images with min-SWGG without sub-sampling.

11.7 Data set distance

We finally evaluate min-SWGG in an other context: computing distances between datasets. Let
D1 = {(x1

i ,y
1
i )}ni=1 and D2 = {(x2

i ,y
2
i )}ni=1 be source and target data sets such that x1

i ,x
2
i ∈ Rd

are samples and y1
i ,y

2
i are labels ∀1 ≤ i ≤ n. In [3], the authors compare those data sets using the

Wasserstein distance with the entries of the cost matrix defined as:

Cij =
(
∥x1

i − x2
j∥22 +W 2

2 (αy1
i
, αy2

j
)
)1/2

(87)

and the corresponding distance as:

OTDD(D1,D2) = min
P∈U
⟨C,P ⟩ (88)
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where αy is the distribution of all samples with label y, namely {x ∈ Rd|(x,y) ∈ D} for D being
either D1 or D2 and U is the Birkhoff polytope which encodes the marginal constraints. Notice that
cost in Eq. (87) encompasses the ground distance and a label-to-label distance. This distance is
appealing in transfer learning application since it is model-agnostic. However, it can be cumbersome
to compute in practice since it lays down on solving multiple OT problems (to compute the cost
matrix and the OTDD). To circumvent that, [3] proposed several methods to compute the cost matrix
in Eq. (87). They used the Sinkhorn algorithm (in O(n2)) or they assumed αy ∼ N (my,Σy) in
order to get the WD through the Bures metric (that provides a closed form of OT for Gaussian
distributions in O(d3)), which is still prohibitive for high dimension. We challenge min-SWGG in
this context.

In this experiment, we compare the following datasets: MNIST [39], EMNIST [18], FashionMNIST
[67], KMNIST [17] and USPS [32]. We rely on the code of OTDD provided at https://github.
com/microsoft/otdd. In order to make it compliant with the min-SWGG hypothesis, we require
the empirical distributions αy to have the same number of atoms.

Fig. 19 provides results for a batch size of n = 40000 samples using the Sinkhorn divergence (with a
regularisation parameter of 1e−1) and for min-SWGG (optimized) on batch of size 40000. We report
results for a learning rate of 1e−5, 20 iterations and s and ϵ to be 1 and 0.
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Figure 19: OTDD results (×102) distances for min-SWGG (left) and Sinkhorn divergence (right) for
various datasets.

We check that the orders of magnitude are preserved with min-SWGG. For example
OTDD(MNIST,USPS) is smaller than OTDD(MNIST,FashionMNIST) for either Sinkhorn divergence
or min-SWGG as distance between labels, this validate that min-SWGG is a meaningful distance
in this case scenario. Moreover in our setup, the computation cost is more expensive for Sinkhorn
than for min-SWGG and totally untractable for W 2

2 . On smaller batches (see Fig 20), the same
observation can be made: min-SWGG is comparable (in term of magnitude) with W 2

2 , Sinkhorn and
the Bures approximation.

We give additional results in Fig. 20 for batches of size of n = 2000 samples obtained with W 2
2 ,

Sinkhorn divergence (setting the entropic regularization parameter to 1e−1), the Bures approximation,
min-SWGG (random search with L = 1000 projections) and min-SWGG (optimized, with a learning
rate of 5e−1, 50 iterations, s = 20 and ϵ = 0.5).
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Figure 20: OTDD distance with W 2
2 (left), Sinkhorn (left-mid), Bures (middle) and random search

min-SWGG (right-mid) and min-SWGG-optimization (right) distances between labels distribution
×102
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Note that the Figs. 19 and 20 are not symmetric (OTDD(KMNIST,FashionMNIST)̸=
OTDD(FashinMNIST,KMNIST)) because of the random aspect of batches.

36


	Introduction
	Background on Optimal Transport
	Definition and properties of min-SWGG
	SWGG as minimizing along the Wasserstein generalized geodesics
	SWGG based on Wasserstein Generalized Geodesics
	Theoretical properties 
	Efficient computation of SWGG

	Experiments
	Computing min-SWGG
	Gradient Flows
	Gray scale image colorization
	Point clouds registration

	Conclusion
	Proofs and supplementary results related to Section 3
	Overestimation of WD by PWD
	Quantile version of SWGG
	Proof of Proposition 3.2
	Difference between max-SW and min-SWGG
	From permutations to transport map
	Examples of Transport Plan

	Background on Wasserstein Generalized Geodesics
	Related Works
	Linear Optimal Transport with shift and scaling

	Proofs and other results related to Section 4
	Proof of Proposition 4.2: equivalence between the two formulations of SWGG
	Proof of Weak Convergence (Proposition 4.3)
	Proof of Translation property (Proposition 4.4)
	Proof of the new closed form of the Wasserstein distance (Lemma 4.6)
	Details on the efficient computation of SWGG
	Smoothing of SWGG
	Inconsequential of the pivot measure
	Proof that min-SWGG is a distance (generalized geodesic formulation)

	Experiment details and additional results
	Behavior of min-SWGG with the dimension and the number of points
	Computing min-SWGG
	Gradient Flows
	Gray scale image colorization
	Point clouds registration
	Color Transfer
	Data set distance


