
Concept Algebra for (Score-Based) Text-Controlled
Generative Models

Zihao Wang1, Lin Gui1, Jeffrey Negrea2, and Victor Veitch1,2,3

1Department of Statistics, University of Chicago
2Data Science Institute, University of Chicago

3Google Research

Abstract

This paper concerns the structure of learned representations in text-guided
generative models, focusing on score-based models. A key property of such
models is that they can compose disparate concepts in a ‘disentangled’ manner.
This suggests these models have internal representations that encode concepts
in a ‘disentangled’ manner. Here, we focus on the idea that concepts are encoded
as subspaces of some representation space. We formalize what this means, show
there’s a natural choice for the representation, and develop a simple method
for identifying the part of the representation corresponding to a given concept.
In particular, this allows us to manipulate the concepts expressed by the model
through algebraic manipulation of the representation. We demonstrate the idea
with examples using Stable Diffusion.

1 Introduction

Large-scale text-controlled generative models are now dominant in many parts of modern machine
learning and artificial intelligence [e.g., Bro+20; Rad+21; Bom+21; Koj+22]. In these models,
the user provides a prompt in natural language and the model generates samples based on
this prompt—e.g., in large language models the sample is a natural language response, and
in text-to-image models the sample is an image. These models have a remarkable ability to
compose disparate concepts to generate coherent samples that were not seen during training.This
suggests that these models have some internal representation of high-level concepts that can be
manipulated in a ‘disentangled’ manner. Broadly, the goal of this paper is to shed light on how
this concept representation works, and how it can be manipulated. We focus on text-to-image
diffusion models, though many of the ideas are generally applicable.

Our starting point is the following commonly observed structure of representations:

1. Each data point x is mapped to some representation vector Rep(x) 2 Rp.

2. High-level concepts correspond to subspaces (directions) of the representation space.

Perhaps the best known example of this structure is in word embeddings, where semantic relation-
ships such as Rep(“king”)�Rep(“queen”)⇡ Rep(“man”)�Rep(“woman”) suggest that high-level
concepts (here, sex) are encoded as directions in the representation space [Mik+13]. This kind
of encoding of concepts has been argued to occur in many contexts, including in the latent
space of variational autoencoders [ZW20; Khe+20; MFM21] and in the latent space of language
models [Bol+16; GG19; Rad+21; Elh+22]. We’ll call representations of this kind arithmetically
composable, because composition corresponds to arithmetic operations on the representation
vectors. The goal of this paper is to develop arithmetically composable representations of text for
score-based text to image models.

There are two main motivations. First, understanding the structure of the representation space is
important for foundational progress on understanding the emergent behavior of text-controlled
generative models. It is particularly interesting to study this question in the text-to-image setting
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(a) Rep[“a portrait of mathematician”]

(b) (I�projsex)Rep[“a portrait of a mathematician”]+projsex Rep[“a person”]

(c) (I�projstyle)Rep[“a portrait of a mathematician”]+projstyle Rep[“in Fauvism style”]

Figure 1: We show that high-level concepts such as sex and artistic_style are encoded as subspaces of
a suitably chosen representation space. This allows us to manipulate the concepts expressed by a prompt
through algebraic operations on the representation of that prompt. Namely, we edit the representation
projected on to the subspace corresponding to a concept. Note images are paired by random seed.

because the multi-modality of the data makes it straightforward to distinguish concepts from
inputs, and because it is not clear a priori that the models themselves build in any inductive bias
towards arithmetic structure. The secondary motivation is that having such a representation
would allow us to manipulate the concepts expressed by the model through linear-algebraic
manipulations of representation of the input text; fig. 1 illustrates this idea.

The development of the paper is as follows:

1. We develop a mathematical formalism for describing the connection between represen-
tation structures and concepts for text-controlled generative models.

2. Using this formalism, we show that the Stein score of the text-conditional distribution is
an arithmetically composable representation of the input text.

3. Then, we develop concept algebra as a method for manipulating the concepts expressed
by the model through algebraic manipulation of this representation. We illustrate the
approach with examples manipulating a variety of concepts.

2 A Mathematical Framework for Concepts as Subspaces

The first task is to develop a precise mathematical formalism for connecting the structure of
representations and high-level concepts. This is necessary for understanding when such represen-
tations are possible, how to construct them, and when they may fail. We must make precise what
is a concept, how concepts relate to inputs x , and what it means to represent concepts.

Concepts The real-world process that generated the training data has the following structure.
First, images Y are generated according to some real-world, physical process. Then, some human
looks at each image and writes a caption describing it. Inverting this process, each text x induces
some probability density p(y | x) over images Y based on how compatible they are with x as a
caption. The (implicit) goal of the generative model is to learn this distribution.

To write the caption, the human first maps the image to a set of high-level variables summarizing
the image’s content, then uses these latent variables to generate the text X . Let C be the latent
variable that captures all the information about the image that is relevant for a human writing a
caption. So,

p(y | X = x) =
Z

p(y | C = c)p(C = c | X = x)dc. (1)
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The random variable C captures the information that is jointly relevant for both the image
and caption. Variables in C include attributes such as has_mathematician or is_man, but not
pixel_14_is_red. We define concepts in terms of the latent C .

Definition 2.1. A concept variable Z is a C-measurable random variable. The conceptZ associated
to Z is the sample space of Z .

Now, the full set of all possible concepts is unwieldy. Generally, we are concerned only with the
concepts elicited by a particular prompt x .

Definition 2.2. A set of concepts Z1, . . . ,Zk is sufficient for x if p(c | X = x , Z1:k = z1:k) = p(c |
Z1:k = z1:k) for all z1, . . . , zk 2 Z1⇥· · ·⇥Zk.

For example, the concept profession would be sufficient for the prompt “A nurse”. This prompt
induces a distribution on many concepts (e.g., background is likely to be a hospital) but these
other concepts are independent of the caption given profession = nurse. Then,

p(y | x) =
X

z1:k

p(y | z1:k)p(z1:k | x). (2)

Concept Distributions Following eq. (2), we can view each text x as specifying a distribution
p(z1:k | x) over latent conceptsZ1, . . . ,Zk. This observation lets us make the relationship between
text and concepts precise.

Definition 2.3. A concept distribution Q is a distribution over concepts. Each text x specifies a
concept distribution as Qx = p(z1:k | x).
That is, we move from viewing text as expressing specific concept values (is_mathematician = 1)
to expressing probability distributions over concepts (Qx (is_mathematician = 1) = 0.99). The
probabilistic view is more general—deterministically expressed concepts can be represented as
degenerate distributions. This extra generality is necessary: for example, the prompt “a person”
induces a non-degenerate distribution over the sex concept.

Concept Representations A text-controlled generative model takes in prompt text x and
produces a random output Y . Implicitly, such models are maps from text strings x to the space
of probability densities over Y . We’ll define a representation Rep(x) 2 R of x as any function of
x that suffices to specify the output distribution. We define fr(·) as the density defined by r 2 R ,
and assume that the model learn’s the true data distribution of Y |X = x:

fRep(x)(y) = p(y | x). (3)

The key idea for connecting representations and concepts is to move from considering represen-
tations of prompts to representations of concept distributions.

Definition 2.4. A concept representation Rep is a function that maps a concept distribution Q to
a representation Rep(Q) 2 R , where R is a vector space. The representation of a prompt x is the
representation of the associated concept distribution, Rep(x) := Rep(Qx).

There are two reasons why this view is desirable. First, defining the representation in terms of
the concept distribution makes the role of concepts explicit—this will allow us to explain how
representation structure relates to concept structure.

The second reason is that it allows us to reason about representations that do not correspond to
any prompt. Every prompt defines a concept distribution, but not every concept distribution can
be defined by a prompt. This matters because we ultimately want to reason about the conceptual
meaning of representation vectors created by algebraic operations on representations of prompts.
Such vectors need not correspond to any prompt.

Arithmetic Compositionality We now have the tools to define what it means for a representa-
tion to be arithmetically composable. We define composability for a pair of concepts Z and W .
In the subsequent development, our aim will be to manipulate Z while leaving W fixed.

Definition 2.5. A representation Rep is arithmetically composable with respect to concepts
Z ,W if there are vector spaces RZ and RW such that for all concept distributions of the form
Q(z, w) =QZ(z)QW (w),

Rep(QZQW ) = RepZ(QZ)+RepW (QW ), (4)
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where RepZ(QZ) 2 RZ and RepW (QW ) 2 RW .

In words: we restrict to product distributions to capture the requirement that the concepts Z
and W can be manipulated freely of each other (the typical case is that one or both of QZ and
QW are degenerate, putting all their mass on a single point). Then, the definition requires that
there are fixed subspaces corresponding to each concept in the sense that, e.g., changing only QZ
induces a change only in RZ .

3 The Score Representation

We now have an abstract definition of arithmetically composable representation. The next step is
to find a specific representation function that satisfies the definition.

We will study the following choice.

Definition 3.1. The score representation s[Q] of a concept distribution Q is defined by:

s[Q](y) :=ry log

Z
p(y | z, w)Q(z, w)dzdw.

The centered score representation s̄[Q] is defined by s̄[Q] := s[Q]�s[Q0].

Here, s[Q] is itself a function of y and the representation space R is a vector space of functions.
This is a departure from the typical view of representations as elements of Rp. The score
representation can be thought of as a kind of non-parametric representation vector. The centered
score representation just subtracts off the representation of some baseline distribution Q0.1

The main motivation for studying the score representation is that

s[x](y) := s[Qx](y) =ry log p(y | x).
The importance of this observation is thatry log p(y | x) is learnable from data. In fact, this score
function is ultimately the basis of many controlled generation models [e.g., HJA20; Ram+22;
Sah+22], because it characterizes the conditional while avoiding the need to compute the nor-
malizing constant [HD05; SE19]. Accordingly, we can readily compute the score representation
of prompts in many generative models, without any extra model training.

Causal Separability The score representation does not have arithmetically composable structure
with respect to every pair of concepts. The crux of the issue is that concepts are reflected in the
representation based on their effect on Y . If the way they affect Y depends fundamentally on
some interaction between two concepts, the representation cannot hope to disentangle them.
Thus, we must rule out this case.

Definition 3.2. We say that Y is causally separable with respect to Z ,W if there exist unique
Y -measurable variables YZ , YW , and ⇠ such that

1. Y = g(YZ , YW ,⇠) for some invertible and differentiable function g, and
2. p(yZ , yW ,⇠ | z, w) = p(⇠)p(yZ | z)p(yW | w)

Informally, the requirement is that we can separately generate YZ and YW as the part of the output
affected by Z and W (and ⇠ as the part of the image unrelated to Z and W ), then combine these
parts to form the final image. That is, generating the visual features associated to a concept W
can’t require us to know the value of another concept Z . As an example where causal separability
fails, consider the concepts of species W = {deer,human} and sex Z = {male, female}. It
seems reasonable that there is a Y -measurable YW that is the species part of the image—e.g.,
the presence of fur vs skin, snouts vs noses, and so forth. However, there is no part of Y that
corresponds to a sex concept in a manner that’s free of species. The reason is that the visual
characteristics of sex are fundamentally different across species—e.g., male deer have antlers,
but humans usually do not. In fig. 8 we test this example, finding that concept algebra fails in
the absence of causal separability.

It turns out it suffices to rule out this case (all proofs in appendix):

1The representation space R is the same for all Q0; the choice is arbitrary. We define s̄ to ensure 0 is an
element of R . This is for theoretical convenience; we will see that only s is required in practice.
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Proposition 3.1. If Y is causally separable with respect to W and Z , then the centered score
representation is arithmetically composable with respect to W and Z .

That is: the (centered) score representation is structured such that concepts correspond to
subspaces of the representation space.

4 Concept Algebra
We have established that concepts correspond to subspaces of the representation space. We now
consider how to manipulate concepts through algebraic operations on representations.

To modify a particular concept Z we want to modify the representation only on the subspace RZ
corresponding to Z . For example, consider changing the style concept to Fauvism. Intuitively,
we want an operation of the form:

sedit (I�projstyle)s[“a portrait of mathematician”]+projstyles[“Fauvism style”], (5)

where projstyle is the projection onto the subspace corresponding to the style concept. The
idea is that the representation of the original prompt xorig is unchanged except on the style
subspace. On the style subspace, the representation takes on the value elicited by the new prompt
xnew = “Fauvism style”.

There are two main challenges for putting this intuition into practice. First, because we are
working with an infinite dimensional representation, it is unclear how to do the projection. Second,
although we know that some RZ exists, we still need a way to determine it explicitly.

4.1 Concept Manipulation through Projection
Following proposition 3.1, we have that

s̄[QZ⇥QW ] = s̄Z[QZ]+s̄W [QW ], (6)

for some representation functions s̄Z and s̄W with range in RZ and RW respectively. We have
that the Z-representation space is

RZ = span({s̄Z[QZ] : QZ a concept distribution}). (7)

Our goal is to find a projection onto RZ .

The first obstacle is that RZ is a function space, making algebraic operations difficult to define.
The resolution is straightforward. In practice, score-based models generate samples by running
a discretized (stochastic) differential equation forward in time. These algorithms only require
the score function evaluated at the finite set of points. At each y, we have that s̄(y) 2 Rm.
Accordingly, by restricting attention to a single value of y at a time, we can use ordinary linear
algebra to define the manipulations:

Definition 4.1. The Z subspace at y is

RZ(y) := span({s̄Z[QZ](y) : QZ a concept distribution}) (8)

and the Z-projection at y , denoted projZ(y) is the projection onto this subspace.

If we can compute projZ (y) then we can just edit the representation at each point y . That is, we
transform the score function at each point:

s̄edit(y) (I�projZ(y))s̄[xorig](y)+projZ(y)s̄[xnew](y). (9)

We then draw samples from the stochastic differential equation defined by s̄edit.

4.2 Identifying the Concept Subspace
The remaining obstacle is that we need to explicitly identify RZ(y), so that we can compute
projZ (y). The problem is that the function s̄Z in eq. (6) is unknown, so we cannot computeRZ (y)
directly. Our strategy for estimating the space is based on the following proposition.

Proposition 4.1. Let QW be any fixed distribution over the W concept and Q0
Z be any reference

distribution over Z. Then, assuming causal separability for Z ,W ,

RZ(y) = span({s[QZQW ](y)�s[Q0
ZQW ](y) : QZ a concept distribution}). (10)
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The importance of this expression is that it does not require the unknown sZ .

We’ll use eq. (10) to identify RZ(y). The idea is to find a basis for the subspace using prompts
x0, . . . xk that elicit distributions of the form Qx =QZQW . For example, to identify the sex concept
we use the prompts x0 = “a man” and x1 = “a woman”, with the idea that

Qx0
= �male⇥QW Qx1

= �female⇥QW , (11)

with the same marginal distribution QW . We then use the prompts to define the estimated
subspace as

R̂Z(y) := span({s[xi](y)�s[x0](y) : i = 1, . . . , k}). (12)

That is, we write k+1 prompts x0, . . . xk designed so that each elicits a different distribution over
Z , but the same distribution on W . Then, the estimated subspace is given by eq. (12).

4.3 Concept Algebra
Summarizing, our approach to algebraically manipulating concepts is:

1. Find prompts x0, . . . , xk such that each elicits a different distribution on Z , but the same
distribution on W . That is, Qx j

=Qj
ZQW for each j.

2. Construct the estimated representation space R̂Z(y) following eq. (12), and define
projZ(y) as the projection onto this space.

3. Sample from the discretized SDE defined by the manipulated score representation2

sedit(y) (I�projZ(y))s[xorig](y)+projZ(y)s[xnew](y). (13)

Implementation of eq. (13) with the diffusion model is described in appendix A.

5 Validity of Concept Subspace Identification
The procedure described in the previous section relies on finding spanning prompts x0, . . . , xk for
the target concept subspace. These prompts must satisfy Qx j

=Qj
ZQW for some common QW , and

we must have sufficient prompts to span the subspace. The first condition is a question of prompt
design, and is often not too hard in practice. However, it is natural to wonder when it’s possible
to actually recover RZ using only a practical number of prompts. We give some results showing
that the dimension of RZ(y) is often small, and thus can be spanned with a small number of
prompts. Note that these results rely on the special structure of the score representation, and
may not hold for other representations.

First, the case where Z is categorical with few categories:

Proposition 5.1. Assuming causal separability holds for Z ,W . If Z is categorical with L possible
values (L � 2), then dim(RZ(y)) L�1.

This result covers concepts such as sex, which can be spanned with only two prompts.

The next result extends this to certain categorical concepts with large cardinality, such as style.
The idea is that if a concept is composed of finer grained categorical concepts, each with small
cardinality, then the representation space of the concept is also low-dimensional. For example,
style may be composed of lower-level concepts such as color, stroke, textures, etc.

Proposition 5.2. Suppose Z is composed of categorical concepts {Zk}Kk=1 each with the number of
categories Lk, in the sense that Z = Z1⇥. . .Zk. Assume Y satisfies causal separability with respect
to Z ,W , with YZ the corresponding Y-measurable variable for Z . Further assume that there exists
YZ -measurable variables YZk

such that p(yZ | z) = ⇧K
k=1p(yZk

| zk). Then

dim(RZ(y))
KX

k=1

(Lk�1) (14)

2We can view this as first editing the centered representation s̄: s̄edit(y)  (I�projZ(y))s̄[x0](y)+
projZ (y)s̄[ x̃](y). Then add the same baseline on both sides.
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(a) dog vs. cat (b) beach vs. forest

(c) formal clothes vs. casual clothes (d) boy vs. old man

(e) smiling vs. gloomy (f) sunny vs. rainy

Figure 2: Binary concepts (e.g. dog�vs�cat, smiling�vs�gloomy) correspond to subspaces, and can
be easily manipulated with concept algebra.

Following this result, we might take the spanning prompts for style to be x0 =
“a mathematician in Art Deco style”, x1 = “a mathematician in Impressionist style”, etc. Each
of these prompts elicit a fixed distribution QW over the content, but varies the distribution QZ
over style. If style is composed of finer-grained attributes, a relatively small set of such of prompts
will suffice.

6 Experiments
We have formalized what it means for concepts to correspond to subspaces of the representation
space, and derived a procedure for identifying and editing the subspaces corresponding to
particular concepts in the score representation. We now work through some examples testing if
this subspace structure does indeed exist, and whether it enables manipulation of concepts.

Many concepts are represented as subspaces First, we check whether the subspace structure
does indeed exist. To this end, we generate randomly selected prompts—e.g., “a black dog sitting
on the beach”—and attempt to change binary concepts expressed in the prompt. For example, we
change the subject to be a cat by manipulating the concept dog�vs�cat with concept algebra.
This, and other examples, are shown in fig. 2. It is clear that we are able to manipulate the target
concept—providing evidence that these concepts are represented as subspaces.

Concept Algebra can disentangle hard-to-separate concepts We stress-test concept algebra
by using it to sample images expressing combinations of concepts that occur rarely in the training
data. Specifically, we look at unlikely subject/style combinations—e.g., “A nuclear power plant
in Baroque painting”. We accomplish this by taking a base prompt that generates a high-quality
image, but with the wrong style (e.g., “A nuclear power plant”). Then we use concept algebra to
edit the style. We compare this with directly prompting the model, and with concept composition
[e.g., Du+21; Liu+21]. The later is a method that adds on a score representation of the style to
the base prompt (without projecting on to a target subspace).

We used each of the three methods to sample images expressing to 49 anti-correlated content/style
pairs. Human raters were then presented with the outcomes alongside reference images, and
asked to rank them based on adherence to the desired style and content. This evaluation was
replicated across 10 different raters. Refer to fig. 3 for illustrative examples. Raters consistently
favored images produced by concept algebra, as highlighted in table 1. This aligns with our
theory, suggesting concept algebra’s adeptness in retaining content while altering style. See
appendix C for further details.
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Figure 3: Concept algebra is considered more faithful than other methods. Raters are shown rows
of images and rank method outputs by how well they produce target style while preserving content.
Each row has style-reference (leftmost), a content-reference (2nd from left), and left-to-right (here,
but randomly permuted in the survey) images generated from concept-algebra, composition and direct
prompting. Quantative results are in table 1.

Direct Prompting Concept Composition Concept Algebra All Bad

Average Proportion 0.162 0.164 0.476 0.198
Standard Error 0.017 0.017 0.023 0.018

Table 1: Raters find concept algebra is more faithful to content and style than direct prompting or
concept composition

Mixture concept distributions Next, our theory predicts that we can use concept algebra to
sample from mixture (non-degenerate) distributions over concept values. Consider sex. Figure 1a
shows that x = “a portrait of a mathematician” almost always generates pictures of men. In
fig. 1b we sample from the distribution induced by

sedit (I�projsex)s[x]+projsexs[“person”], (15)

and observe that we indeed get a mixture distribution (induced by “person”) over sex.

Non-prompted edits to the subspace edit the concept Concept algebra uses reference prompts
(e.g., “woman” or “person”) to set the target concept distribution. It’s natural to ask what happens
if we make an edit to a concept subspace that does not correspond to a reference prompt. In
fig. 4, we sample from

sedit (I�projsex)s[x]+projsex(
1
2

s[“a male nurse”]+
1
2

s[“a female nurse”]). (16)
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The representation vector 1
2 s[“a male nurse”]+ 1

2 s[“a female nurse”] need not correspond to any
English prompt. We observe that modifications on the subspace still affect just the sex concept
though—the samples are androgynous figures!

Mask as a Concept Finally, we consider a more abstract kind of concept motivated by the
following problem. Suppose we have several photographs of a particular toy, and we want
to generate an image of this toy in front of the Eiffel Tower. In principle, we can do this by
fine-tuning the model (e.g., with dreambooth) to associate a new token (e.g., “sks toy”) with
the toy. Then, we can generate the image by conditioning on the prompt “a sks toy in front of
the Eiffel Tower”. In practice, however, this can be difficult because the fine-tuning ends up
conflating the toy with the background in the demonstration images. E.g., the prompt “a sks toy
in front of the Eiffel Tower” tends to generate images featuring carpet; see fig. 5b.

Intuitively, we might hope to fix this problem by finding a concept subspace that excludes
background information. Given such a “subject subspace”, we could mask the subject out of
the image, generate the background, and then edit the subject back in. In appendix C.1 we
explain how to construct such a subspace using the prompts x0 = “a toy” and x1 = “a soccer ball”.
Figure 5 shows the sampled output.

(a) s[“a portrait of a nurse”]

(b) (I�projsex)s[“a portrait of a nurse”]
+projsex(

1
2 s[“a female nurse”]+ 1

2 s[“a male nurse”])

Figure 4: Elements of the RZ may not correspond to any prompt.

7 Discussion and Related Work

We introduced a framework illustrating that concepts align with subspaces of a representation
space. Through this, we validated the structure of the score representation and derived a method
to identify the subspace for a concept. We then demonstrated concept manipulation in a diffusion
model’s score representation.

Concepts as Subspaces There has been significant interest in whether and how neural represen-
tations encode high-level concepts. A substantial body of work suggests that concepts correspond
to subspaces of a representation space [e.g., Mik+13; MYZ13; PSM14; GL14; Aro+15; GAM17;
AH19]. Often, this work focuses on a specific representation learning approach and is either
empirical or offers domain-tied theoretical analysis. For instance, in word embeddings, theories
explaining observed structures depend on the unique nature of language [e.g., Aro+15; AH19].
In contrast, our paper’s mathematical development is broad—we merely stipulate that the data
have two views separated by a semantically meaningful space. We argue that the concepts-as-
subspaces structure stems from the structure of probability theory, independent of any specific
architecture or algorithm.

Our work also relates to studies that assume training data arises from a specific latent variable
model and demonstrate that learned representations (partially) uncover these latent variables
[e.g., HM16; HM17; HST19; Khe+20; VK+21; Eas+22; Hig+18; Zim+21]. This literature often
aims for "disentangled" representations where each latent space dimension matches a single
latent factor. Unlike these, we don’t presuppose a finite set of latent factors driving the data.
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Instead, our representations define probability distributions over latent concepts, not merely
recovering them. This non-determinism, as observed, is generally necessary.

Controlling Diffusion Models To demonstrate the concept-as-subspace structure, we developed
a method for identifying the subspace corresponding to a given concept and showed how to
manipulate concepts in the score representation of a diffusion model. We emphasize that our
contribution here is not the manipulation procedure itself, but rather the mathematical framework
that makes this procedure possible. In particular, the requirement to manipulate entire score
functions is somewhat burdensome computationally. However, the ability to precisely manipulate
individual concepts is clearly a useful tool, and it is an intriguing direction for future work to
develop more efficient procedures for doing so. We conclude by surveying connections to existing
work on controlling diffusion models.

One idea has been to take the bottleneck layer of UNet as a representation space and control the
model by manipulating this space [KJU22; Haa+23; Par+23]. This work does not consider text
controlled models. It would be intriguing to understand the connection to the score-representation
view, as moving from manipulation of the score to manipulation of the bottleneck layer would be
a large computational saving.

(a) s[“a toy in front of the Eiffel Tower”]

(b) sdreambooth[“a sks toy in front of the Eiffel Tower”]

(c) (I�projsubject)s[“a toy in front of the Eiffel Tower”]
+projsubjectsdreambooth[“a sks toy in front of the Eiffel Tower”]

Figure 5: We can manipulate abstract concepts such as ‘subject’ of the image

Concept algebra can be seen as providing a unifying mathematical view on several methods that
manipulate the score function [e.g., Du+21; Liu+21; NBP22; Ano23]. Du et al. [DLM20] and
Liu et al. [Liu+22] manipulate concepts via adding and subtracting scores. Negative prompting
is a widely-used engineering trick that ‘subtracts off’ a prompt expressing unwanted concepts. In
section 6 and appendix D we compared against these heuristics and show that concept algebra
is more effective at manipulating concepts in isolation. Couairon et al. [Cou+22] use score
differences to identify objects’ locations in images; this inspired our approach in section 6
and appendix C.1. In each case, we have seen that this kind of manipulation may be viewed as
editing the subspace corresponding to some concept.
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A Concept Algebra Algorithms in Diffusion Model
Text-to-image Diffusion Models use score representations in their generation. More specifically,
suppose the target is to sample Y = Y0 ⇠ P⇤, with the corresponding score function denoted
as s0. The key ingredients for generation are the score function for Yt (denoted as st), which
is Y noised at different levels, (e.g. Yt = (1�↵t)Y+↵t✏t for standard independent Gaussian
noise ✏), for t = 0, ..., T . See [Luo22] for more details. To apply our results, we require causal
separability with respect to Z ,W holds for all Yt , t = 0, ..., T . Then our theoretical results follow
through.

Algorithm 1 is an implementation of Concept Manipulation through Projection based on DDPM
[HJA20] (we can also implement different variants). 3 It requires FindSubspaceMethod, for
which we can use FindSubspaceBasis(algorithm 2) and FindSubspaceMask(algorithm 3) based
on the properties of Z as discussed in the main text. More specifically,

FindSubspaceBasis We calculate the projection matrix (denoted as ⇧Z) for the Z-subspace,
from a span of K prompts (after subtracting off the baseline) (algorithm 2). In practical compu-
tations, we evaluate the m⇥K matrix 4E:

4E := [✏✓ (yt , t | x1)�✏✓ (yt , t | x0), ...,✏✓ (yt , t | xK)�✏✓ (yt , t | x0)]

Then, the top Kthres left singular vectors are selected as Q. Here, Kthres denotes the least number
of factors required to surpass a certain proportion of variance explained, denoted as thres.
Consequently, we have ⇧z  QQT .

FindSubspaceMask In this context, ⇧Z signifies a mask. This mask can be calculated from the
score difference 4✏ (refer to algorithm 3). As a practical measure, we may implement noise
reduction techniques to fine-tune 4✏. One approach is the application of a Gaussian blur to
smooth out neighboring pixels.

Algorithm 1 Concept Manipulation through Projection
1: Require Diffusion model ✏✓ (yt , t|x), guidance scale w, covariance matrix �2

t I ,
empty prompt “”, prompts: xorig, xnew,
prompts to build the Z subspace: {xi},
the function for finding the Z subspace: FindSubspaceMethod(·,·)

2: Initialize sample yT ⇠N (0, I)
3: for t = T, . . . , 1 do
4: ✏empty ✏✓ (yt , t | “”) # unconditional score
5: ✏orig,✏new ✏✓ (yt , t | xorig),✏✓ (yt , t | xnew) # conditional scores
6: ⇧Z  FindSubspaceMethod(yt , {xi}) # find the projection matrix
7: ✏cond (I�⇧Z )✏orig+⇧Z✏new # concept projection
8: ✏ ✏0+w(✏cond�✏0) # apply classifier-free guidance
9: yt�1 ⇠N

Ä
yt�✏,�2

t I
ä

10: end for

Algorithm 2 FindSubspaceBasis

Require: yt 2 Rm, prompts {xk}Kk=0
1: R̂Z(y) span({✏✓ (yt , t | xk)�✏✓ (yt , t | x0)}Kk=1)
2: Determine ⇧Z as the projection matrix onto R̂Z(y)
3: return ⇧Z

3Note there here we use residual ✏✓ (yt , t | x) instead of the score s✓ (yt , t | x) for generation, they are
equivalent up to a time-varying constant.
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Algorithm 3 FindSubspaceMask

Require: yt 2 Rm, a pair of prompts (x1, x2)
1: 4✏ ✏✓ (yt , t | x1)�✏✓ (yt , t | x2)
2: for i = 1 to m do
3: mi  4✏i 6= 0?1 : 0
4: end for
5: ⇧Z  diag(m1, m2, . . . , mm)
6: return ⇧Z

B Proofs
Proposition 3.1. If Y is causally separable with respect to W and Z , then the centered score
representation is arithmetically composable with respect to W and Z .

Proof. By assumption in Theorem 3.2, we have

p(y | z, w) = p(yZ , yW ,⇠(y) | z, w)
����det

Å
@ g
@ y

ã����

= p(yZ | z)p(yW | w)p(⇠(y))
����det

Å
@ g
@ y

ã����

Therefore,

p[Q](y) =p[QZ⇥QW ](y)

=pZ[QZ](y)p[QW ](y)p(⇠(y))
����det(

@ g
@ y
)
���� ,

where pZ[QZ](y) =
R

p(yZ | z)QZ(z)dz and pW [QW ](y) =
R

p(yW | z)QW (w)dw.

Then, taking the log-derivative with respect to y , we get its score function as follows:

s[QZ⇥QW ](y) = sZ[QZ](y)+sW [QW ](y)+s0(y) (17)

where sZ(y) and sW (y) are pZ[QZ](y)’s and pW [QW ](y)’s score functions, and s0(y) :=
ry log

⇣
p(⇠(y))

���det( @ g
@ y )

���
⌘

. So the centered-score is

s̄[QZ⇥QW ](y) = (sZ[QZ](y)�sZ[Q0
Z](y))+(sW [QW ](y)�sW [Q0

W ](y)) (18)

where Q0
Z and Q0

W are the marginal distributions of Z and W of the baseline Q0. Then, we can
use the fact that

RZ = span({s̄Z[QZ]�s̄Z[Q0
Z] : QZ a concept distribution})

= span({sZ[QZ]�sZ[Q0
Z] : QZ a concept distribution})

RW = span({s̄W [QW ]�s̄W [Q0
W ] : QW a concept distribution})

= span({sW [QW ]�sW [Q0
W ] : QW a concept distribution})

Consequently, the claim follows.

Proposition 4.1. Let QW be any fixed distribution over the W concept and Q0
Z be any reference

distribution over Z. Then, assuming causal separability for Z ,W ,

RZ(y) = span({s[QZQW ](y)�s[Q0
ZQW ](y) : QZ a concept distribution}). (10)

Proof. By causal separability we can easily get the RZ(y) in proposition 4.1 is the same as:

RZ(y) = span({sZ[QZ](y)�sZ[Q0
Z](y)} : QZ a concept distribution)

The only thing left to show is that RZ(y) remains the same for whatever choice of base-
line Q0

Z . But this is immediate: span({sZ[QZ](y)�sZ[Q0
Z](y) : QZ a concept distribution}) =

span({sZ[QZ](y)�sZ[Q1
Z](y) : QZ a concept distribution}) for any two baselines Q0

Z and Q1
Z .
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Proposition 5.1. Assuming causal separability holds for Z ,W . If Z is categorical with L possible
values (L � 2), then dim(RZ(y)) L�1.

Proof. We denote the possible values that Z can take as {z0, z1, . . . , zL�1}. Let �zi
:= �zi

(z)
represent the delta function in the Z -subspace, which is infinite at zi and zero at all other points.
For any distribution QZ over Z and any y 2 Rm, we can express sZ[QZ](y) as a linear combination
of sz[�zi

] in the following form:

sZ[QZ](y) =
L�1X

l=0

⇡l(y)sZ[�zl
](y)

Here,
PL�1

l=0 ⇡l(y) = 1. Consider a baseline concept distribution Q0
Z and its corresponding Z-

related score sZ[Q0
Z](y) =

PL�1
l=0 cl(y)sZ[�zl

](y). We can then express the difference sZ[QZ](y)�
sZ[Q0

Z](y) as:

sZ[QZ](y)�sZ[Q0
Z](y) =

L�1X

l=1

!l(y)(sz[�zl
](y)�sz[�z0

](y)),

where !l(y) = ⇡l(y)�cl(y) for l = 1, . . . , L�1. Consequently, we can observe that RZ(y) ⇢
span(

�
sz[�zl

](y)�sz[�z0
](y)

 L�1
l=1 ), which implies that dim(RZ(y)) L�1.

Proposition 5.2. Suppose Z is composed of categorical concepts {Zk}Kk=1 each with the number of
categories Lk, in the sense that Z = Z1⇥. . .Zk. Assume Y satisfies causal separability with respect
to Z ,W , with YZ the corresponding Y-measurable variable for Z . Further assume that there exists
YZ -measurable variables YZk

such that p(yZ | z) = ⇧K
k=1p(yZk

| zk). Then

dim(RZ(y))
KX

k=1

(Lk�1) (14)

Proof. By assuming that p(yZ | z) =
QK

k=1 p(yZk
| zk), we can easily derive the following result

for any concept distribution QZ over Z:

sZ[QZ](y) =
KX

k=1

sZk
[QZk

](y),

where QZk
represents the concept distribution of Zk for each k, and sZk

[QZk
](y) =

ry log
�R

p(yZk
| zk)QZk

(zk)dzk

�
. Recall that

RZ(y) = span({sZ[QZ](y)�sZ[Q0
Z](y)} : QZ is a concept distribution),

where Q0
Z is a baseline. Importantly, it should be noted that RZ(y) is unique regardless of the

choice of Q0
Z as per proposition 4.1.

Let Q0
Zk

denote the Zk-related part of Q0
Z for k = 1, . . . , K. We define RZk

(y) :=
span({sZk

[QZk
](y)�sZk

[Q0
Zk
](y)}). Then, we can state that:

RZ(y) ⇢
KX

k=1

RZk
(y).

Based on proposition 5.1, it follows that dim(RZk
(y))  Lk�1 for each k. Hence, we can

conclude that:

dim(RZ(y))
KX

k=1

(Lk�1).
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C Experiment Details and More Figures

C.1 Concept projection for Dreambooth (Figure 5)

First, we fine-tune the diffusion model using Dreambooth, applying a learning rate of 5e�6 and
setting the number of steps to 800. While there are configurations that could yield a less overfitted
model, we intentionally opt for these parameters to generate an overfitted model. Our aim is
to verify if it’s possible to disentangle the overfitted model by using concept manipulation via
projection.

To generate images depicting a sks toy in front of the Ei�el Tower, we utilize our Dreambooth
fine-tuned diffusion model together with the original pretrained Stable Diffusion model. Only for
the new prompt, xnew = a sks toy”, we use the score function from the Dreambooth fine-tuned
model. All other prompts are plugged into the score functions from the original pretrained
Stable Diffusion model. To create the desired images, we construct a projector using a pair of
prompts: (x1, x2) = (“a toy”, “a soccer ball”). The mask, computed using algorithm 3 with the
threshold= 0.1, helps identify specific areas corresponding to the location of the subject. Then,
we use the Dreambooth score function sdreambooth(a sks toy”) to guide the generation process
within the masked region (areas with value 1), while using s(a toy in front of the Eiffel Tower”)
to guide the generation outside the mask (areas with value 0).

To ensure image fidelity, we exclusively employ the score function sdreambooth(“a sks toy”) for
guiding the denoising process for the last 6% of the denoising steps.

It is important to note that due to severe overfitting issues with the fine-tuned model, there is
no significant difference between using either the prompt “a sks toy” or “a sks toy in front of
the Eiffel Tower” for the fine-tuned model. Also, due to the same reason, we apply the original
pretrained diffusion model for all score functions except for the sks toy related one.

C.2 The mathematician example (Figure 1)

Our starting point is an original prompt xorig = “a portrait of a mathematician”. Our objective is
to modify the sex and style using concept projection:

To adjust sex, we formulate a corresponding direction using a pair of prompts (x1, x2) =
(“a man”, “a woman”). Subsequently, we set xnew = “a person”.

To alter the style, we set xnew = “a portrait of a mathematician, in Fauvism style”. We define
the concept subspace using prompts of the form “a portrait of a mathematician in [xstyle] style”,
where xstyle takes value from a list of styles. During sampling, the original prompt is utilized in
the first 20% of timesteps to better retain the content.

The list of styles is generated by ChatGPT. They are: Art Deco, Minimalist, Baroque, Abstract
Expressionist, Cubist, Fauvism, Impressionist, Steampunk, Neoclassical, Japanese Ukiyo-e, Surre-
alism, Memphis Design, Scandinavian, Bauhaus, Pop Art, Art Nouveau, Street Art, American West,
Victorian Gothic, Futurism, Photorealistic, Mannerist, Flemish, Byzantine, Medieval, Romanesque,
Trompe-l’œil, and Dutch Golden Age.

C.3 Stress-test experiments (Figure 3)

In this experiemnt, we deliberately chose a diverse array of artistic styles and contrasting content
to challenge our model. The styles used are Baroque painting, traditional Chinese painting, Pop
art, Gothic stained glass, the Pre-Raphaelite painting style, Victorian botanical illustration, and
Japanese Edo period art. In terms of content, we use: a bustling train station, a nuclear power
plant, an artificial intelligence lab, a jazz music concert, a modern dance festival, a modern
minimalist house, and a contemporary office setting. The rationale behind this selection was to
pair styles and content that would rarely co-occur in training data. This rarity poses a significant
challenge for the model in generating realistic outputs, testing its capabilities and adaptability to
unconventional combinations.

We implement concept algebra the same way as in Figure 1 example. For concept composition,
we use the software in [Liu+22].

In fig. 6 we show some examples where concept algebra is not preferred.
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Figure 6: Some examples where concept algebra is not preferred. Each row has style-reference (leftmost),
a content-reference (2nd from left), and left-to-right (here, but randomly permuted in the survey) images
generated from concept-algebra, composition and direct prompting.

C.4 The nurse example (Figure 4)
We initiate the process with an original prompt, xorig = “a portrait of a nurse”. Our goal is
to perform concept projection to manipulate the sex attribute. Similar to the mathematician
example, we define the sex direction using a pair of prompts: (x1, x2) = (“a man”, “a woman”).
However, instead of setting the distribution of sex as one of the delta functions or a fair one
corresponding to the neutral prompt “a person”, we wish to see what the concept’s arithmetic
average will define. Specifically, we take the sex direction of the average of a female nurse and
a male nurse, calculated as 1

2 s(a female nurse”)+ 1
2 s(a male nurse”). It turns out the arithmetic

mean realize the interpolation between two extremal sex points in the sex subspace, and the
score function after concept projection returns images of androgynous nurses.

D Additional experiments
Concept Algebra beats negative prompting in simple tasks Negative prompting, aims to
eliminate target concept expressions by subtracting relevant scores. Unlike concept algebra and
similar to concept composition, this method does not confine manipulations to specific subspaces.
As predicted, we see negative prompting inadvertently modify off-target concepts tied to the
primary concept, whereas concept algebra succeeds, as in .

Concept algebra fails when causal separability (Theorem 3.2) is violated We show one
concrete example of failures.

Figure 8 shows that we are unable to transfer the gender of the nurse when we calculate the
score function of a male nurse by (I�projZ)s[“a portrait of a nurse”]+projZ s[“a man”] where
projZ is computed by s[“a buck on the grass”]�s[“a doe on the grass”]. The target concept Z
and W are sex 2 {male, female} and species2 {human, deer}. It’s obvious that the sex and
species have an interaction effect on the image Y — different species induce different sexual
characteristics.
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Figure 7: Concept-algebra can succeed when negative prompting fails. Images (matched on random
seed) from top to bottom: direct prompting “a portrait of a king”, negative prompting w/ “male”, negative
prompting w/ “male” but using concept projection, concept algebra with prompt “female”. Note negative
prompting does not remove the maleness of the output.
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(a) s[“a portrait of a nurse”]

(b) (I�projZ )s[“a portrait of a nurse”]+projZ s[“a man”] where projZ is computed by s[“a buck on the grass”]�s[“a doe on the grass”]

(c) (I�projZ )s[“a portrait of a nurse”]+projZ s[“a man”] where projZ is computed by s[“a man”]�s[“a woman”]

Figure 8: Necessity of Assumptions: the validity of concept algebra depends on causal separability
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