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A Related Work

The kernelized bandit problem was first studied by Srinivas et al. [31], who introduce the GP-UCB
algorithm and characterize its regret in both the Bayesian and Frequentist setting. While the authors
demonstrate that GP-UCB obtains sublinear regret in the Bayesian setting for the commonly used
kernels, their bounds fail to be sublinear in general in the frequentist setting for the Matérn kernel,
one of the most popular kernel choices in practice. Chowdhury and Gopalan [5] further study the
performance of GP-UCB in the frequentist setting. In particular, by leveraging a martingale-based
“double mixture” argument, the authors are able to significantly simplify the confidence bounds pre-
sented in Srinivas et al. [31]. Unfortunately, the arguments introduced by Chowdhury and Gopalan
[5] did not improve regret bounds beyond logarithmic factors, and thus GP-UCB continued to fail to
obtain sublinear regret for certain kernels in their work. Lastly, Janz [16] are able to obtain sublin-
ear regret guarantees for certain parameter settings of the Matérn kernel — in particular in settings
where the eigenfunctions of the Hilbert-Schmidt operator associated with the kernel are uniformly
bounded independent of scale (Definition 28 in the cited work).

There are many other algorithms that have been created for kernelized bandits. Janz et al. [17] in-
troduce an algorithm specific to the Matérn kernel that obtains significantly improved regret over
GP-UCB. This algorithm adaptively partitions the input domain into small hypercubes and run-
ning an instance of GP-UCB in each element of the discretized domain. Shekhar and Javidi [28]
introduce an algorithm called LP-GP-UCB, which augments the GP-UCB estimator with local poly-
nomial corrections. While in the worst case this algorithm recovers the regret bound of Chowdhury
and Gopalan [5], if additional information is known about the unknown function f⇤ (e.g. it is Holder
continuous), it can provide improved regret guarantees. Perhaps the most important non-GP-UCB
algorithm in the literature is the SupKernel algorithm introduced by Valko et al. [34], which dis-
cretizes the input domain and successively eliminates actions from play. This algorithm is signficant
because, despite its complicated nature, it obtains regret rates that match known lower bounds pro-
vided by Scarlett et al. [25] up to logarithmic factors.

Intimately tied to the kernelized bandit problem is the information-theoretic quantity of maximum
information gain [6, 31], which is a sequential, kernel-specific measure of hardness of learning.
Almost all preceding algorithms provide regret bounds in terms of the max information gain. Of
particular import for our paper is the work of Vakili et al. [32]. In this work, the authors use a
truncation argument to upper bound the maximum information gain of kernels in terms of their
eigendecay. We directly employ these bounds in our improved analysis of GP-UCB. The max-
information gain bounds presented in Vakili et al. [32] can be coupled with the regret analysis in
Chowdhury and Gopalan [5] to yield a regret bound of eO

⇣
T

⌫+3d/2
2⌫+d

⌘
in the case of the Matérn

kernel with smoothness ⌫ in dimension d. In particular, when ⌫  d

2 , this regret bound fails to
be sublinear. In practical setting, d is viewed as large and ⌫ is taken to be 3/2 or 5/2, making
these bounds vacuous [26, 38] The regret bounds in this paper are sublinear for any selection of
smoothness ⌫ > 1

2 and d � 1. Moreover, a simple computation yields that our regret bounds strictly
improve over (in terms of d and ⌫) those implied by Vakili et al. [32].

Last, we touch upon the topic of self-normalized concentration, which is an integral tool for con-
structing confidence bounds in UCB-like algorithms. Heuristically, self-normalized aims to sequen-
tially control the growth of processes that have been rescaled by their variance to look, roughly
speaking, normally (or subGaussian) distributed. The prototypical example of self-normalized con-
centration in the bandit literature comes from Abbasi-Yadkori et al. [2], wherein the authors use a
well known technique called the “method of mixtures” to construct confidence ellipsoids for finite
dimensional online regression estimates. The concentration result in the aforementioned work is a
specialization of results in de la Peña et al. [7], which provide self-normalized concentration for a
wide variety of martingale-related processes, several of which have been recently improved [14]. In
a work that is largely overlooked in the kernel bandit community, Abbasi-Yadkori [1] extend their
concentration result from Abbasi-Yadkori et al. [2] to separable Hilbert spaces by using advanced
functional analytic machinery. The bound we present in this work is equivalent to the aforemen-
tioned bound in separable Hilbert spaces — we provide an independent, simpler proof that avoids
needing advanced tools from functional analysis. Perhaps the best-known result on concentration
in Hilbert spaces is that of Chowdhury and Gopalan [5], who extend the results of Abbasi-Yadkori
et al. [2] to the kernel setting using a “double mixture” technique, allowing them to construct self-
normalized concentration inequalities for infinite-dimensional processes in RKHS’s. This bound has
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historically been used in analyzing kernel bandit algorithms, although as we show in this work the
bound of Abbasi-Yadkori [1] (which we independently derive in Theorem 1) is perhaps better suited
for online kernelized learning problems.

B Technical Lemmas for Theorem 1

In this appendix, prove Theorem 1 along with several corresponding technical lemmas. While many
of the following results are intuitively true, we provide their proofs in full rigor, as there can be sub-
tleties when working in infinite-dimensional spaces. Throughout, we assume that the subGaussian
noise parameter is � = 1. The general case can readily be recovered by considering the rescaled
process (St/�)t�0.

The first lemma we present is a restriction of Theorem 1 to the case where the underlying Hilbert
space (H, h·, ·iH) is finite dimensional, say of dimension N . In this setting, the result essentially
follows immediately from Fact 5. All we need to do is construct a natural isometric isomorphism
between the spaces H and RN , and then argue that applying such a mapping doesn’t alter the norm
of the self-normalized process.
Lemma 1. Theorem 1 holds if we additionally assume that H is finite dimensional, i.e. if there
exists N � 1 and orthonormal functions '1, . . . ,'N such that

H := span {'1, . . . ,'N} .

Proof. Let ⌧ : H ! RN be the map that takes a function f =
P

N

n=1 ✓n'n 2 H to its natural
embedding ⌧f := (✓1, . . . , ✓N )> 2 RN . Not only is the map ⌧ an isomorphism between H and
RN , but it is also an isometry, i.e. kfkH = k⌧fk2 for all f 2 H . Further, ⌧ satisfies the relation
⌧> = ⌧�1.

Define the “hatted” processes (bSt)t�1 and (bVt)t�1, which take values in RN and RN⇥N respectively
as

bSt =
tX

s=1

✏s⌧k(·, Xs) and bVt =
tX

s=1

(⌧k(·, Xs))(⌧k(·, Xs))
>.

It is not hard to see that, by the linearity of ⌧ , that for any t � 1, we have bSt = ⌧St and bVt = ⌧Vt⌧>.
We observe that (a) (bVt + ⇢IN )�1/2 = ⌧(Vt + ⇢idH)�1/2⌧> and (b) that the eigenvalues of bVt are
exactly those of Vt.

Since the processes (bSt)t�1 and (bVt)t�1 satisfy the assumptions of Theorem 5, we see that the
process (Mt)t�0 given by

Mt :=
1q

det(IN + ⇢�1 bVt)
exp

⇢
1

2

���(⇢IN + bVt)
�1/2 bSt

���
2

2

�

is a non-negative supermartingale with respect to (Ft)t�0. From observation (a), the fact ⌧ is an
isometry, and the fact ⌧> = ⌧�1, it follows that

���(bVt + ⇢IN )�1/2 bSt

���
2
=
���⌧(Vt + ⇢idH)�1/2⌧>⌧St

���
2

=
���(Vt + ⇢idH)�1/2⌧�1⌧St

���
H

=
���(Vt + ⇢idH)�1/2St

���
H

.

Further, observation (b) implies that

det(IN + ⇢bVt) = det(idH + ⇢Vt).

Substituting these identities into the definition of (Mt)t�0 yields the desired result, i.e. that

Mt =
1p

det(idH + ⇢�1Vt)
exp

⇢
1

2

���(Vt + ⇢Id)
�1/2St

���
2

H

�
.
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is a non-negative supermartingale with respect to (Ft)t�0. The remainder of the result follows from
applying Ville’s Inequality (Fact 4) and rearranging.

⌅

We can prove Theorem 1 by truncating the Hilbert space H onto the first N components, applying
Lemma 1 to the “truncated” processes (⇡NSt)t�0 and (⇡NVt⇡N )t�0 to construct a relevant, non-
negative supermartingale M (N)

t
, and then show that the error from truncation in this non-negative

supermartingale tends towards zero as N grows large. The following two technical lemmas are
useful in showing that this latter truncation tends towards zero.
Lemma 2. For any t � 1, let Vt be as in the statement of Theorem 1, and let ⇡N be as in Section 2.
Then, we have

⇡NVt⇡N ����!
N!1

Vt,

where the above convergence holds under the operator norm on H .

Proof. Fix ✏ > 0, t � 1, and for s 2 [t], let us write fs =
P1

n=1 ✓n(s)'n. Since we have
assumed kftkH < 1 for all t � 1, there exists some Nt < 1 such that, for all s 2 [t],
k⇡?

Nt
fsk2H =

P1
n=Nt+1 ✓n(s)

2 < ✏

2t . We also have, for any s 2 [t] and N � 1, that
fs is an eigenfunction of fsf>

s
⇡?
N

= fshfs,⇡?
N
(·)iH with corresponding (unique) eigenvalue

kfsf>
s
⇡?
N
kop = �max(fsf>

s
⇡?
N
) = k⇡?

N
fsk2H =

P1
n=N+1 ✓n(s)

2. Observe that, as an orthog-
onal projection operator, ⇡N is self-adjoint, i.e. ⇡N = ⇡>

N
. With this information, we see that, for

N � Nt, we have

k⇡NVt⇡N � Vtkop 
tX

s=1

��⇡Nfsf
>
s
⇡N � fsf

>
s

��
op

=
tX

s=1

��⇡Nfsf
>
s
⇡N � ⇡Nfsf

>
s

+ ⇡Nfsf
>
s

� fsf
>
s

��
op


tX

s=1

��⇡Nfsf
>
s
⇡N � ⇡Nfsf

>
s

��
op

+
��⇡Nfsf

>
s

� fsf
>
s

��
op


tX

s=1

k⇡Nk
op

��fsf>
s
⇡N � fsf

>
s

��
op

+
��⇡Nfsf

>
s

� fsf
>
s

��
op

=
tX

s=1

2
��fsf>

s
⇡?
N

��
op

=
tX

s=1

2k⇡?
N
fsk2H < ✏.

Since ✏ > 0 was arbitrary, we have shown the desired result. ⌅

Lemma 3. For any t � 1, let Vt be as in Theorem 1, ⇢ > 0 arbitrary, and ⇡N as in Section 2. Then,
we have

det(idH + ⇢�1⇡NVt⇡N ) ����!
N!1

det(idH + ⇢�1Vt).

Proof. We know that the mapping A 7! det(idH + A) is continuous under the “trace norm”
kAk1 :=

P1
n=1 |�n(A)| [20]. Thus, to show the desired result, it suffices to show that k⇡NVt⇡N �

Vtk1 ����!
N!1

0. Observe that both ⇡NVt⇡N and Vt are operators of rank at most t, so so their
difference ⇡NVt⇡N � Vt has rank at most 2t. Thus, we know that

k⇡NVt⇡N � Vtk1  2tk⇡NVt⇡N � Vtkop ����!
N!1

0,

where the final convergence follows from Lemma 2. Thus, we have shown the desired result. ⌅

We now tie together all of these technical (but intuitive) results in the proof of Theorem 1 below.
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Proof of Theorem 1. Let ('n)n�1 be an orthonormal basis for H , and for N � 1, let ⇡N de-
note the projection operator outlined in Section 2. Recall that ⇡N = ⇡>

N
. Further HN :=

span{'1, . . . ,'N} ⇢ H is the image of H under ⇡N . Since (St)t�0 is an H-valued martingale
with respect to (Ft)t�1, it follows that the projected process (⇡NSt)t�1 is an HN -valued martingale
with respect to (Ft)t�0. Further, note that the projected variance process (⇡NVt⇡>

N
)t�0 satisfies

⇡NVt⇡
>
N

=
tX

s=1

(⇡Nfs)(⇡Nfs)
>.

Since, for any N � 1, HN is a finite-dimensional Hilbert space, it follows from Lemma 1 that the
process (M (N)

t
)t�0 given by

M (N)
t

:=
1q

fdet(idHN + ⇢�1⇡NVt⇡>
N
)
exp

⇢
1

2

���(⇢idHN + ⇡NVt⇡
>
N
)�1/2⇡NSt

���
2

HN

�

=
1q

det(idH + ⇢�1⇡NVt⇡>
N
)
exp

⇢
1

2

���(⇢idH + ⇡NVt⇡
>
N
)�1/2⇡NSt

���
2

H

�
,

is a non-negative supermartingale with respect to (Ft)t�0. In the above idHN denotes the identity
idH restricted to HN ⇢ H and fdet denotes the determinant restricted to the subspace HN . The
equivalence of the second and third terms above is trivial.

We now argue that for any t � 1,
lim

N!1
M (N)

t
= Mt. (1)

If we show this to be true, then we have, for any t � 1

E (Mt | Ft�1) = E
⇣
lim inf
N!1

M (N)
t

| Ft�1

⌘

 lim inf
N!1

E
⇣
M (N)

t
| Ft�1

⌘

 lim inf
N!1

M (N)
t�1

= Mt�1,

which implies (Mt)t�0 is a non-negative supermartingale with respect to (Ft)t�0 thus proving the
result. In the above, the first inequality follows from Fatou’s lemma for conditional expectations (see
Durrett [11], for instance), and the second inequality follows from the supermartingale property.

Lemma 3 tells us that det(idH + ⇢�1⇡NVt⇡N ) ����!
N!1

det(idH + ⇢�1Vt) for all t � 1, so to show
the desired convergence in (1), it suffices to show that

k(⇢idH + ⇡NVt⇡N )�1/2⇡NStkH ����!
N!1

k(⇢idH + Vt)
�1/2StkH for any t.

Let Vt := ⇢idH + Vt and Vt(N) := ⇢idH + ⇡NVt⇡N in the following line of reason for simplicity.
We trivially have
���kVt(N)�1/2⇡NStkH � kV�1/2

t
StkH

��� 
���Vt(N)�1/2⇡NSt � V�1/2

t
St

���
H

=
���Vt(N)�1/2⇡NSt � Vt(N)�1/2St + Vt(N)�1/2St � V�1/2

t
St

���
H


���Vt(N)�1/2

���
op

��⇡?
N
St

��
H
+
���Vt(N)�1/2 � V�1/2

t

���
op

kStkH

����!
N!1

0.

as limN!1 k⇡?
N
fk = 0 for any f 2 H of finite norm, and Lemma 2 tells us that kVt �

⇡NVt⇡Nkop ����!
N!1

0, which in turn implies that kVt(N)�1/2 � V�1/2
t

kop = k(⇢idH +

⇡NVt⇡N )�1/2 � (⇢idH + Vt)�1/2kH ����!
N!1

0. Thus, we have shown the desired result.
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The second part of the claim follows from a direct application of Fact 4 and rearranging.

⌅

As a final result in this appendix, we provide a proof of Corollary 1. This corollary allows for a
more direct comparison of Theorem 1 (and thus Corollary 3.5 of Abbasi-Yadkori [1]) with those of
Chowdhury and Gopalan [5]. Our proof is a simple generalization Lemma 1 in the aforementioned
paper to the case of arbitrary regularization parameters.

Proof of Corollary 1. The first result is straightforward, and follows from the identity

det(idH + ⇢�1Vt) = det(It + ⇢�1Kt),

which we bring to attention in Section 2.

The second result follows from the following line of reasoning. Before proceeding, recall that
�t := (k(·, X1), . . . , k(·, Xt))>, Vt = �>

t
�t, Kt = �t�>

t
and St =

P
t

s=1 ✏sk(·, Xs) = �>
t
✏1:t.

��(⇢idH + Vt)
�1St

��2
H

= ✏>1:t�t(⇢idH + �>
t
�t)

�1�>
t
✏1:t

= ✏>1:t(⇢
�1/2�t)

⇣
idH + (⇢�1/2�t)

>(⇢�1/2�t)
⌘�1

(⇢�1/2�t)
>✏1:t

= ✏T1:t⇢
�1�t�

>
t

�
It + ⇢�1�t�

>
t

��1
✏1:t

= ✏>1:t(⇢
�1Kt)(It + ⇢�1Kt)

�1✏1:t

= ✏>1:t(It + ⇢K�1
t

)�1✏1:t

=
���(It + ⇢K�1

t
)�1/2✏1:t

���
2

2
.

In the above, the second equality comes from pulling out a multiplicative factor of ⇢ form the center
operator inverse. The third inequality comes from the famed “push through” identity. Lastly, the
second to last equality comes from observing that (a) ⇢�1Kt and (It+⇢�1Kt)�1 are simultaneously
diagonalizable matrices and (b) for scalars, we have the identity (1 + a�1)�1 = a(1 + a)�1. Thus,
we have shown the desired result. ⌅

C Technical Lemmas for Theorem 2

In this appendix, we provide various technical lemmas needed for the proof of Theorem 2. We then
follow these lemmas with a full proof of Theorem 2, which extends the sketch provided in the main
body of the paper. Most of the following technical lemmas either already exist in the literature [5] or
are extensions of what is known in the case of finite-dimensional, linear bandits [2]. We nonetheless
provide self-contained proofs for the sake of completeness.
Lemma 4. Let (ft)t�1 be the sequence of functions defined in Algorithm 1, and assume Assump-
tion 1 holds. Let � 2 (0, 1) be an arbitrary confidence parameter. Then, with probability at least
1� �, simultaneously for all t � 1, we have

���(Vt + ⇢idH)1/2(ft � f⇤)
���
H

 �

s

2 log

✓
1

�

p
det(idH + ⇢�1Vt)

◆
+ ⇢1/2D,

where we recall that the right hand side equals Ut.

Proof. First, observe that we have

ft � f⇤ = (⇢idH + Vt)
�1�>

t
Y1:t � f⇤

= (⇢idH + Vt)
�1�>

t
(�tf

⇤ + ✏1:t)� f⇤

= (⇢idH + Vt)
�1�>

t
(�tf

⇤ + ✏1:t)� f⇤ ± ⇢(⇢idH + Vt)
�1f⇤

= (⇢idH + Vt)
�1�>

t
✏1:t � ⇢(⇢idH + Vt)

�1f⇤.
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Applying the triangle inequality to the above, we have
���(⇢idH + Vt)

1/2(ft � f⇤)
���
H


���(⇢idH + Vt)

�1/2�>
t
✏1:t
���
H

+ ⇢
���(⇢idH + Vt)

�1/2f⇤
���
H

 �

s

2 log

✓
1

�

p
det(idH + ⇢�1Vt)

◆
+ ⇢1/2D.

To justify the final inequality, we look at each term separately. For the first term, observe that
Vt = ⇢idH +

P
t

s=1 k(·, Xt)k(·, Xt)> and St := �>
t
✏1:t =

P
t

s=1 ✏sk(·, Xs). Thus, we are in the
setting of Theorem 1, and thus have, with probability at least 1� �, simultaneously for all t � 0,

���(⇢idH + Vt)
�1/2�>

t
✏1:t
���
H

 �

s

2 log

✓
1

�

p
det(idH + ⇢�1Vt)

◆
.

For the second term, observe that (a) �min(⇢idH + Vt) � ⇢ and (b) by Assumption 1, we have
kf⇤kH  D. Thus applying Holder’s inequality, we have, deterministically

⇢
���(⇢idH + Vt)

�1/2f⇤
���
H

 ⇢
���(⇢idH + Vt)

�1/2
���
op

kf⇤k
H

 ⇢1/2kf⇤kH  ⇢1/2D.

These together give us the desired result.

⌅

The following “elliptical potential” lemma, abstractly, aims to control the the growth of the squared,
self-normalized norm of the selected actions. We more or less port the argument from Abbasi-
Yadkori et al. [2], which provides an analogue in the linear stochastic bandit case. We just need to
be mildly careful to work around the fact we are using Fredholm determinants.
Lemma 5. For any t � 1, let Vt be the covariance operator defined in Algorithm 1, and let ⇢ > 0
be arbitrary. We have the identity

det(idH + ⇢�1Vt) =
tY

s=1

✓
1 +

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

◆
.

In particular, if ⇢ � 1 _ L, where L is the bound outlined in Assumption 2, we have
tX

s=1

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

 2 log det(idH + ⇢�1Vt).

Proof. Let Ht ⇢ H be the finite-dimensional Hilbert space Ht := span{k(·, X1), . . . , k(·, Xt)}.
Let detHt denote the determinant restricted to Ht, i.e. the map that acts on a (symmetric) oper-
ator A : Ht ! Ht by detHt(A) :=

Q
t

s=1 �s(A), where �1(A), . . . ,�t(A) are the enumerated
eigenvalues of A. Observe the identity

det(idH + ⇢�1Vt) = det
Ht

(idHt + ⇢�1Vt),

where we recall the determinant on the lefthand side is the Fredholm determinant, as defined in
Section 2. Next, following the same line of reasoning as Abbasi-Yadkori et al. [2], we have
det
Ht

(⇢idHt + Vt)

= det
Ht

(⇢idHt + Vt�1) det
Ht

⇣
idHt + (⇢idHt + Vt�1)

�1/2k(·, Xt)k(·, Xt)
>(⇢idHt + Vt�1)

�1/2
⌘

= det
Ht

(⇢idHt + Vt�1)

✓
1 +

���(⇢idHt + Vt�1)
�1/2k(·, Xt)

���
2

H

◆

= · · · (Iterating t� 1 more times)

= det
Ht

(⇢idH)
tY

s=1

✓
1 +

���(⇢idHt + Vs�1)
�1/2k(·, Xs)

���
2

H

◆

= det
Ht

(⇢idH)
tY

s=1

✓
1 +

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

◆
,
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where the last equality comes from realizing, for all s 2 [t], k(⇢idHt + Vs�1)�1/2k(·, Xs)kH =
k(⇢idH + Vs�1)�1/2k(·, Xs)kH . Thus, rearranging yields

det
Ht

(idHt + ⇢�1Vt) =
tY

s=1

✓
1 +

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

◆
,

which yields the first part of the claim.

Now, to see the second part of the claim, observe the bound x  2 log(1+x), 8x 2 [0, 1]. Observing
that, for all s 2 [t],

��(⇢idH + Vs�1)�1/2k(·, Xs)
��
H

 1 when ⇢ � 1 _ L, we have

tX

s=1

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

 2
tX

s=1

log

✓
1 +

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

◆

= 2 log

 
tY

s=1

✓
1 +

���(⇢idH + Vs�1)
�1/2k(·, Xs)

���
2

H

◆!

= 2 log det(idH + ⇢�1Vt),

proving the second part of the lemma. ⌅

With the above lemmas, along with the concentration results provided by Theorem 1, we can provide
a full proof for Theorem 2.

Proof of Theorem 2. We take the standard approach of (a) first bounding instantaneous regret and
then (b) applying the Cauchy-Schwarz inequality to bound the aggregation of terms. To start, for
any t 2 [T ], define the “instantaneous regret” as rt := f⇤(x⇤) � f⇤(Xt), where we recall x⇤ :=
argmaxx2X f⇤(x). By applying Lemma 4, we have with probability at least 1� � that

rt = f⇤(x⇤)� f⇤(Xt)

 eft(Xt)� f⇤(Xt)

= eft(Xt)� ft�1(Xt) + ft�1(Xt)� f⇤(Xt)

= h eft � ft�1, k(·, Xt)iH � hft�1 � f⇤, k(·, Xt)iH


���(⇢idH + Vt�1)

�1/2k(·, Xt)
���
H

⇣���(⇢idH + Vt�1)
1/2( eft � ft�1)

���
H

+
���(⇢idH + Vt�1)

1/2(ft�1 � f⇤)
���
H

⌘

 2Ut�1

���(⇢idH + Vt�1)
�1/2k(·, Xt)

���
H

,

where eft and ft�1 are as in Algorithm 1. Note that, in the above, we apply Lemma 4 in obtain-
ing the first inequality (which is the “optimism in the face of uncertainty” part of the bound), and
additionally in obtaining the last inequality. The second to last inequality follows from applying
Cauchy-Schwarz.

With the above bound, we can apply again the Cauchy-Schwarz inequality to see

RT =
TX

t=1

rt 

vuutT
TX

t=1

r2
t
 UT

vuut2T
TX

t=1

��(⇢idH + Vt�1)�1/2k(·, Xt)
��2
H

 UT

p
2T log det(idH + ⇢�1VT )

=

 
�

s

2 log

✓
1

�

p
det(idH + ⇢�1VT )

◆
+ ⇢1/2D

!
p
2T log det(idH + ⇢�1VT )


⇣
�
p
2 log(1/�) + �

p
2�T (⇢) + ⇢1/2D

⌘p
4T�T (⇢)

= ��T (⇢)
p
8T +D

p
4⇢�T (⇢)T + �

p
8T log(1/�)

= O
⇣
�T (⇢)

p
T +

p
⇢�T (⇢)T

⌘
.
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In the above, the second inequality follows from the second part of Lemma 5, the following equality
follows from substituting in UT , and the final inequality follows from the definition of the maximum
information gain �T (⇢) and the fact that

p
a+ b 

p
a+

p
b for all a, b � 0. The last, big-Oh bound

is straightforward. With this, we have proven the first part of the theorem.

Now, suppose the kernel k experiences (C,�)-polynomial eigendecay. Then, by Fact 2, we know
that

�T (⇢) 
 ✓

CB2T

⇢

◆1/�

log�1/�

✓
1 +

LT

⇢

◆
+ 1

!
log

✓
1 +

LT

⇢

◆

= eO
 ✓

T

⇢

◆1/�
!
.

We aim to set ⇢ ⇣
⇣

T

⇢

⌘1/�
, which occurs when ⇢ = O(T

1
1+� ). When this happens, we have

✓
T

⇢

◆1/� p
T = T

1
1+�+ 1

2 = T
3+�
2+2� .

Applying this, we have that

RT = O
⇣
�T (⇢)

p
T +

p
⇢�T (⇢)T

⌘

= eO
⇣
T

3+�
2+2�

⌘
,

which, in particular, is sublinear for any � > 1. Thus, we are done.

⌅
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