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Abstract

In the kernelized bandit problem, a learner aims to sequentially compute the op-
timum of a function lying in a reproducing kernel Hilbert space given only noisy
evaluations at sequentially chosen points. In particular, the learner aims to min-
imize regret, which is a measure of the suboptimality of the choices made. Ar-
guably the most popular algorithm is the Gaussian Process Upper Confidence
Bound (GP-UCB) algorithm, which involves acting based on a simple linear es-
timator of the unknown function. Despite its popularity, existing analyses of GP-
UCB give a suboptimal regret rate, which fails to be sublinear for many commonly
used kernels such as the Matérn kernel. This has led to a longstanding open ques-
tion: are existing regret analyses for GP-UCB tight, or can bounds be improved
by using more sophisticated analytical techniques? In this work, we resolve this
open question and show that GP-UCB enjoys nearly optimal regret. In particular,
our results yield sublinear regret rates for the Matérn kernel, improving over the
state-of-the-art analyses and partially resolving a COLT open problem posed by
Vakili et al. Our improvements rely on a key technical contribution — regularizing
kernel ridge estimators in proportion to the smoothness of the underlying kernel
k. Applying this key idea together with a largely overlooked concentration re-
sult in separable Hilbert spaces (for which we provide an independent, simplified
derivation), we are able to provide a tighter analysis of the GP-UCB algorithm.

1 Introduction

An essential problem in areas such as econometrics [12, 13], medicine [22, 23], optimal control
[4, 3], and advertising [21] is to optimize an unknown function given bandit feedback, in which
algorithms only get to observe the outcomes for the chosen actions. Due to the bandit feedback,
there is a fundamental tradeoff between exploiting what has been observed about the local behavior
of the function and exploring to learn more about the function’s global behavior. There has been a
long line of work on bandit learning that investigates this tradeoff across different settings, including
multi-armed bandits [29, 19, 37], linear bandits [2, 30], and kernelized bandits [5, 26, 32].

In this work, we focus on the kernelized bandit framework, which can be viewed as an extension
of the well-studied linear bandit setting to an infinite-dimensional reproducing kernel Hilbert space
(or RKHS) (H, h·, ·iH). In this problem, there is some unknown function f⇤ : X ! R of bounded
norm in H , where X ⇢ Rd is a bounded set. In each round t 2 [T ], the learner uses previous
observations to select an action Xt 2 X , and then observes feedback Yt := f⇤(Xt)+ ✏t, where ✏t is
a zero-mean noise variable. The learner aims to minimize (with high probability) the regret at time
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T , which is defined as

RT :=
TX

t=1

f⇤(x⇤)� f⇤(Xt)

where x⇤ := argmaxx2X f⇤(x). The goal is to develop simple, efficient algorithms for the kernel-
ized bandit problem that minimize regret RT . We make the following standard assumption. We also
make assumptions on the underlying kernel k, which we discuss in Section 2.
Assumption 1. We assume that (a) there is some constant D > 0 known to the learner such that
kf⇤kH  D and (b) for every t � 1, ✏t is �-subGaussian conditioned on �(Y1:t�1, X1:t).

Arguably the simplest algorithm for the kernelized bandit problem is GP-UCB (Gaussian process
upper confidence bound) [31, 5]. GP-UCB works by maintaining a kernel ridge regression estima-
tor of the unknown function f⇤ alongside a confidence ellipsoid, optimistically selecting in each
round the action that provides the maximal payoff over all feasible functions. Not only is GP-UCB
efficiently computable thanks to the kernel trick, but it also offers strong empirical guarantees [5].
The only seeming deficit of GP-UCB is its regret guarantee, as existing analyses only show that,
with high probability, RT = eO(�T

p
T ), where �T is a kernel-dependent measure of complexity

known as the maximum information gain [31, 6]. In contrast, more complicated, less computation-
ally efficient algorithms such as SupKernelUCB [34, 25] have been shown to obtain regret bounds
of eO(

p
�TT ), improving over the analysis of GP-UCB by a multiplicative factor of p�T . This gap

is stark as the bound eO(�T
p
T ) fails, in general, to be sub-linear for the practically relevant Matérn

kernel, whereas eO(
p
�TT ) is sublinear for any kernel experiencing polynomial eigendecay [32].

This discrepancy has prompted the development of many variants of GP-UCB that, while less com-
putationally efficient, offer better regret guarantees in some situations [17, 27, 28]. (See a detailed
discussion of these algorithms along with other related work in Appendix A.) However, the fol-
lowing question remains an open problem in online learning [33]: are existing analyses of vanilla
GP-UCB tight, or can an improved analysis show GP-UCB enjoys sublinear regret?

1.1 Contributions

In this work, we show that GP-UCB obtains almost optimal, sublinear regret for any kernel experi-
encing polynomial eigendecay. This, in particular, implies that GP-UCB obtains sublinear regret for
the commonly used Matérn family of kernels. We provide a brief roadmap of our paper below.

1. In Section 3, we provide background into self-normalized concentration in Hilbert spaces.
In particular, in Theorem 1, we provide an independent, simplified derivation of a bound
due to Abbasi-Yadkori [1], which concerns to self-normalized concentration of certain pro-
cess in separable Hilbert spaces. This bound has been largely overlooked in the kernel
bandit literature, so we draw attention to it in hopes it can be leveraged in solving fur-
ther kernel-based learning problems. As opposed to the existing bound of Chowdhury
and Gopalan [5], which involves employing a complicated “double mixture” argument,
the bound we present follows directly from applying the well-studied finite-dimensional
method of mixtures alongside a simple truncation argument [7–9, 2]. These bounds are
clean and show simple dependence on the regularization parameter.

2. In Section 4, we use leverage the self-normalized concentration detailed in Theorem 1 to
provide an improved regret analysis for GP-UCB. By carefully choosing regularization
parameters based on the smoothness of the underlying kernel, we demonstrate that GP-
UCB enjoys sublinear regret of eO

⇣
T

3+�
2+2�

⌘
for any kernel experiencing (C,�)-polynomial

eigendecay. As a special case of this result, we obtain regret bounds of eO
⇣
T

⌫+2d
2⌫+2d

⌘
for

the commonly used Matérn kernel with smoothness ⌫ in dimension d. Our new analysis
improves over existing state-of-the-art analysis for GP-UCB, which fails to guarantee sub-
linear regret in general for the Matérn kernel family [5], and thus partially resolves an open
problem posed by [33] on the suboptimality of GP-UCB.

In sum, our results show that GP-UCB, the go-to algorithm for the kernelized bandit problem, is
nearly optimal, coming close to the algorithm-independent lower bounds of Scarlett et al. [25]. Our
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work thus can be seen as providing theoretical justification for the strong empirical performance
of GP-UCB [31]. Perhaps the most important message of our work is the importance of careful
regularization in online learning problems. While many existing bandit works treat the regularization
parameter as a small, kernel-independent constant, we are able to obtain significant improvements
by carefully selecting the regularization parameter. We hope our work will encourage others to pay
close attention to the selection of regularization parameters in future works.

2 Background and Problem Statement

Notation. We briefly touch on basic definitions and notational conveniences that will be used
throughout our work. If a1, . . . , at 2 R, we let a1:t := (a1, . . . , at)>. Let (H, h·, ·iH) be a re-
producing kernel Hilbert space associated with a kernel k : X ⇥ X ! R. We refer to the identity
operator on H as idH . This is distinct from the identity mapping on Rd, which we will refer to as
Id. For elements f, g 2 H , we define their outer product as fg> := fhg, ·iH and inner product as
f>g := hf, giH . For any t � 1 and sequence of points x1, . . . , xt 2 X (which will typically be
understood from context), let �t := (k(·, x1), . . . , k(·, xt))>. We can respectively define the Gram
matrix Kt : Rt ! Rt and covariance operator Vt : H ! H as Kt := (k(xi, xj))i,j2[t] = �t�>

t

and Vt :=
P

t

s=1 k(·, xs)k(·, xs)> = �>
t
�t. These two operators essentially encode the same

information about the observed data points, the former being easier to work with when actually per-
forming computations (by use of the well known kernel trick) and latter being easier to algebraically
manipulate.

Suppose A : H ! H is a Hermitian operator of finite rank; enumerate its non-zero eigenvalues as
�1(A), . . . ,�k(A). We can define the Fredholm determinant of I +A as det(I +A) :=

Q
k

m=1(1+
�i(A)) [20]. For any t � 1, ⇢ > 0, and x1, . . . , xt 2 X , one can check via a straightforward
computation that det(It + ⇢�1Kt) = det(idH + ⇢�1Vt), where Kt and Vt are the Gram matrix and
covariance operator defined above. We, again, will use these two quantities interchangeably in the
sequel, but will typically prefer the latter in our proofs.

If (H, h·, ·iH) is a (now general) separable Hilbert space and ('n)n�1 is an orthonormal basis for H ,
for any N � 1 we can define the orthogonal projection operator ⇡N : H ! span{'1, . . . ,'N} ⇢
H by ⇡Nf :=

P
N

n=1hf,'niH'n. We can correspondingly the define the projection onto the re-
maining basis functions to be the map ⇡?

N
: H ! span{'1, . . . ,'N}? given by ⇡?

N
f := f � ⇡Nf .

Lastly, if A : H ! H is a symmetric, bounded linear operator, we let �max(A) denote the maximal
eigenvalue of A, when such a value exists. In particular, �max(A) will exist whenever A has a finite
rank, as will typically be the case considered in this paper.

Basics on RKHSs. Let X ⇢ Rd be some domain. A kernel is a positive semidefinite map k :
X ⇥ X ! R that is square-integrable, i.e.

R
X
R
X |k(x, y)|2dxdy < 1. Any kernel k has an

associated reproducing kernel Hilbert space or RKHS (H, h·, ·iH) containing the closed span of all
partial kernel evaluations k(·, x), x 2 X . In particular, the inner product h·, ·iH on H satisfies the
reproducing relationship f(x) = hf, k(·, x)iH for all x 2 X .

A kernel k can be associated with a corresponding Hilbert-Schmidt operator, which is the Hermitian
operator Tk : L2(X ) ! L2(X ) given by (Tkf)(x) :=

R
X f(y)k(x, y)dy for any x 2 X . In short,

Tk can be thought of as “smoothing out” or “mollifying” a function f according to the similarity
metric induced by k. Tk plays a key role in kernelized learning through Mercer’s Theorem, which
gives an explicit representation for H in terms of the eigenvalues and eigenfunctions of Tk.
Fact 1 (Mercer’s Theorem). Let (H, h·, ·iH) be the RKHS associated with kernel k, and let
(µn)n�1 and (�n)n�1 be the sequence of non-increasing eigenvalues and corresponding eigen-
functions for Tk. Let ('n)n�1 be the sequence of rescaled functions 'n :=

p
µ
n
�n. Then,

H =

( 1X

n=1

✓n'n :
1X

n=1

✓2
n
< 1

)
,

and ('n)n�1 forms an orthonormal basis for (H, h·, ·iH).

We make the following assumption throughout the remainder of our work, which is standard and
comes from Vakili et al. [32].
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Assumption 2 (Assumption on kernel k). The kernel k : X ⇥ X ! R satisfies (a) |k(x, y)|  L
for all x, y 2 X , for some constant L > 0 and (b) |�n(x)|  B for all x 2 X , for some B > 0.

“Complexity” of RKHS’s. By the eigendecay of a kernel k, we really mean the rate of decay
of the sequence of eigenvalues (µn)n�1. In the literature, there are two common paradigms for
studying the eigendecay of k: (C1, C2,�)-exponential eigendecay, under which 8n � 1, µn 
C1 exp(�C2n�), and (C,�)-polynomial eigendecay, under which 8n � 1, µn  Cn�� . For ker-
nels experiencing exponential eigendecay, of which the squared exponential is the most important
example, GP-UCB is known to be optimal up to poly-logarithmic factors. However, for kernels
experiencing polynomial eigendecay, of which the Matérn family is a common example, existing
analyses of GP-UCB fail to yield sublinear regret. It is this latter case we focus on in this work.

Given the above representation in Fact 1, it is clear that the eigendecay of the kernel k governs the
“complexity” or “size” of the RKHS H . We make this notion of complexity precise by discussing
maximum information gain, a sequential, kernel-dependent quantity governing concentration and
hardness of learning in RKHS’s [6, 31, 32].

Let t � 1 and ⇢ > 0 be arbitrary. The maximum information gain at time t with regularization ⇢ is
the scalar �t(⇢) given by

�t(⇢) := sup
x1,...,xt2X

1

2
log det

�
idH + ⇢�1Vt

�
= sup

x1,...,xt2X

1

2
log det

�
It + ⇢�1Kt

�
.

Our presentation of maximum information gain differs from some previous works in that we encode
the regularization parameter ⇢ into our notation. This inclusion is key for our results, as we obtain
improvements by carefully selecting ⇢. Vakili et al. [32] bound the rate of growth of �t(⇢) in terms
of the rate of eigendecay of the kernel k. We leverage the following fact in our main results.
Fact 2 (Corollary 1 in Vakili et al. [32]). Suppose that kernel k satisfies Assumption 2 and experi-
ences (C,�)-polynomial eigendecay. Then, for any t � 1, we have

�t(⇢) 
 ✓

CB2t

⇢

◆1/�

log�1/�

✓
1 +

Lt

⇢

◆
+ 1

!
log

✓
1 +

Lt

⇢

◆
.

We last define the practically relevant Matérn kernel and discuss its eigendecay.
Definition/Fact 3. The Matérn kernel with bandwidth � > 0 and smoothness ⌫ > 1/2 is given by

k⌫,�(x, y) :=
1

�(⌫)2⌫�1

 p
2⌫kx� yk2

�

!⌫

B⌫

 p
2⌫kx� yk2

�

!
,

where � is the gamma function and B⌫ is the modified Bessel function of the second kind. It is
known that there is some constant C > 0 that may depend on � but not on d or ⌫ such that k⌫,�
experiences

�
C, 2⌫+d

d

�
-eigendecay [24, 32].

Basics on martingale concentration: A filtration (Ft)t�0 is a sequence of �-algebras satisfying
Ft ⇢ Ft+1 for all t � 1. If (Mt)t�0 is a H-valued process, we say (Mt)t�0 is a martingale
with respect to (Ft)t�0 if (a) (Mt)t�0 is (Ft)t�0-adapted, and (b) E(Mt | Ft�1) = Mt�1 for all
t � 1. An R-valued process is called a supermartingale if the equality in (b) is replaced with “”,
i.e. supermartingales tend to decrease. Martingales are useful in many statistical applications due
to their strong concentration of measure properties [15, 36]. The follow fact can be leveraged to
provide time-uniform bounds on the growth of any non-negative supermartingale.
Fact 4 (Ville’s Inequality). Let (Mt)t�0 be a non-negative supermartingale with respect to some
filtration. Suppose EM0 = 1. Then, for any � 2 (0, 1), we have

P
✓
9t � 0 : Mt �

1

�

◆
 �.

See Howard et al. [14] for a self-contained proof of Ville’s inequality, and many applications.

If F is a �-algebra, and ✏ is an R-valued random variable, we say ✏ is �-subGaussian conditioned
on F if, for any � 2 R, we have logE

�
e�✏ | F

�
 �

2
�
2

2 ; in particular this condition implies
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that ✏ is mean zero. With this, we state the following result on self-normalized processes. To our
understanding, the following result was first presented in some form as Example 4.2 of de la Peña
et al. [8] (in the setting of continuous local martingales), and can be derived leveraging the argument
of Theorem 1 in de la Peña et al. [9]. The exact form below was established (in the setting of
discrete-time processes) in Theorem 1 of Abbasi-Yadkori et al. [2], which is commonly leveraged
to construct confidence ellipsoids in the linear bandit setting.
Fact 5 (Example 4.2 from [8], Theorem 1 from [2]). Let (Ft)t�0 be a filtration, let (Xt)t�1 be
an (Ft)t�0-predictable sequence in Rd, and let (✏t)t�1 be a real-valued (Ft)t�1-adapted sequence
such that conditional on Ft�1, ✏t is mean zero and �-subGaussian. Then, for any ⇢ > 0, the process
(Mt)t�0 given by

Mt :=
1p

det(Id + ⇢�1Vt)
exp

⇢
1

2

���(⇢Id + Vt)
�1/2St/�

���
2

2

�

is a non-negative supermartingale with respect to (Ft)t�0, where St :=
P

t

s=1 ✏sXs and Vt :=P
t

s=1 XsX>
s

. Consequently, by Fact 4, for any confidence � 2 (0, 1), the following holds: with
probability at least 1� �, simultaneously for all t � 1, we have

���(Vt + ⇢Id)
�1/2St

���
2
 �

s

2 log

✓
1

�

p
det(Id + ⇢�1Vt)

◆
.

Note the simple dependence on the regularization parameter ⇢ > 0 in the above bound. While the
regularization parameter ⇢ doesn’t prove important in regret analysis for linear bandits (where ⇢ is
treated as constant), the choice for ⇢ will be critical in our setting. In the following section, we will
discuss how Fact 5 can be extended to the setting of separable Hilbert spaces essentially verbatim
(an observation first noticed by Abbasi-Yadkori [1]).

3 A Remark on Self-Normalized Concentration in Hillbert Spaces

We begin by discussing a key, self-normalized concentration inequality for martingales. We use this
bound in the sequel to construct simpler, more flexible confidence ellipsoids than currently exist for
GP-UCB. The bound we present (in Theorem 1 below) is, more or less, equivalent to Corollary 3.5
in the thesis of Abbasi-Yadkori [1]. Our result is mildly more general in the sense that it directly
argues that a target mixture process is a nonnegative supermartingale. The result in Abbasi-Yadkori
[1] is more general in the sense it allows the regularization (or shift) matrix to be non-diagonal.
Either concentration result is sufficient for the regret bounds obtained in the sequel.

The aforementioned corollary in [1], quite surprisingly, has not been referenced in central works on
the kernelized bandit problem, namely Chowdhury and Gopalan [5] and Vakili et al. [32, 33]. In
fact, strictly weaker versions of the conclusion have been independently rediscovered in the context
of kernel regression [10]. We emphasize that this result of Abbasi-Yadkori [1] (and the surrounding
technical conclusions) are very general and may allow for further improvements in problems related
to kernelized learning.

We now present Theorem 1, providing a brief sketch and a full proof in Appendix B. We believe
our proof, which directly shows a target process is a nonnegative supermartingale, is of independent
interest when compared to that of Abbasi-Yadkori [1] due to its simplicity. In particular, our proof
follows from first principles, avoiding advanced topological notions of convergence (e.g. in the weak
operator topology) and existence of certain Gaussian measures on separable Hilbert spaces, which
were heavily utilized in the proof of Corollary 3.5 in Abbasi-Yadkori [1].
Theorem 1 (Self-normalized concentration in Hilbert spaces). Let (Ft)t�0 be a filtration,
(ft)t�1 be an (Ft)t�0-predictable sequence in a separable Hilbert space1 H such that kftkH < 1
a.s. for all t � 0, and (✏t)t�1 be an (Ft)t�1-adapted sequence in R such that conditioned on Ft�1,
✏t is mean zero and �-subGaussian. Defining St :=

P
t

s=1 ✏sfs and Vt :=
P

t

s=1 fsf
>
s

, we have
that for any ⇢ > 0, the process (Mt)t�0 defined by

Mt :=
1p

det(idH + ⇢�1Vt)
exp

⇢
1

2

���(⇢idH + Vt)
�1/2St/�

���
2

H

�

1A space is separable if it has a countable, dense set. Separability is key, because it means we have a
countable basis, whose first N elements we project onto.
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is a nonnegative supermartingale with respect to (Ft)t�0. Consequently, by Fact 4, for any � 2
(0, 1), with probability at least 1� �, simultaneously for all t � 1, we have

���(Vt + ⇢Id)
�1/2St

���
H

 �

s

2 log

✓
1

�

p
det(idH + ⇢�1Vt)

◆
.

We can summarize our independent proof in two simple steps. First, following from Fact 5, the
bound in Theorem 1 holds when we project St and Vt onto a finite number N of coordinates, defining
a “truncated” nonnegative supermartingale M (N)

t
. Secondly, we can make a limiting arugment,

showing M (N)
t

is “essentially” Mt for large values of N .

Proof Sketch for Theorem 1. Let ('n)n�1 be an orthonormal basis for H , and, for any N � 1, let
⇡N denote the projection operator onto HN := span{'1, . . . ,'N}. Note that the projected process
(⇡NSt)t�1 is an H-valued martingale with respect to (Ft)t�0. Further, note that the projected
variance process (⇡NVt⇡>

N
)t�0 satisfies

⇡NVt⇡
>
N

=
tX

s=1

(⇡Nfs)(⇡Nfs)
>.

Since, for any N � 1, HN is a finite-dimensional Hilbert space, it follows from Lemma 1 that the
process (M (N)

t
)t�0 given by

M (N)
t

:=
1q

det(idH + ⇢�1⇡NVt⇡>
N
)
exp

⇢
1

2

���(⇢idH + ⇡NVt⇡
>
N
)�1/2⇡NSt

���
2

H

�
,

is a nonnegative supermartingale with respect to (Ft)t�0. One can check that, for any t � 0,
M (N)

t
����!
N!1

Mt. Thus, Fatou’s Lemma implies

E (Mt | Ft�1) = E
⇣
lim inf
N!1

M (N)
t

| Ft�1

⌘

 lim inf
N!1

E
⇣
M (N)

t
| Ft�1

⌘

 lim inf
N!1

M (N)
t�1

= Mt�1,

which proves the first part of the claim. The second part of the claim follows from applying Fact 4
to the defined nonnegative supermartingale and rearranging. See Appendix B for details. ⌅

The following corollary specializes Theorem 1 (and thus Corollary 3.5 of Abbasi-Yadkori [1]) to
the case where H is a RKHS and ft = k(·, Xt), for all t � 1. In this special case, we can reframe
the above theorem in terms familiar Gram matrix Kt, assuming the quantity is invertible. While
we prefer the simplicity and elegance of working directly in the RKHS H in the sequel, the follow
corollary allows us to present Theorem 1 in a way that is computationally tractable.
Corollary 1. Let us assume the same setup as Theorem 1, and additionally assume that (a)
(H, h·, ·iH) is a RKHS associated with some kernel k, and (b) there is some X -valued (Ft)t�0-
predictable process (Xt)t�1 such that (ft)t�1 = (k(·, Xt))t�1. Then, for any ⇢ > 0 and � 2 (0, 1),
we have that, with probability at least 1� �, simultaneously for all t � 0,

���(Vt + ⇢idH)�1/2St

���
H

 �

vuut2 log

 r
1

�
det(It + ⇢�1Kt)

!
.

If, in addition, the Gram matrix Kt = (k(Xi, Xj))i,j2[t] is invertible, we have the equality

k(It + ⇢K�1
t

)�1/2✏1:tk2 = k(⇢idH + Vt)
�1/2StkH .
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We prove Corollary 1 in Appendix B. With this reframing of Theorem 1, we compare the concen-
tration results of Theorem 1 (and thus Abbasi-Yadkori [1]) to the following, commonly leveraged
result from Chowdhury and Gopalan [5].
Fact 6 (Theorem 1 from Chowdhury and Gopalan [5]). Assume the same setup as Fact 5. Let ⌘ >
0 be arbitrary, and let Kt := (k(Xi, Xj))i,j2[t] be the Gram matrix corresponding to observations
made by time t � 1. Then, with probability at least 1� �, simultaneously for all t � 1, we have

���
�
(Kt + ⌘It)

�1 + It
��1/2

✏1:t
���
2
 �

s

2 log

✓
1

�

p
det ((1 + ⌘)It +Kt)

◆
.

To make comparison with this bound clear, we parameterize the bounds in the above fact in terms of
⌘ > 0 instead of ⇢ > 0 to emphasize the following difference: both sides of the bound presented in
Theorem 1 shrink as ⇢ is increased, whereas both sides of the bound in Fact 6 increase as ⌘ grows.
Thus, increasing ⇢ in Theorem 1 should be seen as decreasing ⌘ in the bound of Chowdhury and
Gopalan [5]. The bounds in Corollary 1 and Fact 6 coincide when ⇢ = 1 and ⌘ # 0 (per Lemma 1 in
Chowdhury and Gopalan [5]), but are otherwise not equivalent for other choices of ⇢ and ⌘.

We believe Theorem 1 and Corollary 3.5 of Abbasi-Yadkori [1] to be signficantly more usable than
the result of Chowdhury and Gopalan [5] for several reasons. First, the aforementioned bounds
directly extend the method of mixtures (in particular, Fact 5) to potentially infinite-dimensional
Hilbert spaces. This similarity in form allows us to leverage existing analysis of Abbasi-Yadkori
et al. [2] to prove our regret bounds, with only slight modifications. This is in contrast to the more
cumbersome regret analysis that leverages Fact 6, which is not only more difficult to follow, but also
obtains inferior, sometimes super-linear regret guarantees.

Second, we note that Theorem 1 provides a bound that has a simple dependence on ⇢ > 0. In
more detail, directly as a byproduct of the simplified bounds, Theorem 2 offers a regret bound that
can readily be tuned in terms of ⇢. Due to their use of a “double mixture” technique in proving
Fact 6, Chowdhury and Gopalan [5] essentially wind up with a nested, doubly-regularized matrix
((Kt + ⌘It)�1 + It)�1/2 with which they normalize the residuals ✏1:t. In particular, this more
complicated normalization make it difficult to understand how varying ⌘ impacts regret guarantees,
which we find to be essential for proving improved regret guarantees.

We note that the central bound discussed in this section does not provide an improvement in depen-
dence on maximum information gain in the sense hypothesized by Vakili et al. [33]. In particular, the
authors hypothesized the possibility of shaving a p

�T multiplicative factor off of self-normalized
concentration inequalities in RKHS’s. This was shown in a recent work (see Lattimore [18]) to be
impossible in general. Instead, Theorem 1 and Corollary 3.5 of Abbasi-Yadkori [1] give one access
to a family of bounds parameterized by the regularization parameter ⇢ > 0. As will be seen in the
sequel, by optimizing over this parameter, one can obtain significant improvements in regret.

4 An Improved Regret Analysis of GP-UCB

In this section, we provide the second of our main contributions, which is an improved regret analysis
for the GP-UCB algorithm. We provide a description of GP-UCB in Algorithm 1. While we state the
algorithm directly in terms of quantities in the RKHS H , these quantities can be readily converted to
those involving Gram matrices or Gaussian processes for those who prefer that perspective [5, 38].

As seen in Section 3, by carefully extending the “method of mixtures” technique (originally by
Robbins) of Abbasi-Yadkori et al. [2], Abbasi-Yadkori [1] and de la Peña et al. [7, 8] to Hilbert
spaces, we can construct self-normalized concentration inequalities that have simple dependence on
the regularization parameter ⇢. These simplified bounds, in conjunction with information about the
eigendecay of the kernel k [32], can be combined to carefully choose ⇢ to obtain improved regret.
We now present our main result.
Theorem 2. Let T > 0 be a fixed time horizon, ⇢ > 0 a regularization parameter, and assume
Assumptions 2 and 1 hold. Let � 2 (0, 1), and for t � 1 define

Ut := �

s

2 log

✓
1

�

p
det(idH + ⇢�1Vt)

◆
+ ⇢1/2D.
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Algorithm 1 Gaussian Process Upper Confidence Bound (GP-UCB)
Input: Regularization parameter ⇢ > 0, norm bound D, confidence bounds (Ut)t�1, and time

horizon T .
Set V0 := 0, f0 := 0, E0 := {f 2 H : kfkH  D}
for t = 1, . . . , T do

Let (Xt, eft) := argmaxx2X ,f2Et�1hf, k(·, x)iH
Play action Xt and observe reward Yt := f⇤(Xt) + ✏t
Set Vt := Vt�1 + k(·, Xt)k(·, Xt)> and ft := (Vt + ⇢idH)�1�>

t
Y1:t

Set Et :=
�
f 2 H :

��(Vt + ⇢idH)1/2(ft � f)
��
H

 Ut

 

Then, with probability at least 1 � �, the regret of Algorithm 1 run with parameters ⇢, (Ut)t�1, D
satisfies

RT = O
⇣
�T (⇢)

p
T +

p
⇢�T (⇢)T

⌘
,

where in the big-Oh notation above we treat �, D,�, B, and L as being held constant. If the kernel k
experiences (C,�)-polynomial eigendecay for some C > 0 and � > 1, taking ⇢ = O(T

1
1+� ) yields

RT = eO
⇣
T

3+�
2+2�

⌘
2, which is always sub-linear in T .

While we present the above bound with a fixed time-horizon, it can be made anytime by carefully
applying a standard doubling argument (see Lattimore and Szepesvári [19], for instance). We spe-
cialize the above theorem to the case of the Matérn kernel in the following corollary.

Corollary 2. Definition 3 states that the Matérn kernel with smoothness ⌫ > 1/2 in dimension d
experiences (C, 2⌫+d

d
)-eigendecay, for some constnat C > 0. Thus, GP-UCB obtains a regret rate

of RT = eO
⇣
T

⌫+2d
2⌫+2d

⌘
.

We note that our regret analysis is the first to show that GP-UCB attains sublinear regret for general
kernels experiencing polynomial eigendecay. Of particular import is that Corollary 2 of Theorem 2
yields the first analysis of GP-UCB that implies sublinear regret for the Matérn kernel under general
settings of ambient dimension d and smoothness ⌫. A recent result by Janz [16], using a uniform
lengthscale argument, demonstrates that GP-UCB obtains sublinear regret for the specific case of
the Matérn family when the parameter ⌫ and dimension d satisfy a uniform boundedness condition
independent of scale. Our results are (a) more general, holding for any kernel exhibiting polynomial
eigendecay, (b) don’t require checking uniform boundedness independent of scale condition, and
(c) follow from a simple regularization based argument. In particular, the arguments of Janz [16]
require advanced functional analytic and Fourier analytic machinery.

We note that our analysis does not obtain optimal regret, as the theoretically interesting but computa-
tionally cumbersome SupKernelUCB algorithm [25, 34] obtains a slightly improved regret bound of
eO
⇣
T

�+1
2�

⌘
for (C,�)-polynomial eigendecay and eO

⇣
T

⌫+d
2⌫+d

⌘
for the Matérn kernel with smooth-

ness ⌫ in dimension d. Due to the aforementioned result of Lattimore [18], which shows that im-
proved dependence on maximum information gain cannot be generally obtained in Hilbert space
concentration, we believe further improvements on regret analysis for GP-UCB may not possible.

To wrap up this section, we provide a proof sketch for Theorem 2. The entire proof, along with full
statements and proofs of the technical lemmas, can be found in Appendix C.

Proof Sketch for Theorem 2. Letting, for any t 2 [T ], the “instantaneous regret” be defined as
rt := f⇤(x⇤)� f⇤(Xt), a standard argument yields that, with probability at least 1� �, simultane-
ously for all t 2 [T ],

rt  2Ut�1

���(⇢idH + Vt�1)
�1/2k(·, Xt)

���
H

.

2The notation eO suppresses multiplicative, poly-logarithmic factors in T
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A further standard argument using Cauchy-Schwarz and an elliptical potential argument yields

RT =
TX

t=1

rt  UT

p
2T log det(idH + ⇢�1VT )

=

 
�

s

2 log

✓
1

�

p
det(idH + ⇢�1VT )

◆
+ ⇢1/2D

!
p

2T log det(idH + ⇢�1VT )


⇣
�
p
2 log(1/�) + �

p
2�T (⇢) + ⇢1/2D

⌘p
4T�T (⇢) = O

⇣
�T (⇢)

p
T +

p
⇢�T (⇢)T

⌘
,

which proves the first part of the claim. If, additionally, k experiences (C,�)-polynomial eigende-

cay, we know that �T (⇢) = eO
✓⇣

T

⇢

⌘1/�
◆

by Fact 2. Setting ⇢ := O(T
1

1+� ) thus yields

RT = O
⇣
�T (⇢)

p
T +

p
⇢�T (⇢)T

⌘
= eO

⇣
T

3+�
2+2�

⌘
,

proving the second part of the claim.

⌅

5 Conclusion

In this work, we present an improved analysis for the GP-UCB algorithm in the kernelized ban-
dit problem. We provide the first analysis showing that GP-UCB obtains sublinear regret when
the underlying kernel k experiences polynomial eigendecay, which in particular implies sublinear
regret rates for the practically relevant Matérn kernel. In particular, we show GP-UCB obtains re-
gret eO

⇣
T

3+�
2+2�

⌘
when k experiences (C,�)-polynomial eigendecay, and regret eO

⇣
T

⌫+2d
2⌫+2d

⌘
for the

Matérn kernel with smoothness ⌫ in dimension d.

Our contributions are twofold. First, we show the importance of finding the “right” concentration
inequality for tackling problems in online learning — in this case the correct bound being a self-
normalized inequality originally due to Abbasi-Yadkori [1]. We provide an independent proof of a
result equivalent to Corollary 3.5 of Abbasi-Yadkori [1] in Theorem 1, and hope that our simplified,
truncation-based analysis will make the result more accessible to researchers working on problems
in kernelized learning. Second, we demonstrate the importance of regularization in the kernelized
bandit problem. In particular, since the smoothness of the kernel k governs the hardness of learning,
by regularizing in proportion to the rate of eigendecay of k, one can obtain significantly improved
regret bounds.

A shortcoming of our work is that, despite obtaining the first generally sublinear regret bounds for
GP-UCB, our rates are not optimal. In particular, there are discretization-based algorithms, such as
SupKernelUCB [34], which obtain slightly better regret bounds of eO

⇣
T

1+�
2�

⌘
for (C,�)-polynomial

eigendecay. We hypothesize that the vanilla GP-UCB algorithm, which involves constructing confi-
dence ellipsoids directly in the RKHS H , cannot obtain this rate.

The common line of reasoning [33] is that because the Lin-UCB (the equivalent algorithm in Rd)
obtains the optimal regret rate of eO(d

p
T ) in the linear bandit problem setting, then GP-UCB should

attain optimal regret as well. In the linear bandit setting, there is no subtlety between estimating the
optimal action and unknown slope vector, as these are one and the same. In the kernel bandit setting,
estimating the function and optimal action are not equivalent tasks. In particular, the former serves
in essence as a nuisance parameter in estimating the latter: tight estimation of unknown function
under the Hilbert space norm implies tight estimation of the optimal action, but not the other way
around. Existing optimal algorithms are successful because they discretize the input domain, which
has finite metric dimension [26], and make no attempts to estimate the unknown function in RKHS
norm. Since compact sets in RKHS’s do not, in general, have finite metric dimension [35], this
makes estimation of the unknown function a strictly more difficult task. In fact, recent work by
Lattimore [18] demonstrate that self-normalized concentration in RKHS’s, in general, cannot exhibit
improved dependence on maximum information gain. This further supports our hypothesis on the
further unimprovability of the regret analysis of GP-UCB past the improvements made in this paper.

9



6 Acknowledgements

AR acknowledges support from NSF DMS-2310718 and NSF IIS-2229881. ZSW and JW were
supported in part by the NSF CNS2120667, a CyLab 2021 grant, a Google Faculty Research Award,
and a Mozilla Research Grant. JW also acknowledges support from NSF GRFP grants DGE1745016
and DGE2140739.

We also would like to thank Xingyu Zhou and Johannes Kirschner for independently bringing to
our attention the result from Abbasi-Yadkori [1] (Corollary 3.5) on self-normalized concentration in
Hilbert spaces which is essentially equivalent to Theorem 1. We have rewritten the paper in a way
that emphasizes the importance of this result and provides proper attribution to the original author.

References
[1] Yasin Abbasi-Yadkori. Online learning for linearly parametrized control problems. 2013.

[2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
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[17] David Janz, David Burt, and Javier González. Bandit optimisation of functions in the matérn
kernel RKHS. In International Conference on Artificial Intelligence and Statistics, pages
2486–2495. PMLR, 2020.

10



[18] Tor Lattimore. A lower bound for linear and kernel regression with adaptive covariates. In The
Thirty Sixth Annual Conference on Learning Theory, pages 2095–2113. PMLR, 2023.

[19] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[20] Peter D Lax. Functional Analysis, volume 55. John Wiley & Sons, 2002.

[21] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Confer-
ence on World Wide web, pages 661–670, 2010.

[22] Yishay Mansour, Aleksandrs Slivkins, and Vasilis Syrgkanis. Bayesian incentive-compatible
bandit exploration. Operations Research, 68(4):1132–1161, 2020.

[23] Aditya Mate, Jackson Killian, Haifeng Xu, Andrew Perrault, and Milind Tambe. Collapsing
bandits and their application to public health intervention. Advances in Neural Information
Processing Systems, 33:15639–15650, 2020.

[24] Gabriele Santin and Robert Schaback. Approximation of eigenfunctions in kernel-based
spaces. Advances in Computational Mathematics, 42(4):973–993, 2016.

[25] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy
Gaussian process bandit optimization. In Conference on Learning Theory, pages 1723–1742.
PMLR, 2017.

[26] Shubhanshu Shekhar and Tara Javidi. Gaussian process bandits with adaptive discretization.
Electronic Journal of Statistics, 12(2):3829 – 3874, 2018.

[27] Shubhanshu Shekhar and Tara Javidi. Multi-scale zero-order optimization of smooth functions
in an RKHS. 2022 IEEE International Symposium on Information Theory (ISIT), pages 288–
293, 2020.

[28] Shubhanshu Shekhar and Tara Javidi. Instance dependent regret analysis of kernelized bandits.
In International Conference on Machine Learning, pages 19747–19772. PMLR, 2022.

[29] Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1–286, 2019.
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