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Abstract

In this paper we revisit the fixed-confidence identification of the Pareto optimal
set in a multi-objective multi-armed bandit model. As the sample complexity to
identify the exact Pareto set can be very large, a relaxation allowing to output
some additional near-optimal arms has been studied. In this work we also tackle
alternative relaxations that allow instead to identify a relevant subset of the Pareto
set. Notably, we propose a single sampling strategy, called Adaptive Pareto Explo-
ration, that can be used in conjunction with different stopping rules to take into
account different relaxations of the Pareto Set Identification problem. We analyze
the sample complexity of these different combinations, quantifying in particular
the reduction in sample complexity that occurs when one seeks to identify at most
k Pareto optimal arms. We showcase the good practical performance of Adaptive
Pareto Exploration on a real-world scenario, in which we adaptively explore several
vaccination strategies against Covid-19 in order to find the optimal ones when
multiple immunogenicity criteria are taken into account.

1 Introduction

In a multi-armed bandit model, an agent sequentially collects samples from several unknown distri-
butions, called arms, in order to learn about these distributions (pure exploration), possibly under
the constraint to maximize the samples collected, viewed as rewards (regret minimization). These
objectives have been extensively studied for different types of univariate arms distributions [21]. In
this paper, we consider the less common setting in which arms are multi-variate distributions. We
are interested in the Pareto Set Identification (PSI) problem. In this pure exploration problem, the
agent seeks to identify the arms that are (Pareto) optimal, i.e. such that their expected values for all
objectives are not uniformly worse than those of another arm.

We formalize this as a fixed-confidence identification problem: in each round t the agent selects an arm
At using an adaptive sampling rule and observes a sample Xt 2 RD from the associated distribution.
It further uses an adaptive stopping rule ⌧ to decide when to stop sampling and output a set of arms bS⌧

which is her guess for (an approximation of) the true Pareto set S?. Given a risk parameter � 2 (0, 1),
this guess should be correct with high probability, e.g. satisfy P(bS⌧ = S

?
) � 1� � for exact Pareto

set identification, while requiring a small sample complexity ⌧ . This generalizes the well-studied
fixed-confidence Best Arm Identification (BAI) problem [8, 15, 10] to multiple objectives.
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Our motivation to study multi-objective adaptive identification stems from the design of adaptive early-
phase clinical trials. In phase I/II trials, the effects of a molecule in humans are explored, and several
biological endpoints may be assessed at the same time as indicative markers of efficacy. In particular,
in the context of vaccine development, early-phase trials usually assess multiple immunogenicity
endpoints (i.e. various markers of the effects of the vaccine on the immune system, such as different
facets of antibody responses or other immune parameters). In the absence of a known correlate of
protection during early clinical development, these endpoints may not have a clear a priori hierarchy,
may not all be correlated, which makes an examination of the Pareto set of different vaccinal strategies
particularly relevant. In addition, given the availability of various vaccine platforms (such as mRNA
vaccines, viral-vector vaccines, protein vaccines), as exemplified by Covid-19 vaccines, there may
be a need to adaptively screen the various resulting vaccine strategies to select the most promising
ones. Apart from clinical trials, active Pareto Set Identification can be meaningful in many real-word
contexts, and we refer the reader to the various examples given by [28], such as in hardware or
software design. Other applications include A/B/n testing for marketing or online recommender
systems in which it is common to jointly optimize multiple (possibly conflicting) objectives such
as user behavioral metrics (e.g. clicks, streams, dwell time, etc), supplier exposure objectives (e.g.
diversity) and platform centric objectives (e.g. promotions) [22].

For many applications, the sample complexity of exact PSI can be prohibitive, either when there are
many close to optimal arms or when the Pareto set is very large, and different relaxations have been
considered in the literature [4, 27]. Going back to our motivation, in an adaptive trial that aims at
pre-selecting a certain number of treatments or vaccine strategies for further investigations in clinical
trials, practical constraints (the cost and feasibility of the trials) impose a constraint on the maximal
number of interesting arms that can be identified. This motivates the introduction of a new setting
where the agent is asked to identify at most k Pareto optimal arms. Interestingly the sampling rule
that we propose for this setting can be used to solve (some generalizations of) other relaxations
considered in the literature.

Related work The work most closely related to ours is that of Auer et al. [4], who propose a
relaxation, which we refer to as "1-PSI: their algorithm returns a set bS that contains w.h.p. all the
Pareto optimal arms and possibly some sub-optimal arms, which when increased by "1 coordinate-
wise become Pareto optimal. For arms that have sub-Gaussian marginals, they provide an instance-
dependent sample complexity bound scaling with some notion of sub-optimality gap for each arm.
The work of Zaluaga et al. [28, 27] studies a structured variant of fixed-confidence PSI in which the
means are regular functions of arms’ descriptors. They use Gaussian process modeling and obtain
worse-case sample complexity bounds. In particular [27] considers the identification of an "-cover
of the Pareto set, which is a representative subset of the (")-Pareto set that will be related to our
("1, "2)-PSI criterion. The algorithms of [4] and those of [28, 27] in the unstructured setting1 have the
same flavor: they sample uniformly from a set of active arms and remove arms that have been found
sub-optimal (or not representative). Auer et al.[4] further adds an acceptation mechanism to stop
sampling some of the arms that have been found (nearly-)optimal and are guaranteed not to dominate
an arm of the active set. In this paper, we propose instead a more adaptive exploration strategy, which
departs from such accept/reject mechanisms and is suited for different types of relaxation, including
our novel k-relaxation.

Adaptive Pareto Exploration (APE) leverages confidence intervals on the differences of arms’ coor-
dinates in order to identify a single arm to explore, in the spirit of the LUCB [15] or UGapEc [9]
algorithms for Top-m identification in (one-dimensional) bandit models. These algorithms have been
found out to be preferable in practice to their competitors based on uniform sampling and eliminations
[19], an observation that will carry over to APE. Besides the multi-dimensional observations, we
emphasize that a major challenge of the PSI problem with respect to e.g. Top m identification is that
the number of arms to identify is not known in advance. Moreover, when relaxations are considered,
there are multiple correct answers. In the one-dimensional settings, finding optimal algorithms in
the presence of multiple correct answers is notoriously hard as discussed by the authors of [5], and
their lower-bound based approach becomes impractical in our multi-dimensional setting. Finally, we
remark that the k-relaxation can be viewed as an extension of the problem of identifying any k-sized
subset out of the best m arms in a standard bandit [25].

1PAL relies on confidence intervals that follow from Gaussian process regression, but can also be instantiated
with simpler un-structured confidence intervals as those used in our work and in Auer’s

2



Beyond Pareto set identification, other interesting multi-objective bandit identification problems
have been studied in the literature. For example [6] propose an algorithm to identify some particular
arms in the Pareto set through a scalarization technique [23]. The idea is to turn the multi-objective
pure-exploration problem into a single-objective one (unique optimal arm) by using a real-valued
preference function which is only maximized by Pareto optimal arms (see e.g [23] for some examples
of these functions). In practice, a family of those functions can be used to identify many arms of
the Pareto set but it is not always possible to identify the entire Pareto set using this technique (see
e.g [7] for weighted sum with a family of weights vectors). In a different direction, the authors of
[16] introduce the feasible arm identification problem, in which the goal is to identify the set of arms
whose mean vectors belong to a known polyhedron P ⇢ RD. In a follow up work [17], they propose
a fixed-confidence algorithm for finding feasible arms that further maximize a given weighted sum
of the objectives. In clinical trials, this could be used to find treatments maximizing efficacy (or a
weighted sum of different efficacy indicators), under the constraint that the toxicity remains below a
threshold. However, in the presence of multiple indicators of biological efficacy, choosing the weights
may be difficult, and an examination of the Pareto set could be more suitable. Finally, some papers
consider extensions of the Pareto optimality condition. The authors of [1] tackle the identification of
the set of non-dominated arms of any partial order defined by an RD polyhedral ordering cone (the
usual Pareto dominance corresponds to using the cone defined by the positive orthant RD

+
), and they

provide worst-case sample complexity in the PAC setting. The work of [3] studies the identification
of the set of non-dominated elements in a partially ordered set under the dueling bandit setting, in
which the observations consists in pairwise comparison between arms.

Outline and contributions First, we formalize in Section 2 different relaxations of the PSI problem:
"1-PSI, as introduced by [4], "1, "2-PSI, of which a particular case was studied by [27] and "1-PSI-k,
a novel relaxation that takes as input an upper bound k on the maximum number of "1-optimal
arms that can be returned. Then, we introduce in Section 3 Adaptive Pareto Exploration, a simple,
adaptive sampling rule which can simultaneously tackle all three relaxations, when coupled with an
appropriate stopping rule that we define for each of them. In Section 4, we prove high-probability
upper bounds on the sample complexity of APE under different stopping rules. For "1-PSI, our bound
slightly improves upon the state-of-the-art. Our strongest result is the bound for "1-PSI-k, which
leads to a new notion of sub-optimality gap, quantifying the reduction in sample complexity that is
obtained. Then, Section 5 presents the result of a numerical study on synthetic datasets, one of them
being inspired by a Covid-19 vaccine clinical trial. It showcases the good empirical performance of
APE compared to existing algorithms, and illustrates the impact of the different relaxations.

2 Problem Setting

In this section, we introduce the Pareto Set Identification (PSI) problem and its relaxations. Fix
K,D 2 N?. Let ⌫1, . . . , ⌫K be distributions over RD with means µ1, . . . ,µK

2 RD
. Let A :=

[K] := {1, . . . ,K} denote the set of arms. Let ⌫ := (⌫1, . . . , ⌫K) and X := (µ1, . . . ,µK
). We use

boldfaced symbols for RD elements. Letting X 2 RD
, u 2 R, for any d 2 {1, . . . , D}, Xd denotes

the d-th coordinate of X and X+ u := (X
1
+ u, . . . ,X

D
+ u). In the sequel, we will assume that

⌫1, . . . , ⌫K have 1-subgaussian marginals 2.
Definition 1. Given two arms i, j 2 A, i is weakly (Pareto) dominated by j (denoted by µ

i
 µ

j
)

if for any d 2 {1, . . . , D}, µd

i
 µ

d

j
. The arm i is (Pareto) dominated by j (µ

i
� µ

j
or i � j) if i

is weakly dominated by j and there exists d 2 {1, . . . , D} such that µd

i
< µ

d

j
. The arm i is strictly

(Pareto) dominated by j (µ
i
� µ

j
or i � j) if for any d 2 {1, . . . , D}, µd

i
< µ

d

j
.

For " 2 RD

+
, the "-Pareto set S?

" (X ) is the set of "-Pareto optimal arms, that is:
S
?

" (X ) := {i 2 A s.t @j 2 A : µ
i
+ " � µ

j
}.

In particular, S?

0(X ) is called the Pareto set and we will simply write S?
(X ) to denote S?

0(X ). When
it is clear from the context, we write S

? (or S?

" ) to denote S
?
(X ) (or S?

" (X )). By abuse of notation
we write S

?

"
when " 2 R+ to denote S

?

" , with " := (", . . . , ").

In each round t = 1, 2, . . . , the agent chooses an arm At and observes an independent draw Xt ⇠ ⌫At

with E(XAt) = µ
At

. We denote by P⌫ the law of the stochastic process (Xt)t�1 and by E⌫ , the

2A random variable X is ��subgaussian if for any � 2 R, E(exp(�(X � E(X)))  exp(�
2�2

2 ).
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expectation under P⌫ . Let Ft := �(A1,X1, . . . , At,Xt) the �-algebra representing the history of
the process. An algorithm for PSI consists in : i) a sampling rule which determines which arm to
sample at time t based on history up to time t � 1, ii) a stopping rule ⌧ which is a stopping time
w.r.t the filtration (Ft)t�1 and iii) a recommendation rule which is a F⌧ -measurable random set bS⌧

representing the guess of the learner. The goal of the learner is to make a correct guess with high
probability, using as few samples ⌧ as possible. Before formalizing this, we introduce the different
notion of correctness considered in this work, depending on parameters "1 �, "2 � 0 and k 2 [K].
Our first criterion is the one considered by [4].

Definition 2. bS ⇢ A is correct for "1-PSI if S?
⇢ bS ⇢ S

?

"1
.

To introduce our second criterion, we need the following definition.
Definition 3. Let "1, "2 � 0. A subset S ⇢ A is an ("1, "2)-cover of the Pareto set if : S ⇢ S

?

"1
and

for any i /2 S either i /2 S
? or 9j 2 S such that µ

i
� µ

j
+ "2.

The "-accurate set of [27] is a particular case of ("1, "2)-cover for which "1 = "2 = ". Allowing
"1 6= "2 generalizes the notion of "-correct set and can be useful, e.g., in scenarios when we want to
identify the exact Pareto set (setting "1 = 0) but allow some optimal arms to be discarded if they are
too close (parameterized by "2) to another optimal arm already returned. We note however that the
sparse cover of [4] is an (", ")-cover with and additional condition that the arms in the returned set
should not be too close to each over. Identifying a sparse cover from samples requires in particular to
identify S

?

"1
hence it can not be seen as a relaxation of "1-PSI.

Definition 4. bS ⇢ A is correct for ("1, "2)-PSI if it is an ("1, "2)-cover of the Pareto set.

Definition 5. bS ⇢ A is correct for "1-PSI-k if either i) |bS|= k and bS ⇢ S
?

"1
or ii) |bS|< k and

S
?
⇢ bS ⇢ S

?

"1
holds.

Given a specified objective ("1-PSI, ("1, "2)-PSI or "1-PSI-k), and a target risk parameter � 2 (0, 1),
the goal of the agent is to build a �-correct algorithm, that is to guarantee that with probability larger
than 1� �, her guess bS⌧ is correct for the given objective, while minimizing the number of samples ⌧
needed to make the guess, called the sample complexity.

We now introduce two important quantities to characterize the (Pareto) optimality or sub-optimality
of the arms. For any two arms i, j, we let

m(i, j) := min
1dD

(µ
d

j
� µ

d

i
), and M(i, j) := max

1dD

(µ
d

i
� µ

d

j
),

which have the following interpretation. If i � j, m(i, j) is the minimal quantity ↵ � 0 that should
be added component-wise to µ

i
so that µ

i
+ ↵ ⌃ µ

j
, ↵ := (↵, . . . ,↵). Moreover, m(i, j) > 0

if and only if i � j. Then, for any arms i, j, if i ⌃ j, M(i, j) is the minimum quantity ↵
0 such

µ
i
 µ

j
+↵0, ↵0

:= (↵
0
, . . . ,↵

0
). We remark that M(i, j) < 0 if and only if i � j. Our algorithms,

presented in the next section, rely on confidence intervals on these quantities.

3 Adaptive Pareto Exploration

We describe in this section our sampling rule, Adaptive Pareto Exploration, and present three stopping
and recommendation rules to which it can be combined to solve each of the proposed relaxation.
Let Tk(t) :=

P
t�1

s=1
(As = k) be the number of times arm k has been pulled up to round t and

bµ
k
(t) := Tk(t)

�1
P

Tk(t)

s=1
Xk,s the empirical mean of this arm at time t, where Xk,s denotes the s-th

observation drawn i.i.d from ⌫k. For any arms i, j 2 A, we let

m(i, j, t) := min
d

(bµd

j
(t)� bµd

i
(t)) and M(i, j, t) := max

d

(bµd

i
(t)� µ

d

j
(t)).

The empirical Pareto set is defined as

S(t) := {i 2 A : @j 2 A : bµ
i
(t) � bµ

j
(t)},

= {i 2 A : 8j 2 A\{i},M(i, j, t) > 0} .
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3.1 Generic algorithm(s)

Adaptive Pareto Exploration relies on a lower/upper confidence bound approach, similar to single-
objective BAI algorithms like UGapEc [9], LUCB[15] and LUCB++ [26]. These three algorithms
identify in each round two contentious arms: bt: a current guess for the optimal arm (defined as
the empirical best arm or the arm with the smallest upper bound on its sub-optimality gap), ct: a
contender of this arm; the arm which is the most likely to outperform bt (in all three algorithms, it
is the arm with the largest upper confidence bound in [K]\{bt}). Then, either both arms are pulled
(LUCB, LUCB++) or the least explored among bt and ct is pulled (UGapEc). The originality of our
sampling rule lies in how to appropriately define bt and ct for the multi-objective setting. To define
those, we suppose that there exists confidence intervals [Ld

i,j
(t, �), U

d

i,j
(t, �)] on the difference of

expected values for each pair of arms (i, j) and each objective d 2 D, such that introducing

Et :=

K\

i=1

\

j 6=i

D\

d=1

�
L
d

i,j
(t, �)  µ

d

i
� µ

d

j
 U

d

i,j
(t, �)

 
and E =

1\

t=1

Et, (1)

we have P(E) � 1��. Concrete choices of these confidence intervals will be discussed in Section 3.2.

To ease the notation, we drop the dependency in � in the confidence intervals and further define

M
�
(i, j, t) := max

d

L
d

i,j
(t) and M

+
(i, j, t) := max

d

U
d

i,j
(t) (2)

m
�
(i, j, t) := �M

+
(i, j, t) and m

+
(i, j, t) := �M

�
(i, j, t). (3)

Lemma 1. For any round t � 1, if Et holds, then for any i, j 2 A, M�
(i, j, t)  M(i, j) 

M
+
(i, j, t) and m

�
(i, j, t)  m(i, j)  m

+
(i, j, t).

Noting that S?

"1
= {i 2 A : 8j 6= i,M(i, j) + "1 > 0}, we define the following set of arms that are

likely to be "1-Pareto optimal:

OPT
"1(t) := {i 2 A : 8j 2 A\{i},M

�
(i, j, t) + "1 > 0}.

Sampling rule In round t, Adaptive Pareto Exploration samples at, the least pulled arm among
two candidate arms bt and ct given by

bt := argmax

i2A\OPT"1 (t)

min
j 6=i

M
+
(i, j, t),

ct := argmin
j 6=bt

M
�
(bt, j, t)

The intuition for their definition is the following. Letting i be a fixed arm, note that M(i, j) > 0

for some j, if and only if there exists a component d such that µd

i
> µ

d

j
i.e i is not dominated by

j. Moreover, the larger M(i, j), the more i is non-dominated by j in the sense that there exists d
such that µd

i
� µ

d

j
. Therefore, i is strictly optimal if and only if for all j 6= i, M(i, j) > 0 i.e

↵i := minj 6=i M(i, j) > 0. And the larger ↵i, the more i looks optimal in the sense that for each arm
j 6= i, there exists a component dj for which i is way better than j. As the ↵i are unknown, we define
bt as the maximizer of an optimistic estimate of the ↵i’s. We further restrict the maximization to arms
for which we are not already convinced that they are optimal (by Lemma 1, the arms in OPT

"1(t)

are (nearly) Pareto optimal on the event E). Then, we note that for a fixed arm i, M(i, j) < 0 if and
only if i is strictly dominated by j. And the smaller M(i, j), the more j is close to dominate i (or
largely dominates it): for any component d, µd

i
� µ

d

j
is small (or negative). Thus, for a fixed arm i,

argmin
j 6=i

M(i, j) can be seen as the arm which is the closest to dominate i (or which dominates it
by the largest margin). By minimizing a lower confidence bound on the unknown quantity M(bt, j),
our contender ct can be interpreted as the arm which is the most likely to be (close to) dominating bt.
Gathering information on both bt and ct can be useful to check whether bt can indeed be optimal.

Interestingly, we show in Appendix E that for D = 1, our sampling rule is close but not identical to
the sampling rules used by existing confidence-based best arm identification algorithms.
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Stopping condition Recommendation Objective
⌧"1 Z

"1
1
(t) > 0 ^ Z

"1
2
(t) > 0 O(⌧"1) "1-PSI

⌧"1,"2 Z
"1,"2
1

(t) > 0 ^ Z
"1,"2
2

(t) > 0 OPT
"1(⌧"1,"2) ("1, "2)-PSI

⌧
k

|OPT
"1(t)|� k OPT

"1(⌧
k
) "1-PSI-k

Table 1: Stopping conditions and associated recommendation

Stopping and recommendation rule(s) Depending on the objective, Adaptive Pareto Exploration
can be plugged in with different stopping rules, that are summarized in Table 1 with their associated
recommendations. To define those, we define for all i 2 A, "1, "2 � 0,

g
"2
i
(t) := max

j 6=i

m
�
(i, j, t) + "2 {j 2 OPT

"1(t)} and h
"1
i
(t) := min

j 6=i

M
�
(i, j, t) + "1.

and let gi(t) := g
0

i
(t). Introducing

Z
"1
1
(t) := min

i2S(t)

h
"1
i
(t), and Z

"1
2
(t) := min

i2S(t)c
max(gi(t), h

"1
i
(t)),

for "1-PSI, our stopping rule is ⌧"1 := inf{t � K : Z
"1
1
(t) > 0 ^ Z

"1
2
(t) > 0} and the associated

recommendation is O(⌧"1) where

O(t) := S(t) [ {i 2 S(t)
c
: @j 6= i : m

�
(i, j, t) > 0}

consists of the current empirical Pareto set plus some additional arms that have not yet been formally
identified as sub-optimal. Those arms should be ("1)-Pareto optimal.

For ("1, "2)-PSI we define a similar stopping rule ⌧"1,"2 where the stopping statistics are respectively
replaced with

Z
"1,"2
1

(t) := min
i2S(t)

max(g
"2
i
(t), h

"1
i
(t)) and Z

"1,"2
2

(t) := min
i2S(t)c

max(g
"2
i
(t), h

"1
i
(t))

with the convention min; = +1, and the recommendation is OPT"1(⌧"1,"2).

To tackle the "1-PSI-k relaxation, we propose to couple ⌧"1 with an additional stopping condition
checking whether OPT

"1(t) already contains k arms. That is, we stop at ⌧k
"1

:= min
�
⌧"1 , ⌧

k
�

where
⌧
k
:= inf{t � K : |OPT

"1(t)| � k} with associated recommendation OPT
"1(⌧

k
). Depending of

the reason for stopping (⌧"1 or ⌧k), we follow the corresponding recommendation.
Lemma 2. Assume E holds. For "1-PSI (resp. ("1, "2)-PSI , "1-PSI-k), Adaptive Pareto Exploration
combined with the stopping rule ⌧"1 (resp. ⌧"1,"2 , resp. ⌧k

"1
) outputs a correct subset.

Remark 1. We decoupled the presentation of the sampling rule to that of the “sequential testing”
aspect (stopping and recommendation). We could even go further and observe that multiple tests
could actually be run in parallel, for free. If we collect samples with APE (which only depends on "1),
whenever one of the three stopping conditions given in Table 1 triggers, for any values of "2 or k, we
can decide to stop and make the corresponding recommendation or continue and wait for another

“more interesting” stopping condition to be satisfied. If E holds, a recommendation made at any such
time will be correct for the objective associated to the stopping criterion (third column in Table 1).

3.2 Our instantiation

We propose to instantiate the algorithms with confidence interval on the difference of pair of arms. For
any pair i, j 2 A, we define a function �i,j such that for any d 2 [D], Ud

i,j
(t) = bµd

i
(t)�bµd

j
(t)+�i,j(t)

and L
d

i,j
(t) = bµd

i
(t)� bµd

j
(t)� �i,j(t). We take from [20] the following confidence bonus for time-

uniform concentration:

�i,j(t) := 2

vuuut

0

@Cg

 
log
�
K1
�

�

2

!
+

X

a2{i,j}

log(4 + log(Ta(t)))

1

A

0

@
X

a2{i,j}

1

Ta(t)

1

A, (4)

where K1 := K(K � 1)D/2 and C
g
⇡ x + log(x) is a calibration function. They result in the

simple expressions M±
(i, j, t) = M(i, j, t) ± �i,j(t) and m

±
(i, j, t) = m(i, j, t) ± �i,j(t). As an
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Algorithm 1: "1-APE-k: Adaptive Pareto Exploration for "1-PSI-k
Data: parameter "1 � 0, k 2 [K]

initialize : sample each arm once, set t = K, Ti(K) = 1 for any i 2 A
for t = K + 1, . . . , do

S(t) = {i 2 A : 8j 2 A\{i},M(i, j, t) > 0};
OPT

"1(t) = {i 2 A : 8j 2 A\{i},M(i, j, t)� �i,j(t) + "1 > 0};
if |OPT

"1(t)|� k then
break and output OPT

"1(t)

if Z"1
1
(t) > 0 ^ Z

"1
2
(t) > 0 then

break and output O(t) = S(t)
S

{i 2 S(t)
c
: @j 6= i : m(i, j, t)� �i,j(t) > 0}

bt := argmax
i2A\OPT"1 (t) minj 6=i [M(i, j, t) + �i,j(t)];

ct := argmin
i 6=bt

[M(bt, j, t)� �bt,j(t)];
sample at := argmin

i2{bt,ct} Ti(t);

example, we state in Algorithm 1 the pseudo-code of APE combined the stopping rule suited for the
k-relaxation of "1-PSI, which we refer to as "1-APE-k.

In Appendix F, we also study a different instantiation based on confidence bounds of the form
Ui,j(t) = Ui(t) � Lj(t) where [Li(t), Ui(t)] is a confidence interval on µi. This is the approach
followed by LUCB for D = 1 and prior work on Pareto identification [4, 27]. In practice we advocate
the use of the pairwise confidence intervals defined above, even if our current analysis does not allow
to quantify their improvement. For the LUCB-like instantiation, we further derive in Appendix F an
upper bound on the expected stopping time of APE for the different stopping rules.

4 Theoretical analysis

In this section, we state our main theorem on the sample complexity of our algorithms and give a
sketch of its proof.

First let us introduce some quantities that are needed to state the theorem. The sample complexity
of the algorithm proposed by [4] for ("1)-Pareto set identification scales as a sum over the arms i
of 1/(�i _ "1)

2 where �i is called the sub-optimality gap of arm i and is defined as follows. For a
sub-optimal arm i /2 S

?
(X ),

�i := max
j2S?

m(i, j),

which is the smallest quantity that should be added component-wise to µ
i

to make i appear Pareto
optimal w.r.t {µ

i
: i 2 A}. For a Pareto optimal arm i 2 S

?
(X ), the definition is more involved:

�i :=

⇢
minj2A\{i} �j if S?

:= {i}

min(�
+

i
, �

�
i
) else,

where
�
+

i
:= min

j2S?\{i}
min(M(i, j),M(j, i)) and �

�
i
:= min

j2A\S?
{(M(j, i))

+
+�j}.

For x 2 R, (x)+ := max(x, 0). We also introduce some additional notion needed to express the
contribution of the k-relaxation. Let 1  k  K. For any arm i, let !i = minj 6=i M(i, j) and define

!
k
:=

k

max
i2A

!i, S
?,k

:=
1...k

argmax
i2A

!i,

with the k-th max and first to k-th argmax operators. Observe that !k
> 0 if and only if |S?

(X )| � k.
Theorem 1. Fix a risk parameter � 2 (0, 1), "1 � 0, let k  K and ⌫ a bandit with 1-subgaussian
marginals. With probability at least 1 � �, "1-APE-k recommends a correct set for the "1-PSI-k
objective and stops after at most

X

a2A

88

e�2
a

log

✓
2K(K � 1)D

�
log

✓
12e

e�a

◆◆
,

samples, where for each a 2 A, e�a := max(�a, "1,!
k
).
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First, when k = K, observing that "1-APE-K provides a �-correct algorithm for "1-PSI, our bound
improves the result of [4] for the "1-PSI problem in terms of constant multiplicative factors and
log log�

�1 terms instead of log�
�2. It nearly matches the lower bound of Auer et al.[4] for

the "1-PSI problem (Theorem 17 therein). It also shows the impact of the k-relaxation on the
sample complexity. In particular, we can remark that for any arm i 2 S

?
\S

?,k, max(�i,!k) = !k.
Intuitively, it says that we shouldn’t pay more than the cost of identifying the k-th optimal arm,
ordered by the !

0
i
s. A similar result has been obtained for the any k�sized subset of the best m

problem [25]. But the authors have shown the relaxation only for the best m arms while our result
shows that even the sub-optimal arms should be sampled less.

In Appendix D, we prove the following lower bound showing that in some scenarios, "1-APE-k is
optimal for "1-PSI-k , up to D log(K) and constant multiplicative terms. We note that for "1-PSI a
lower bound featuring the gaps �a and "1 was already derived by Auer et al. [4].
Theorem 2. There exists a bandit instance ⌫ with |S

?
|= p � 3 such that for k 2 {p, p� 1, p� 2}

any �-correct algorithm for 0-PSI-k verifies

E⌫(⌧�) �
1

D
log

✓
1

�

◆ KX

a=1

1

(�k
a
)2
,

where �
k

a
:= �a + !

k and ⌧� is the stopping time of the algorithm.

In Appendix C, we prove that Theorem 1 without the !
k terms also holds for ("1, "2)-APE. This

does not justifies the reduction in sample complexity when setting "2 > 0 in ("1, "2)-PSI observed in
our experiments but it at least guarantees that the "2-relaxation doesn’t make things worse.

Furthermore, since our algorithm allows "1 = 0, it is also an algorithm for BAI when D = 1, "1 = 0.
We prove in Appendix E that in this case, the gaps �0

i
s matches the classical gaps in BAI [2, 18] and

we derive its sample complexity from Theorem 1 showing that it is similar in theory to UGap [9],
LUCB[15] and LUCB++ [26] but have better empirical performance.

Sketch of proof of Theorem 1 Using Proposition 24 of [20] we first prove that the choice of �i,j

in (4) yields P(E) � 1� � for the good event E defined in (1). Combining this result with Lemma 2,
yields that "1-APE-k is correct with probability at least 1� �.

The idea of the remaining proof is to show that under the event E , if APE has not stopped at the end
of round t, then the selected arm at has not been explored enough. The first lemma showing this is
specific to the stopping rule ⌧

k

"1
used for "1-PSI-k.

Lemma 3. Let "1 � and k 2 [K]. If Et holds and t < ⌧
k

"1
then !

k
 2�at,at(t).

The next two lemmas are more general as they apply to different stopping rules.
Lemma 4. Let "1 � 0. Let ⌧ = ⌧

k

"1
for some k 2 [K] or ⌧ = ⌧"1,"2 for some "2 � 0. If Et holds and

t < ⌧ then �at  2�at,at(t).

Lemma 5. Let "1 � 0 and ⌧ be as in Lemma 4. If Et holds and t < ⌧ then "1  2�at,at(t).

As can be seen in Appendix B, the proofs of these three lemmas heavily rely on the specific definition
of bt and ct. In particular, to prove Lemma 4 and 5, we first establish that when t < ⌧ , any arm j 2 A
satisfies m(bt, j, t)  �bt,j(t). The most sophisticated proof is then that of Lemma 4, which relies on
a case distinction based on whether bt or ct belongs to the set of optimal arms.

These lemmas permit to show that, on Et if t < ⌧
k

"1
then e�at < 2�at,at(t)  2�

Tat (t), where we
define �

n to be the expression of �i,j(t) when Ti(t) = Tj(t) = n. Then we have

⌧
k

"1
{E} 

1X

t=1

X

a2A

n
{at = a} ^

n
e�a  2�

Ta(t)
a

oo



X

a2A

inf

n
n � 2 : e�a > 2�

n

o
. (5)

A careful upper-bounding of the RHS of (5) completes the proof of Theorem 1.
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5 Experiments

We evaluate the performance of Adaptive Pareto Exploration on a real-world scenario and on synthetic
random Bernoulli instances. For a fair comparison, Algorithm 1 of [4], referred to as PSI-Unif-Elim
and APE are both run with our confidence bonuses �i,j(t) on pairs of arms, which considerably
improve single-arm confidence bonuses3. As anytime confidence bounds are known to be conservative,
we use K1 = 1 in (4) instead of its theoretical value coming from a union bound. Still, in all our
experiments, the empirical error probability was (significantly) smaller than the target � = 0.1.

Real-world dataset COV-BOOST [24] is phase 2 trial which was conducted on 2883 participants
to measure the immunogenicity of different Covid-19 vaccines as third dose (booster) in various
combinations of initially received vaccines (first two doses). This resulted in a total of 20 vaccination
strategies being assessed, each of them defined by the vaccines received as first, second and third
dose. The authors have reported the average responses induced by each candidate strategy on cohorts
of participants, measuring several immunogenicity markers. From this study, we extract and process
the average response of each strategy to 3 specific immunogenicity indicators: two markers of
antibody response and one of the cellular response. The outcomes are assumed to have a log-normal
distribution [24]. We use the average (log) outcomes and their variances to simulate a multivariate
Gaussian bandit with K = 20, D = 3. We give in Appendix H.2 some additional details about the
processing of the data, and report the means and variances of each arm. In Appendix H.1 we further
explain how APE can be simply adapted when the marginals distributions of the arms have different
variances. In this experiment, we set "1 = 0, � = 0.1 and compare PSI-Unif-Elim to 0-APE-k (called

Figure 1: On the left is the log of the empirical sample complexity of PSI-Unif-Elim and APE on the
real-world scenario plot (right) for 2 out of the 3 immunogenicity indicators.

APE-k in the sequel) for different values of k. The empirical distribution of the sample complexity of
the algorithms, averaged over 2000 independent runs, are reported in Figure 1. The results are shown
in log-scale (y-axis is the log of the sample complexity) to fit in the same figure. As |S?

| = 2, we first
observe that, without the relaxation (i.e. for k > 3), APE outperforms its state-of-the-art competitor
PSI-Unif-Elim . Moreover for k = 1 or k = 2, the sample complexity of APE-k is significantly
reduced. For k = 2 when the stopping time ⌧

k is reached some sub-optimal arms have possibly
not yet been identified as such, while for k = 3, even if the optimal arms have been identified, the
remaining arms have to be sampled enough to ensure that they are sub-optimal before stopping. This
explains the gap in sample complexity between k = 2 and k = 3. In Appendix H.3, we compare
APE to an adaptation of PSI-Unif-Elim for the k-relaxation, showing that APE is always preferable.

Experiments on random instances To further illustrate the impact of the k-relaxation and to
strengthen the comparison with PSI-Unif-Elim , we ran the previous algorithms on 2000 randomly
generated multi-variate Bernoulli instances, with K = 5 arms and different values of the dimension
D. We set � = 0.1 and "1 = 0.005 (to have reasonable running time). The averaged sample
complexities are reported in Table 2. We observe that APE (with k = K) uses 20 to 25% less samples

3In their experiments, [4] already proposed the heuristic use of confidence bonuses of this form
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than PSI-Unif-Elim and tends to be more efficient as the dimension increases (and likely the size of
the Pareto set, since the instances are randomly generated). We also note that identifying a k-sized
subset of the Pareto set requires considerably less samples than exact PSI. In Appendix H.3 we also
provide examples of instances for which APE takes up to 3 times less samples than PSI-Unif-Elim .

"1-APE-1 "1-APE-2 "1-APE-3 "1-APE-4 "1-APE-5 "1-PSI-Unif-Elim
D = 2 811 39530 109020 145777 150844 190625
D = 4 214 6410 19908 68061 124001 157584
D = 8 119 204 405 1448 20336 27270

Table 2: Average sample complexity over 2000 random Bernoulli instances with K = 5 arms. On
average the size of the Pareto set was (2.295, 4.0625, 4.931) respectively for the dimensions 2, 4, 8.

To illustrate the impact of the "2 relaxation, setting "1 = 0 we report the sample complexity of APE
associated with the stopping time ⌧0,"2 for 20 equally spaced values of "2 2 [0.01, 0.05], averaged
over 2000 random Bernoulli instances. Figure 2 shows the decrease of the average sample complexity
when "2 increases (left) and the average ratio of the size of the returned set to the size of the Pareto
set (right). Note that for "1 = 0, we have O(⌧0,"2) ⇢ S

?. The average sample complexity reported
decreases up to 86% for the instance with K = 5, D = 2 while the returned set contains more than
90% of the Pareto optimal arms. In Appendix H.3, we further illustrate the behavior of APE with the
"2 relaxation on a fixed instance in dimension 2.

(a) Average sample complexity vs "2 (b) Average ratio |O(⌧0,"2 )|/|S?
| vs "2

Figure 2: APE with ⌧0,"2 averaged over 2000 random Bernoulli instance with K = 5 arms.

6 Conclusion and perspective

We proposed and analyzed APE, an adaptive sampling rule in multi-variate bandits models that
when coupled with different stopping rules can tackle different relaxations of the fixed-confidence
Pareto Set Identification problem. Our experiments revealed the good performance of the resulting
algorithms compared to the state-of-the-art PSI algorithm as well as the great reductions in sample
complexity brought by the relaxations. In future work, we intend to make our algorithms more
practical for possible applications to clinical trials. For this purpose, as measuring efficacy takes time,
we will investigate its adaptation to a batch setting, following, e.g. the work of [13] for BAI. We will
also investigate the use of APE beyond the fixed-confidence setting, to the possibly more realistic
fixed-budget [2] or anytime exploration [14] settings. To the best of our knowledge, no algorithm
exists in the literature for PSI in such settings. Finally, following the works of [28, 4], we defined the
"1, "2 relaxations with scalar values, so that the same slack applies to all components. Although we
could easily modify our algorithms to tackle vectorial values "1, "2, so far we could only prove a
dependence on mind "

d

1
in the sample complexity. We intend to study the right quantification in the

sample complexity when "1 and "2 are vectorial.
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